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Model equations from gyrokinetic theory for a non-neutral plasma
to include temperature effects and applications to a plasma
of infinite length

S. Neil Rasband®
Department of Physics and Astronomy, 180 Eyring Science Center, Brigham Young University,
Provo, Utah 84602

(Received 8 August 1995; accepted 25 September)1995

Gyrokinetic equations are derived for applications to non-neutral plasmas in constant, straight
magnetic fields wherein B drift velocities are of the same order as thermal velocities. The ratio
of the EXB rotation frequency to the cyclotron frequency and the ratio of the gyroradius to a plasma
scale length are assumed to be of ordeand terms are retained in the gyrokinetic expansion to
second order to include finite-Larmor-radigSLR) effects. A mode equation is obtained for a
non-neutral plasma in the infinite-length approximation. The singularities of this equation are
compared and contrasted with the familiar mode equation from the cold-fluid approximation. A
numerical investigation ah= 1 perturbations for a pure electron plasma with parameters chosen to
closely approximate those in the report by Drisdéthys. Rev. Lett64, 645 (1990] reveals no
exponentially unstable modes with significant growth rates and strongly suggests that finite
temperature is not the source of the exponential growth seen in the experimernt996cAmerican
Institute of Physics[S1070-664X96)02401-7

I. INTRODUCTION below those reported in Ref. 4 and still cannot explain the
In this paper we obtain the gyrokinetic equations suitable?hbes’rir\gdn':Sézz'e“:]ﬁeizicg'r?aiyéclgot:;?n;'tg:ugftgnﬁg”\:)v\:ere
for application to a non-neutral plasma. The gyrokinetic ex-" "~ o T

P P 9y profile and a temperature of 1.2 gdonsistent with Ref. )L

pansion is carried out to second ordereinwhere both the th d th wih rat ter th bout
ratio of the EXB rotational frequency to the electron cyclo- e_r;e are no modes with gro rales greater than abou
&0 times the real part of the frequency for the mode.

tron frequency and the ratio of the gyroradius to the plasm . .
guency I 9y ! P A second outcome of this work has been a discovery of

scale size are considered to be of orderfThe gyrokinetic h in which the inclusi f Kinetic effect difies ih
results are applied to a situation where there is na € way In which Ihe€ Inclusion ot Kinetic effects modties the

z-dependence in either the equilibrium or the perturbationsmgul"’Irltles of the mode equation.
and we study then=1 diocotron mode for hollow profiles.
This study was primarily motivated by experimental ob-
servations of anm=1, exponentially unstable diocotron II. THE TRANSFORMATION TO GUIDING CENTER
mode in a hollow electron column by Driscblind the fact (GC) COORDINATES
that the cause of this instability remains ambiguous. In a
conventional two-dimensiondR-D) drift model (no inertia
and zero temperaturdéinear theory predicts that there are n

To obtain a gyrokinetic description of a pure electron
o plasma where the gyrophase has been averaged out in a self-

m=1 exponentially unstable modes. In a companion articléonsistent way, we follow the phase space Lagrangian ap-
to Driscoll's, Smith and Rosenbltiidescribe analytic and Proach using Lie transforms developed by Littlejch@ur

numerical investigations of the same system within the 2-cFalculation, being directed towards a different purpose, dif-
drift model wherein they find algebraic growth wf=1 per- fers from those already reported in the literature. First we

turbationse« /t. They refer to preliminary calculations that consider the magnetic field to be straight, aligned along the

suggest a small gyroradius or viscosity can lead to exponenz—'ax's' externally imposed, and constant in time and space.

tial growth. In a subsequent letter, Siitsxplored in a phe- Second, the self-consistent electric field for the non-neutral
nomenological way the effects of finite gyroradius and finitepl‘?lsma is of the same order as the magnetic field. Further-

axial length on exponential growth. A study by RasbandM°'e We pull out explicitly thg KB drift velocity as of the.
et al? using a warm fluid model suggested that the exponen§ame order as the gyromotions. These ordering consider-
tions lead us to take as a particle phase space Lagrangian,

tial instability may be due to finite temperature; however, the®
calculated growth rate was still an order of magnitude below
the_z expe_rimentally_ measured result and also exhibite_d oscil L dt:f dt| (} @Bxx+ Mub+ Mwe+ IR
lations with changing temperature that seem unphysical. € 2

The new results reported here show that the growth rates
that result from a careful inclusion of temperature effects via (1 1 1 1 )] 0

2 ~
gyrokinetic theory are above those reported by Sinitiat R EMU2+ EMW2+ > Mve+Mwe-ve

X

3E-mail: rashand@beethoven.byu.edu whereM is the mass of the particle in question agdts

94 Phys. Plasmas 3 (1), January 1996 1070-664X/96/3(1)/94/10/$6.00 © 1996 American Institute of Physics



chargeB is the(imposed magnetic fieldp=B/|B|=&; with

e,,&, fixed spatial unit vectors, such thatxe,=&;; ¢ is the
gyrophase angle withc=singe,—coséde, and bxc

=a=cosAe +sinhe,; c is the velocity of light and
(1 =qgB/Mc is the signed gyrofrequencyb is the electro-
static potential and.=(q/MQ)Exb. The particle velocity
is written asv=ub-+wc+v,. The ordering parameter has

been introduced explicitly for the usual purpose of tagging
the terms of various orders, and is set equal to 1 for obtaining
numerical results. In Eq(l) the electrostatic potential has

been given the same order as the vector potential $intes
of the same order as the velocity space variakblesnd u.

Due to the more-or-less straightforward nature of the Lie
transform technique and the fact that several articles contain-
ing such gyrokinetic transformations have appeared in this
journal and elsewher¥* the details of this calculation have
been relegated to an appendix. Suffice it to say that it must

Dve € [W?_,
X= Ub+ve+ bx +? — ViV,
- [~ DV, \
+ x| bx be—t +(€%), 7
2
- g\ e
Ub+|1+e€ 462VJ‘ Ve"r‘ Q)Q 1
€ 5 DE, 3 g
+¥xbx ¢ ) 8
eMW? 9
n= 50 =const, (9

5

be carried out to fourth order to fully determine the required e W2. . 2 W2
coordinate transformation to second order. The guiding cen- —q 2 b Vby- Qz[ b-(¥xV2ve)
ter (GC) coordinates are denoted aX,UJ,0®,W), whereX ,
denotes the position of the guiding center akld®,W) are 0°. ,
velocity coordinates witHJ denoting the parallel velocity B ﬁb VI |+ () (10
and® the gyrophase. The resulting Lagrangian in GC coor-
dinates is 1 €
®=——9——b¢+ <bw2<vWF gt
1 MQ
J L d'{ZJdtH——b)(X—l—l\/lUb-i—MVe X +0(€3). (11)
eMW2 . [1 1 Equation(8) has been written in such a form that we readily
Ty ®—[;qd>+ EM(U2+W2+U§) recognize the familiar polarization drift plus corrections and
the FLR correction to the EB drift v,. Equation (7) is
W2 . 21+(3) 3 more useful for subsequent calculations. By choosing to push
Te 40 (b-¢)— T+ (€) J ) all higher order corrections into the Hamiltonian part of the
phase space Lagrangiésee Ref. B Eq. (9) is exact to all
where =V xv, andI'{®) is given by orders.
The Vlasov equation for the distribution functidn in
e M W2 (Voo 2 3(6 ¢)2}+ M [[Dvg GC coordinates becomes
t 892 e L 2 292 JF pr=
2 Mo, (9—+X VF+Um=0. (12
+VeX iy (bveve) + 2072 D_t’ ()] .
In Eq. (12) no W terms appear becau¥¢is constant and no
where 0O terms appear becauseis independent 06 to the order
calculated. For a situation to be considered shortly where
(VV)ZEVV;VV:viJvi’j, (4) there is no dependence on the coordirat@ong theb di-

and the last form summed over repeated indices is for Car-

tesian components. For brevity we have used

b J Ub V. 5

1= gt T (VetUb)- (5)
Note that

ard M : Dv,

U 02| ¥t ©

The Euler-Lagrange equations obtained fro@) in
GC coordinates X,U,0,W) (collectively denoted by
Z* . u=1,...,6) give

Phys. Plasmas, Vol. 3, No. 1, January 1996

rection,U=0 as well.

We assume the potential to be an equilibrium potential,
plus a perturbation, ®=d@+®@d  with corres-
ponding density, n=n®+n), distribution function,
F=F©+F®, and drift velocity,ve=v{Y+v{" . We linear-

ize in this perturbation and obtain from Ed.2),

gF O . . gF©
= 0.yFO+y© T (13
gFD . . gFW
0, yED 4 J(0)
Fr VEH+ U —
oF®
= XV .yEO_ 0 (14)
S. Neil Rasband 95



Each of these Eqg13) and (14) is solved to“(€?) in the  perturbation will be a sum over such modes. We assume an
GC expansion. Linearized in the perturbation, BE&55) is  exponential dependence on time and write this perturbation
used to relate the density functions and the distribution funcin the form ®®= ¢1)(r)exp(—iwt+im¢). From the defini-

tions. tion of v, we find
Ill. THE z-INDEPENDENT APPROXIMATION q dp©
O=— o= ¢ (15)
Consider a long, cylindrical, non-neutral plasma for MQ  dr
which we assume no dependence on the coordinaieng
the longitudinal direction. Specifically, we assume a pertur- g |—im A
. e . ! D_—_1 | 4Dy D1 |aiot+
bation to an equilibrium potential of the ford=®d©)(r) Ve =gl 7 @ Tre T ele e, (16)

+®M(r, ¢,t), with corresponding perturbations in the den-

sity n(x,t)=n@(r)+n®(r,4,t). Because of the linearity with v{¥ andv{? as given in Eqs(15) and(16) (but in
in the Vlasov equation and Poisson’s equation, we may consC coordlnateblt is straightforward to find from Eq(10)
sider the axial modes one at a time, recognizing that the fulthat U(@=U®=0 and from Eq(7) that

XO=uz+d + (€%, 17

2 2 2
Wy, WoWp —eZW wgh’
Q Q3

Rwo(l—e——e 203

2 2 2m w?
X(l):(%>eiwt+imtb{ié[_g¢ £ {d)(l)/(w mwo)——g{)(l)—] %{ VZR D ¢(1)+ Pl (D4

mwp .
—mwo)—md) +o

€ m e [ w2
- 5[ 2000 + 5 V(0= mm0)+ +qz| 7D+ RwgD?¢!
2

m
- %(2wo¢<”'+ ﬁqs(“(w—mwo))]

] +(€%). (18

In Egs.(17) we have used’=d In n®/dR the usual definition for the plasma frequency profifg=47g*n®/M and
Poisson’s equation for the equilibrium field in the form

l d a)rz) g
Also for brevity in Eq.(18) we have defined
1d/[/ _d¢P\ m?
20 V="_ _ | p—/—|— (1)
D¢ RdR(R ar | RE? (20)

Since U is constant, the Vlasov equation f&? is satisfied by a Maxwellian distribution function of the form
FO=f(R)exp(—(WP+ U2)/vf)/(MvT\/;)3, wherev_is the thermal velocity given by_=(2kT/M).

The GC distribution functions are used to obtain the particle densities using the result from the Lie transformation analysis
of the appendix:

(6-¢> 2

Dv,

Dt =7 tv| F

n(x,t)=.7,(F)+e€

2 ([ Dve
wl—71 EJFUII'/’L -VF

I

2

1 Dv, ) 5~ 13 1 1 1,
+Z7 Dt +UH()[’L 'WW +72(F1W) _a(b'lp) _3_2V(Ve'VVe)_Elpl'VUH"’EU“(b(/Ib)_EIr/IL
, Dv, 1. [ Dvg ) 9~ 5,1 5
-7 W‘FUH‘M -VF,w +§(bx¢)..72 ﬁFyUW +.73(F.ww) a(b‘l/’) +3_2V'(Ve‘VVe) +Vi173(F)
i~ p 1 2,
+(gxb)-VT75(F,y) + 241 73(F.uu) | (21)

96 Phys. Plasmas, Vol. 3, No. 1, January 1996 S. Neil Rasband



where for brevity the velocity integrals are written in the where we denote for the gyroradius squapée vi/Qz.

form To find the perturbed distribution functiof® we re-
Fo o gard the left-hand side of E¢l4) as the total time derivative
T+ ~)527TM3J' de (- )WkdW. (22)  of the perturbed distribution function over the unperturbed
— % 0

orbits in the usual waysee Ref. 12 From Eq.(17) we find
that the unperturbed orbits are characterizedte®) at time
t'<t by

It can be desirable to relafér) to a known equilibrium
particle densityn(®)(r). This can be done by writin(r) in
the formf(r)="fy(r) + ef 1 (r) + €2f,(r) and substituting this
form into the equation fon(®) obtained from Eq(21). Per-
forming the integrations over the phase space coordinates ®(t')=®—w(R)(t—t'), (24)
(U,W), determines order by ordé(r), f1(r), andf,(r) in Z(t)=Z—U(t—t')
terms of the particle density profit€®. It is straightforward ’

R=const,

to find where
f _ n(0) 2 B 2(1)2 ’
O(r) n (r), ( 3@ w(R,W)=gw0—EZT£3+@(€3), (25)
2
w
fa(r)=255n" (230 with
2
4 2 2 (0) wo  ,WoWp
Fo(r)=| 32 — 220 _,20% n<0)+”"° dn g=l-€q —€—53 - (26)
2 04 07 “ 03 Q2 dr
- Carrying out the integration over the unperturbed orbits in
. E i dn (239 Eq. (14) gives the perturbed distribution function. Written in
r dr dr J’ laboratory coordinates as needed for use in 4,
|
exp(—iwt+ime) dF® , 3 mw €2
2 2
. Mo ,
x| — ——D2pW ﬁ" ¢<1>'(w—mw)—r—ﬂ'°¢<l> +O(€%). (27)

With this perturbed distribution function in hand we can substitute into(E4.to find the perturbed density,

(0) ’ ’ ’
gn* m f f
1) _I ietrime) T ) _Meo b oy ot g2 2,1, 2
n (X,t)_MQZe [ Imw[ : n(o)qs I, +e€ rwpn(o)d) I+ n(o)qs (1—wgl)+2 (O)D 'V t+e
m m(2mf - . T . m*p? PPPY ap o -
X =7 . (0)(wo+wp)+n(O)(w_mgwo)__z_r |2+ 21 100(@o+ @p) | — ¢ n(O)(wp+2wO
~ 2 £/ ’ 2 ’
rmog d f m _f mp* d d/f
_ (1) P24 ~2, 2 __r - (1)
2apipl1) + n@ dr( ¢ Il) D% (n(o)wp+ arP pole ) T | | T . (28

where a tilde over an angular frequency denotes that it has de®P\ m ) by , b2 dopM
been scaled by the cyclotron frequerey The phase space bo rdr (f dr ) 72-¢( = P - T dr
integralsl; andl, are defined as
d|l d "
v? »W exp(—W?/v?) —bagr—|r— ¢ 'l
O, :f T T w 29 drl dr
201 )y o—ma(r,W) ’

=0, (31

dw.

v? J‘ooWs eXK—WZ/vf)

2027 o @—ma(r,W)

We now substitute)(x,t) from Eq.(28) into Poisson’s
equation to obtain the mode equation for the potential per-

turbation ¢*) for the m axial mode,

Phys. Plasmas, Vol. 3, No. 1, January 1996

(30

d(1
—br—| Z W5
b“rdr(rd) iy

where the coefficients are

f f m f’
_ 02— ——t — 52p2
b0—1+26n(0)wp € (n(o)wp+4 @pp n(o)lz ,
(32
S. Neil Rasband 97



f clusion of FLR effects from a simple pole to a logarithmic
by=rmao ( —ol1[1— €@+ 22mo(@o+ @3) ] singularity. Furthermore, when<0 the integral ; will nec-
essarily have an imaginary piece, and this must happen when
the profile is hollow anch(® has a vanishing derivative at
some point in the interval. This then forces to have a
nonvanishing imaginary part and the perturbed potential
¢ is complex. This change from a pole to the intedkais
the most significant qualitative change in the mode equation
from the cold-fluid form and in a subsequent paper we hope
to explore in detail the full implications of this change for the
spectrum of Eq(31).

+262m—f(a) +&2)
@ (@oT @p

2

p

2 ~ ~ 2
+e n(o)(w—mgwo—m 2 I

!

] : (33

!

rf
b,=— W‘”;Z)[E(l_ @2l 1)— 62(w§+2w0

D5l 1)], (34)
ezma)gpz
bsz_rzn(O) )
(35) IV. NUMERICAL INVESTIGATIONS OF THE m=1
Pa= ™ T

To obtain a numerical solution to the mode equation

We note that the last two terms in E(B1) could be ex- (31), we expand¢*)(r) as a sum of cubic B-splines,
panded and incorporated into the other terms, giving modi(1(r)=3c;y(r), for a finite element partition of the in-
fied forms forby, by, andb,. Equation(31) is an eigenvalue terval[ Oy, ]. Then applying a standard Galerkin technique
equation for eachn, second order in the derivatives of the to Eq. (31) and normalizing the eigenfunctio®)(r) at
perturbed potential functiogs™™ and is a convenient form some intermediate point in the interval leads to a standard
for a subsequent numerical study. eigenvalue problem for the eigenvalweand the eigenvector

Comparing the mode equation, E&1), and the coeffi-  of expansion coefficients;. As is evident from the depen-
cient functions with the familiar equation from a cold-fluid dencies in Eq(31) and the equations for the coefficient func-
model [see for example Eq11) of Ref. 13, we see that tjons that follow, the eigenfrequencies and functions depend
resonance occurs with a Doppler shifted rotation frequencyon the temperature, the magnetic field, and the equilibrium
gio=(1—€edo— Edod)@do. In  the limit e—0, profilen®(r). We choose values corresponding to those re-
l,—1/(&@—mag) and becomes a simple pole consistent withported in Ref. 1 and a similar profi®(r). Specifically we
the cold-fluid approximation. In order to elucidate the singu-choose a temperature df=1.2 keV, a magnetic field of
lar nature of the phase space integréis and I,, we B=375.0 G, and a density profile given by the function
look closer at their properties. For brevity we define
G=e’mp®a3h’/4r and then let

z=(—mgao)/G. (36) NO(r)=A[1+ uy(r/ry)?lexd — (r/rp)#2], (41)

The quantityz can, of course, be complex if the eigenvalue
o has an imaginary part indicating mode damping or growth.

Letting £&=W?/v2, thenl,;=1/G where wheren is the central density; controls the hollowness of
T the profile, u, controls the steepness of the cutoff, and
_J“’ e ¢ d¢ 3 controls the position of the cutoff. We used the values
) z+éE @) A—36x10P cm 3, 4;=0.95, u,=8, r,,=3.81 cm, and

Io/Twai=0.47, resulting in a profile that is a reasonable
match to that reported by Driscdll. Denoting
= et Omax=1.098<1P s as the maximum value @w,, our
P d¢= _(1 zl). (38 investigation of modes for Eq31) was undertaken primarily
in the neighborhood ok ,,,x, €xcept for verifying the exist-
In the notation of Abramowitz and Stegun, Ref. 14, the inte'ence of the neutra”y stable diocotrdwa”) mode. In the
gral | is given by neighborhood 0w may, RE(®)~ ®max, We find only modes
| =e%E,(2), (39)  With growth ratesim(w)~1-2X10" X wp,y, which are
about a factor of 10 lower than those seen in Driscoll's ex-
periment. As one check on the code performance we kept
(—1)"z" only terms corresponding to the model considered by Smith
, |argzl]<m, (400 and successfully duplicated his results. The growth rates
found by fully including all FLR corrections in Eq31) fall
where y=0.5772% - - is Euler's constant* Asymptotically  between those found by Smitand those reported in Ref. 4.
| ~1/z and thus even though, as it occurs in Eq(31) as- We conclude from this study that FLR, i.e., finite tempera-
ymptotically behaves like a pole, as in the cold-fluid ture effects, have little to do with the exponentially growing
approximationt® the singularity has been changed by the in-instability observed by Driscof.

Note also that

with

Eiz)=—y—Inz— 2,
n=1

nn!
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In passing we note that setting all termsofe?) equal We represent the Lie derivative operator with respect to
to zero, but keeping terms af(e€) corresponds to keeping the vector fieldg in the formL,. The succession of Lie
only corrections corresponding to the polarization drift andtransformations corresponding to increasingly higher order is
returning the singular integra} to a pole. For the magnetic given by
field value chosen above and the indicated profile, the mar- . 5 )
ginally stable, cold-fluid mode witRRe(w) = w ., becomes F=...e “lue “ltue “toe oy, (A5)
unstable with a growth rate roughly half that O.b tained WIthwhere the transformed 1-forthagrangianis also ordered in
the full FLR effects included. Leaving everything else the " i () , .
same but replacing the pole with the singular integral € 1-€- I'= <Zq—oe"I"". Representing the exponential op-
reduces the growth again by about 40%. Qualitatively, theé¥rators in Eq(AS) as a power series in the Lie derivatives
most important change introduced by including FLR effects2nd matching order by order gives

is the change from the pole singularity, @4 mga,) to the =0 1 gF© (A6a)

logarithmic singularity of the integrdl,. This implies that it '

is no longer possible to haven(¢)(r))=0. T =W O gF®, (ABb)
The correction terms in E¢31) that are most important 9

for giving the computed growth are those in the coefficient (2= Y@ =Ly Y+ Loy O+ dF?, (ABC)

functionsby andb;. The terms with coefficientb, andb, !

are unimportant and the corrections terminmake a dif- 3=, Lgﬂ(z)* Loy D +LzyO+dF®,  (A6d)

ference on the order of 10%.
=44 L917(3)+ Loy P+ Lay P+ Ly O +dF @,

ACKNOWLEDGMENT (A6e)
. . . . . where
The author acknowledges enlightening discussions with
my colleague Ross Spencer on many aspects of this work, 1
particularly in regards to the behavior of the phase space LZZE(Lgl)Z_ng’ (A73)
integrals.
1
L3=L92Lgl—g(Lgl)3— L, (A7b)

APPENDIX: LIE TRANSFORMATION TO GC
COORDINATES 1

1 1
La==(Lg)*+ 5(Lg)?— =Lg.(Lg )2+ Lg Ly —Lg .
The fundamental ideas behind the usage of a Lagrangian 24be)" T 2(be) " g hay(be) Lok, L,

in extended phase space have been thoroughly discussed in (A7c)

Refs. 5, 6, and 10. Following this procedure, we view the  \ye genote components in phase space with Greek letters
Lagrangian in Eq(1) as a 1-form on extended phase space.

: : ) - OF uw,v, ..., andrepeated indices denote a sum in the usual
Furthermore, we view this Lagrangian as an expansion in thg,

. ; ! ay. For purposes of brevity in computation it is convenient
ordering paramete¢, wherew/(),p/L are(e). We write to write
1< v (K Ky r (K
y=2 2 ", (A1) (Lo Y =0l (7~ V) =gl vl (A8)
i

In this equationi labels which generator is used in the Lie

derivative and the index labels which 1-form in the
(0)_@ ik e-expansion. The indiceg andv are phase space coordinate
i T &b, labels. The comma denotes partial differentiation, i.e.,
y4,=3yM/9x” with x” one of the phase space coordinates.

where from Eq(1) we identify

Y= =10 =012 =—qd(x1), (A2)  |n a similar fashion we define
7' =Mub;+ mwe + Mug;, (L)Y 1,=0/(g] 0l — 07,00+ g i) )
yP=yh=pD_g (A3) =g'ak) (A9)
vup !
1 . o
WY == S U2+ WP 02) ~ MWy, (A4) [(Lg)*y* ,=g/als, (A10)

All other ¥ are zero. We recall that the phase space coorwherea!." is obtained from the definition @b’} given in
dinates are X,u,6,w,t) and other notations as defined in Eq. (A9) by replacingn® with @®" in that definition,
Section I. The Latin vector indicesj,k,l,m, ..., runover _

1,2,3 and refer only to spatial coordinates. Frequently the [(Lgi)“y(k)]ﬂzg{’az)ﬁ,'j;'), (A11)
spatial part of phase space vectors will be denoted with bold _

type, e.gg denotes the spatial part of the phase space vectawhere ®"is obtained froma®" just asa" is obtained
field g. from o();

Phys. Plasmas, Vol. 3, No. 1, January 1996 S. Neil Rasband 929



[LgLg y™1,.=0] 5)“21') (A12)  through the result
i 9 4 !

where n(x,t):M3f TF(X,U,0,W,t)8%(x
k=g K _qo 0 g K (k) a(x,u,6,w)
w, _g',vwrr g', wlrv+g'(wa v wrrv, ) (A13) —x' T 7 g6
3 j w Iju j © © X (X’U’®’W))0(X,U,®,W) d°z, (A18)
Likewise where d®Z=W dW dU @ d3X, 4(...)/d(...) denotes
2 » =) the Jacobian of the transformation, ahB(X,U®,W,t) de-
[Lg(Lg) y¥,.=g7al (Al4)  notes the transformed distribution function having exactly
the same value at the GC coordinai#sas the distribution
where ") is obtained froma®") as &®" is from w®.  functionf(x’,u,8,w,t) has atz*,
The calculation of the transformed 1-form8(", given in 2
Egs. (A6) and (A7) is simplified considerably by using the TF=...e° "eaF. (A19)
antisymmetric tensors given in Eq#9)—(A14). Writing the exponentials as a power series and keeping only
The hierarchy of EqslA6) and (A7) is used in the fol- 15 7(€2), Eq.(19) gives
lowing way: the vector fieldsy;,g,,..., and thegauge
functionsF(©® F(M) . arechosen level by level to elimi- WOF ol yoF 1 9 OF
nate the dependence of the Lagrangian 1-forms on the gy- '+ & T €915za 1 €92 jzat 591577| 91 57z
roangle #. This objective does not fully specify the func- 3
+O(d). (A20)

tional dependence of the generating vector fields or the

gauge functions, but nearly so. Simplicity arguments com-  jth this sketch in place as to the manner in which the
plete the Specification. Despite our intent to Only obtain th%a'cu'aﬁon proceeds we now Supp|y some details. We omit
GC transformation to”(e?) so that FLR effects may be |engthy algebra, giving only results when the procedure is
properly included, it soon becomes apparent that to fullyclear. First we focus on the details of obtaining the GC trans-
determine the GC transformation to(e®) one must carry  formation to“(€?). For brevity we use the convenient no-

the transformation of the Lagrangian 1-formsctge®). tation for arbitrary vector#\,B,C,
Once the generating vector fields,g,, ... have been
determined, then the corresponding coordinate transforma- (ABC)=A-VB-C=AB;;C;. (A21)

tion in phase space is also determined. Actually, it is theAIso for convenience we define
inverse of this coordinate transformation that is needed. De-
note the newphase spag¢esC coordinates ag* and the old

q ~
phase space coordinateszis Y=VxVe, vj=yrq(b-E). (A22)

Before beginning the procedure for solving for the vari-
ousg’'s we make a preparatory transformation using the vec-
tor field g, where

7¢=(e Loe Lo, .. )Z~. (A15)

Using the fact thaLgi(Z“):gf‘, the power series expan-
sions of the exponential operators, and keeping only to i W,
(€?) gives %=~ % (A23)
and all other phase space componentggfare zero. We
+O(d). (Ale)  compute the various Lie derivatives needed for E4$) as
defined in Eqs.(A7)—(Al14). The gauge functions in Egs.
(A6) are, of course, zero for the preparatory transformation,
Once the gyrophase has been eliminated to the requireghich is a specified transformation, not one in the process of
order through Lie transformations and this transformation isseing determined.
known, the problem of solving the Vlasov equation in GC Using the preparatory transformation, the Lie trans-
coordinates can be addressed. In covariant form the Vlasoérmed Lagrangian 1-forms become
equation is

agy

T B g2 1,99 ©
Zt=Z —Eg1+€ zglazv_QZ

—. mQ :
0) _ k
dF  dz* oF M= e/,
o 570 (AL7)

rO=rP=rP=0I=—qd(xt), (A24)

where\ is just some convenient parameter marking the path r_i<l>: Mub;+Muvg;,
of a particle in extended phase space. In the familiar GC
coordinates and with timechosen as the path parameter this ~ I''V=rP=r{V=0, (A25)
simplifies to Eq.(12).
Knowing the distribution functior(X,U,W,t) then al- T _ M 2,9, 2
lows us to obtain the particle density distribution in space T 2 (U w +vg), (A26)
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— Mw .
r?=- Tfijkaj g,

(aac)(a-B)—(aaa)(&-B)=—Db-(Bxa-Va). (A32f)

These results are readily proved in Cartesian components

ﬂjZ):r_gVZ):o, (A27)  and depend on the definitions @b, as given in Section II.
) As an example of the many ways these results are used we
2 _ Mw note that
T
_ B 1 d(aved) A33
<p_ Mw o Mw? mw (avee) =~ 5b-gp— 5 ——, (A33)
7=- Ea'VUE_ W(aUEC) - E(a'VE,t)a
(A28) which follows from Eq.(A32b).
To obtain the GC transformation t6(e?) and to elimi-
— Mw? Viax nate the dependence on gyrophase in the phase space La-
T T 02 (@x ;. grangian, we use thE from Eqgs.(A24)—(A31) for the y in
_ —. Egs.(A6)—(A7). To achieve the results
rP=rd=o, (A29) q
MQ ~
o Mw? r'O=——hxX,
r®=— p. 2
2007
MW Mw? ry'=Ty=re’=o, (A34)
(3= _ V(A.-Vpi)— —a-
Ft 4072 a-V(a-Vug) 302 a-V(avec) F§0)= —qd(X,t),
Mw? D= MUB
—Wa-V(a-vE,t), (A30) I'y’=MUb+Myv,,
M rP=riy'=ry’=o, (A35)
IY=— —eaaam
i 693 ijk J,ms 1 M 2
IY=——(U2+W?+02),
r4=r®=g (A31) 2
u w 1
Sy Mw? ry'=o,
[y =gz (ayb),
’ 30 ry=rg=o,
'™ is not needed. . Mw?
: . rg=—-—-. (A36)
We see that this preparatory transformation moves all depen- 20
dence on gyroangle to’/(e?) and higher in the Lagrangian >
1-forms. F§2)= _ MW 6,¢
With the preparatory transformation accomplished 4Q
we return. to the task of determining the transfor_manon e make the following choices:
vector fields g;,9,,..., and gauge functions
FO FD R EG F®) soas teliminate any depen- 0,=0, F@=0, F@W=p, (A37a)
dence on gyrophase from the Lagrangian 1-forms and deter- W
mine the GC transformation t&(e?). We do not alter the W s s e
time coordinate and consequently none of the vector fields gz_QZ[(b Pat(a-gbl, (AS7H)
01,92, ..., have a time component.
A number of results relating products of various sorts :V_Vé_!p (A370)
with the vectorsa and ¢ are useful. They are analogous to o™
dalof=—c and dc/df=a in that these identities are useful
for relating quantities involvinga and/or ¢ to derivatives w:V_V } _ E b i . [DVe
i - 01 (aveC) (b-¢p) |+ sa- +U||l/l ,
with respect to gyroangled(or ®). For arbitrary vectorsy 0|2 4 Q Dt
and B, (A37d)
aaa)+(cac)=V-a—(bab), A32 , 1 1 . /Dy,
( o ) ( o ) ) 44 ( (23 ) ( a) g;_)zﬁ(avea)_mc'(D_te“rvl/’, (A37e)
(caa)=(aac)+b-(VxXa), (A32b)
s a NI Ao W2 MW _ (Dv.
(aa)(a-p)+(C-a)(C-P=a-—(b-a)(b-p), (A320 F<3)=W(av9a)— 62—6-(D—te+vllf . (A37f)

(3-a)(&-B)— (&-a)(3-B)=b-(Bxa), (A32d)

(aac)(&-B) +(aaa)(a-B)=(aap)—(b-B)(aab),
(A32¢
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The procedure followed to carry this transformation to
one more level is the same. We choose the appropriate com-
ponents 0fg,,g; and the gauge functioR® to achieve
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1"(3)_0 1"(3) 0, 1"(3)_0 1"(3)_

(A38)

In arriving at these results in the forms given we have made
frequent use of EqgA32). We use the notatiog3,g3,g5 to
denote the components gf along the directiong, b, ¢. The

and force all corrections intB§3) with no dependence on the lengthy expression fof® is available from the author upon
gyrophase®. The algebra is tedious and the results lengthyrequest.

2

(azpb)

g5= —c V(avea) [+

3 .
(é' l/f)z—z(b-',lf)2

1 R
—5(avec)(b-gh)+

Duve
¢ ©

Vo uer— 1wl 2 2V — Pl s uih A39
+ g3 (cyc)— 3| (b-4)| a7 as@P(b-4), (A393)
WA - Wo w3 1- . 3. -
03=1pq3l(bub) +4(aya) —2b-V(avee) 1~ ~g5 (bya) + g3 Z(cvez//>+Zb-(¢xa~Vve>—§<a-¢><b-¢>
b=lea| + (¢ b-v b-4)? BB e A39b
EIRICEGTS —(a-)(b-Vu)) |- 293['# —(b-¥)7] 293 Wb ( )
o WP v W . DVe, Y| L obge Ve vl
95= 130 V(avel) + ( ) (aved) +(C-#)(a-¢h) —| cgrc| |~ gz (cye) = G3(b-h)C 5~ 53(C-¥)
X(b- ), (A390)
o WP by ) W bDue 1 7 . 5 o ve
08 =5 oy2[D-V(avea) + 2(aye)]— ya| | b5 0| + 5 (@uer) + 5 (G- (b |~ 57 ( l/fC)"'ZQz x4,
(A390)
W 1 - W W 2_(a 2 W F(A)
GE®
95 = 29<b W97 - 292<a D E W+ 1mm (A391)
|
Using the definitions given in E¢5) and Eq.(4) we find For F in Eq. (A20) we substitute
for T'® the result given in Eq(3). From this point on the 1 ; .
pattern is the same. We select the equations Ftegt—n — _E gpﬁzv<gp aZ”)’ (A43)
r®
IE=riP=ry=ri’=0 and 9 0 (A40)  obtained from the preparatory transformatign of Eq.

to determine the generating vector fielglsand gauge func-
tions FX while pushing all corrections into the Hamiltonian

functionT'{¥ .

With the GC transformation fully determined to the or-
der needed, we turn our attention to the functions required
for the density in Eq(A18). The Jacobian of the transforma-
-) is easily computed from the com-

tion I=M39(---)/a(- -
ponents of the Lagrangian 1-forms. Using
_ar, ar,
Cur=Gzr " 977"

6 and déw)=J?
(A41)

m,v=12 ...

we find

J(X,W,t):M3W(1+ 5(6-;/;)), (A42)
accurate to all orders.
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(A23). Keeping terms only te?(?) we find

TF=F+ e #,+ €% 7+ (€%, (A44)
where
N
1= (9p +91) Zn (A45)
and
L M§F+1 , 0, oF +1 , 9 [  OF
2792 70 T 29577\ 9 gz ) T 2%z S ze

) d u JF
91577 9 p7a)- (A46)

With the results obtained for the generating vector fields
given in Egs.(A37) and the fact thd= does not depend on
®, we find

S. Neil Rasband



W
—a-VF+g{F,u+9VF,w,

A(XU,0,W, 0=~ &

(X, U,0,W,t)=0,-VF—

(A47)

1 e W . 1 : 1
qOraVF+ 5 g7e-VF+ 5F,4(205+0107 .u+ 9797 6 +01'97 w)+ 5 F.w(207

2

H 1 1 1w
+9791 . u+079Y 0 +010r W) + 5(9?)2Fvuu+ E(QXV)ZFaWM‘ 9r 97 Foowt > ?a-V(a-VF)

W . W -
—agla-VF,U—ﬁgl a-VF,y .

The Dirac delta function in Eq(A18) evaluatesx’ at

X, where from Eq(A16) we find
eW . €W . A ~
X' =X+ o ?[(b-w)aﬂa-w)b].
Writing X=x+Ax we must then expand@F of Eq. (A43)

aboutx where

(A49)

eW . €W . A ~ )
Ax=— Ea+ Ez—[(b-z/;)aﬂa- Y)b]=€g,+ €°0s.
(A50)
Note that the?(e?) term in Eq.(A48) can be written imme-
diately as a function ok or X; the @?(€) term is not a func-
tion of the spatial coordinates. Thus TiF of Eq. (A43), F

must be expanded to second orde#; to first order, and
75 10 zero order. Then we write

TF=F+e 71+ € 4,+ (%), (A51)
where

_ W

./7%1(X,U,®,W,t):.,%l_ ﬁa'VF, (A52)

— , W2, .

A3(%U,0,W,t)=. 25+ G- VF + 5 78-V(8-VF)

—V—Va V(g F,u+oVF (A53)
o 9:F,u+t9:F.w),

with the functions on the right-hand sides dependingxon
and notX. Similarly the Dirac delta function requires the
expansion of the Jacobian of Ej41),

€ - W _ ~
J(x,W,t)=M3W| 1+ 5(b-:p)— Fa-V(b-nﬁ)

+O(€). (A54)
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(A48)

Substituting these results into EGA18) gives the par-
ticle density at the field point,

1 . —
Ftel qb-9F+.2

n(x,t)= M3f

S W 1. —
+ &~ @ Vb-YF+ 5 (b-y). 4

+ 7, (A55)

}W dw du @®.

The integral over® kills all terms that are of odd order in
aandc. Only when we have terms even in these vectors can
we get something other than zero. For example, we find

2
f k/{gld(’): -
0

Carrying out the integrations over angle in E455) results
in Eq. (22) for the density.

T™W .
o (P ¥F.w. (A56)
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