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Model equations from gyrokinetic theory for a non-neutral plasma
to include temperature effects and applications to a plasma
of infinite length

S. Neil Rasbanda)
Department of Physics and Astronomy, 180 Eyring Science Center, Brigham Young University,
Provo, Utah 84602

~Received 8 August 1995; accepted 25 September 1995!

Gyrokinetic equations are derived for applications to non-neutral plasmas in constant, straight
magnetic fields wherein E3B drift velocities are of the same order as thermal velocities. The ratio
of the E3B rotation frequency to the cyclotron frequency and the ratio of the gyroradius to a plasma
scale length are assumed to be of ordere and terms are retained in the gyrokinetic expansion to
second order to include finite-Larmor-radius~FLR! effects. A mode equation is obtained for a
non-neutral plasma in the infinite-length approximation. The singularities of this equation are
compared and contrasted with the familiar mode equation from the cold-fluid approximation. A
numerical investigation ofm51 perturbations for a pure electron plasma with parameters chosen to
closely approximate those in the report by Driscoll@Phys. Rev. Lett.64, 645 ~1990!# reveals no
exponentially unstable modes with significant growth rates and strongly suggests that finite
temperature is not the source of the exponential growth seen in the experiments. ©1996 American
Institute of Physics.@S1070-664X~96!02401-7#

I. INTRODUCTION

In this paper we obtain the gyrokinetic equations suitable
for application to a non-neutral plasma. The gyrokinetic ex-
pansion is carried out to second order ine, where both the
ratio of the E3B rotational frequency to the electron cyclo-
tron frequency and the ratio of the gyroradius to the plasma
scale size are considered to be of ordere. The gyrokinetic
results are applied to a situation where there is no
z-dependence in either the equilibrium or the perturbation
and we study them51 diocotron mode for hollow profiles.

This study was primarily motivated by experimental ob-
servations of anm51, exponentially unstable diocotron
mode in a hollow electron column by Driscoll1 and the fact
that the cause of this instability remains ambiguous. In a
conventional two-dimensional~2-D! drift model ~no inertia
and zero temperature! linear theory predicts that there are no
m51 exponentially unstable modes. In a companion article
to Driscoll’s, Smith and Rosenbluth2 describe analytic and
numerical investigations of the same system within the 2-D
drift model wherein they find algebraic growth ofm51 per-
turbations} At. They refer to preliminary calculations that
suggest a small gyroradius or viscosity can lead to exponen-
tial growth. In a subsequent letter, Smith3 explored in a phe-
nomenological way the effects of finite gyroradius and finite
axial length on exponential growth. A study by Rasband
et al.4 using a warm fluid model suggested that the exponen-
tial instability may be due to finite temperature; however, the
calculated growth rate was still an order of magnitude below
the experimentally measured result and also exhibited oscil-
lations with changing temperature that seem unphysical.

The new results reported here show that the growth rates
that result from a careful inclusion of temperature effects via
gyrokinetic theory are above those reported by Smith3 but

below those reported in Ref. 4 and still cannot explain the
observed instability. Specifically, in the circumstance where
there is no dependence on thez coordinate, for a hollow
profile and a temperature of 1.2 eV~consistent with Ref. 1!
there are no modes with growth rates greater than about
1023 times the real part of the frequency for the mode.

A second outcome of this work has been a discovery of
the way in which the inclusion of kinetic effects modifies the
singularities of the mode equation.

II. THE TRANSFORMATION TO GUIDING CENTER
(GC) COORDINATES

To obtain a gyrokinetic description of a pure electron
plasma where the gyrophase has been averaged out in a self-
consistent way, we follow the phase space Lagrangian ap-
proach using Lie transforms developed by Littlejohn.5 Our
calculation, being directed towards a different purpose, dif-
fers from those already reported in the literature. First we
consider the magnetic field to be straight, aligned along the
z-axis, externally imposed, and constant in time and space.
Second, the self-consistent electric field for the non-neutral
plasma is of the same order as the magnetic field. Further-
more, we pull out explicitly the E3B drift velocity as of the
same order as the gyromotions. These ordering consider-
ations lead us to take as a particle phase space Lagrangian,

E L dt5E dtH S 1e MV

2
b̂3x1Mub̂1Mwĉ1MveD –ẋ

2S 1e qF1
1

2
Mu21

1

2
Mw21

1

2
Mve

21Mwĉ•veD J , ~1!

whereM is the mass of the particle in question andq itsa!E-mail: rasband@beethoven.byu.edu
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charge;B is the~imposed! magnetic field;b̂5B/uBu[ê3 with
ê1 ,ê2 fixed spatial unit vectors, such thatê13ê25ê3; u is the
gyrophase angle with ĉ5sinu ê12cosu ê2 and b̂3ĉ
5â5cosu ê11sinu ê2; c is the velocity of light and
V5qB/Mc is the signed gyrofrequency;F is the electro-
static potential andve5(q/MV)E3b̂. The particle velocity
is written asv5ub̂1wĉ1ve . The ordering parametere has
been introduced explicitly for the usual purpose of tagging
the terms of various orders, and is set equal to 1 for obtaining
numerical results. In Eq.~1! the electrostatic potential has
been given the same order as the vector potential sinceuveu is
of the same order as the velocity space variablesw andu.

Due to the more-or-less straightforward nature of the Lie
transform technique and the fact that several articles contain-
ing such gyrokinetic transformations have appeared in this
journal and elsewhere,5–11 the details of this calculation have
been relegated to an appendix. Suffice it to say that it must
be carried out to fourth order to fully determine the required
coordinate transformation to second order. The guiding cen-
ter ~GC! coordinates are denoted as (X,U,Q,W), whereX
denotes the position of the guiding center and (U,Q,W) are
velocity coordinates withU denoting the parallel velocity
andQ the gyrophase. The resulting Lagrangian in GC coor-
dinates is

E L dt5E dtH F1e MV

2
b̂3X1MUb̂1MveG–Ẋ

2
eMW2

2V
Q̇2F1e qF1

1

2
M ~U21W21ve

2!

1e
MW2

4V
~ b̂–c!2e2G t

~3!1O ~e3!G J , ~2!

wherec[¹3ve andG t
(3) is given by

G t
~3!52

MW2

8V2 F ~¹ve!
21c'

22
3

2
~ b̂–c!2G1

M

2V2 F SDveDt

1ve3c'D 22~bveve!
2G1

Mv i

2V2c•
Dve
Dt

, ~3!

where

~¹v!2[¹v:¹v5v i , jv i , j , ~4!

and the last form summed over repeated indices is for Car-
tesian components. For brevity we have used

D

Dt
[

]

]t
1~ve1Ub̂!–¹. ~5!

Note that

]G t
~3!

]U
5

M

V2 b̂–Fc3
Dve
Dt G . ~6!

The Euler-Lagrange equations obtained from~2! in
GC coordinates (X,U,Q,W) ~collectively denoted by
Zm,m51, . . . ,6) give

Ẋ5Ub̂1ve1
e

V
b̂3

Dve
Dt

1
e2

V2 H W2

4
¹'
2ve

1c3F b̂3S b̂3
Dve
Dt D G J 1O ~e3!, ~7!

5Ub̂1S 11e2
1

4

W2

V2 ¹'
2 D ve1S q

MV D e

V F1
1

e

V
c3b̂3GDE'

Dt
1O ~e3!, ~8!

m[2
eMW2

2V
5const, ~9!

U̇5
V

e S q

MV D ~ b̂–E!2
e

V F12
e

V
~ b̂–c!G SDveDt

–cD
2

e

V

W2

4
b̂–¹~ b̂•c!2

e2

V2 FW2

4
b̂–~c3¹'

2ve!

2
V2

M
b̂–¹G t

~3!G1O ~e3!, ~10!

Q̇52
1

e
V2

1

2
b̂–c1

1

4

e

V F32 ~ b̂–c!22~¹ve!
22c'

2 G
1O ~e3!. ~11!

Equation~8! has been written in such a form that we readily
recognize the familiar polarization drift plus corrections and
the FLR correction to the E3B drift ve . Equation ~7! is
more useful for subsequent calculations. By choosing to push
all higher order corrections into the Hamiltonian part of the
phase space Lagrangian~see Ref. 5!, Eq. ~9! is exact to all
orders.

The Vlasov equation for the distribution functionF in
GC coordinates becomes

]F

]t
1Ẋ–¹F1U̇

]F

]U
50. ~12!

In Eq. ~12! no Ẇ terms appear becauseW is constant and no
Q̇ terms appear becauseF is independent ofQ to the order
calculated. For a situation to be considered shortly where
there is no dependence on the coordinatez along theb̂ di-
rection,U̇50 as well.

We assume the potential to be an equilibrium potential,
plus a perturbation, F5F (0)1F (1), with corres-
ponding density, n5n(0)1n(1), distribution function,
F5F (0)1F (1), and drift velocity,ve5ve

(0)1ve
(1) . We linear-

ize in this perturbation and obtain from Eq.~12!,

]F ~0!

]t
1Ẋ~0!

–¹F ~0!1U̇ ~0!
]F ~0!

]U
50, ~13!

]F ~1!

]t
1Ẋ~0!

–¹F ~1!1U̇ ~0!
]F ~1!

]U

52Ẋ~1!
–¹F ~0!2U̇ ~1!

]F ~0!

]U
. ~14!
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Each of these Eqs.~13! and ~14! is solved toO (e2) in the
GC expansion. Linearized in the perturbation, Eq.~A55! is
used to relate the density functions and the distribution func-
tions.

III. THE z-INDEPENDENT APPROXIMATION

Consider a long, cylindrical, non-neutral plasma for
which we assume no dependence on the coordinatez along
the longitudinal direction. Specifically, we assume a pertur-
bation to an equilibrium potential of the formF5F (0)(r )
1F (1)(r ,f,t), with corresponding perturbations in the den-
sity n(x,t)5n(0)(r )1n(1)(r ,f,t). Because of the linearity
in the Vlasov equation and Poisson’s equation, we may con-
sider the axial modes one at a time, recognizing that the full

perturbation will be a sum over such modes. We assume an
exponential dependence on time and write this perturbation
in the formF (1)5f (1)(r )exp(2ivt1imw). From the defini-
tion of ve we find

ve
~0!5

q

MV

dF~0!

dr
ŵ[rv0~r !ŵ, ~15!

ve
~1!5

q

MV F2 im

r
f~1!r̂1f~1!8ŵ Ge2 ivt1 imw. ~16!

With ve
(0) andve

(1) as given in Eqs.~15! and~16! ~but in
GC coordinates! it is straightforward to find from Eq.~10!
that U̇ (0)5U̇ (1)50 and from Eq.~7! that

Ẋ~0!5UẐ1F̂FRv0S 12e
v0

V
2e2

v0vp
2

V3 D 2e2
W2vp

2h8

4V3 G1O ~e3!, ~17!

Ẋ~1!5S q

MV De2 ivt1 imFH i R̂F2
m

R
f~1!1

e

V H f~1!8~v2mv0!2
m

R
f~1!

vp
2

V J 1
e2

V2 H 2
W2m

4R
D2f~1!1

vp
2

V Ff~1!8~v

2mv0!2
mvp

2

RV
f~1!G J G1F̂Ff~1!82

e

V H 2v0f
~1!81

m

R
f~1!~v2mv0!J 1

e2

V2 H W2

4
@D2f~1!#81Rv0

2D2f~1!

2
vp
2

V S 2v0f
~1!81

m

R
f~1!~v2mv0! D J G J 1O ~e3!. ~18!

In Eqs. ~17! we have usedh85d ln n(0)/dR, the usual definition for the plasma frequency profilevp
254pq2n(0)/M and

Poisson’s equation for the equilibrium field in the form

1

r

d

dr
~r 2v0!52

vp
2

V
. ~19!

Also for brevity in Eq.~18! we have defined

D2f~1![
1

R

d

dRSRdf~1!

dR D 2
m2

R2 f~1!. ~20!

Since U (0) is constant, the Vlasov equation forF (0) is satisfied by a Maxwellian distribution function of the form
F (0)5 f (R)exp(2(W21U2)/v

T

2)/(Mv
T
Ap)3, wherev

T
is the thermal velocity given byv

T
5A(2kT/M ).

The GC distribution functions are used to obtain the particle densities using the result from the Lie transformation analysis
of the appendix:

n~x,t !5I 1~F !1e
~ b̂–c!

V H I 1~F !2
1

2
I 2~F,W!J 1

e2

V2 H 14I 0S FDveDt
1v ic'G2F,WD2I 1S FDveDt

1v ic'G–¹F D
1
1

4
I 1S FDveDt

1v ic'G2F,WWD1I 2~F,W!F2
5

64
~ b̂–c!22

13

32
¹•~ve–¹ve!2

1

2
c'–¹v i1

1

2
v i~bcb!2

1

2
c'
2 G

2I 2S FDveDt
1v ic'G–¹F,WD1

1

2
~ b̂3c!–I 2SDveDt

F,UWD1I 3~F,WW!F 964~ b̂–c!21
1

32
¹–~ve–¹ve!G1¹'

2
I 3~F !

1~c3b̂!–¹I 3~F,U!1
1

4
c'
2
I 3~F,UU!J , ~21!
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where for brevity the velocity integrals are written in the
form

I k~••• ![2pM3E
2`

1`

dUE
0

`

~••• !WkdW. ~22!

It can be desirable to relatef (r ) to a known equilibrium
particle densityn(0)(r ). This can be done by writingf (r ) in
the form f (r )5 f 0(r )1e f 1(r )1e2f 2(r ) and substituting this
form into the equation forn(0) obtained from Eq.~21!. Per-
forming the integrations over the phase space coordinates
(U,W), determines order by orderf 0(r ), f 1(r ), andf 2(r ) in
terms of the particle density profilen(0). It is straightforward
to find

f 0~r !5n~0!~r !, ~23a!

f 1~r !52
vp
2

V2n
~0!, ~23b!

f 2~r !5F3vp
4

V4 22
v0
2

V2 22
v0vp

2

V3 Gn~0!1
rv0

2

V2

dn~0!

dr

2r2
1

r

d

dr S r dn~0!

dr D , ~23c!

where we denote for the gyroradius squaredr25v
T

2/V2.
To find the perturbed distribution functionF (1) we re-

gard the left-hand side of Eq.~14! as the total time derivative
of the perturbed distribution function over the unperturbed
orbits in the usual way~see Ref. 12!. From Eq.~17! we find
that the unperturbed orbits are characterized toO (e3) at time
t8,t by

R5const,

F~ t8!5F2v̄~R!~ t2t8!, ~24!

Z~ t8!5Z2U~ t2t8!,

where

v̄~R,W!5gv02e2
W2vp

2h8

4RV3 1O ~e3!, ~25!

with

g512e
v0

V
2e2

v0vp
2

V3 . ~26!

Carrying out the integration over the unperturbed orbits in
Eq. ~14! gives the perturbed distribution function. Written in
laboratory coordinates as needed for use in Eq.~21!,

F ~1!~r ,w,t !5S q

MV D exp~2 ivt1 imw!

~v2mv̄ !

dF~0!

dr H 2
m

r
f~1!1

e

V Ff~1!8~v2mv̄ !2
v0
2

V
f~1!82

mvp
2

rV
f~1!G1

e2

V2

3F2
mW2

4r
D2f~1!1

vp
2

V S f~1!8~v2mv̄ !2
mvp

2

rV
f~1!D G J 1O ~e3!. ~27!

With this perturbed distribution function in hand we can substitute into Eq.~21! to find the perturbed density,

n~1!~x,t !5
qn~0!

MV2e
2 ivt1 imwH 2

m

r

f 8

n~0! f~1!I 11eF2
m

r
ṽp
2 f 8

n~0! f~1!I 11
f 8

n~0! f~1!8~12ṽ0
2I 1!12

f

n~0! D
2f~1!G1e2

3F2
m

r
f~1!S 2mr f

n~0! ~ ṽ01ṽp
2!1

f 8

n~0! ~ ṽ2mgṽ0!2
m2r2

r 2
I 212I 1ṽ0~ṽ01ṽp

2! D 2f~1!8
f 8

n~0! ~ ṽp
212ṽ0

22ṽ0
2ṽp

2I 1!1
rmṽ0

2

n~0!

d

dr S f 8r f~1!I 1D 2D2f~1!S f

n~0! ṽp
21

m

4r
r2

f 8

n~0! I 2D 2
mr2

rn ~0!

d

dr S r ddr S f 8r f~1!I 2D D G J , ~28!

where a tilde over an angular frequency denotes that it has
been scaled by the cyclotron frequencyV. The phase space
integralsI 1 and I 2 are defined as

v
T

2

2V
I 15E

0

`W exp~2W2/v
T

2!

v2mv̄~r ,W!
dW, ~29!

v
T

4

2V
I 25E

0

`W3 exp~2W2/v
T

2!

v2mv̄~r ,W!
dW. ~30!

We now substituten(1)(x,t) from Eq.~28! into Poisson’s
equation to obtain the mode equation for the potential per-
turbationf (1) for them axial mode,

b0F1r d

dr S r df~1!

dr D 2
m2

r 2
f~1!G2

b1
r 2

f~1!2
b2
r

df~1!

dr

2b3r
d

dr F r ddr S 1r f~1! f 8I 2D G
2b4r

d

dr S 1r f~1! f 8I 1D50, ~31!

where the coefficients are

b05112e
f

n~0! ṽp
22e2S f

n~0! ṽp
41

m

4r
ṽp
2r2

f 8

n~0! I 2D ,
~32!

97Phys. Plasmas, Vol. 3, No. 1, January 1996 S. Neil Rasband
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.187.97.22 On: Mon, 17 Mar 2014 23:29:35



b15rmṽp
2H f 8

n~0! I 1@12eṽp
212e2ṽ0~ṽ01ṽp

2!#

12e2
mf

rn ~0! ~ ṽ01ṽp
2!

1e2
f 8

n~0! S ṽ2mgṽ02m2
r2

r 2
I 2D J , ~33!

b252
r f 8

n~0! ṽp
2@e~12ṽ0

2I 1!2e2~ṽp
212ṽ0

22ṽp
2ṽ0

2I 1!#, ~34!

b35
e2mṽp

2r2

r 2n~0! ,

~35!

b452
e2mṽp

2ṽ0
2

n~0! .

We note that the last two terms in Eq.~31! could be ex-
panded and incorporated into the other terms, giving modi-
fied forms forb0 , b1, andb2 . Equation~31! is an eigenvalue
equation for eachm, second order in the derivatives of the
perturbed potential functionf (1) and is a convenient form
for a subsequent numerical study.

Comparing the mode equation, Eq.~31!, and the coeffi-
cient functions with the familiar equation from a cold-fluid
model @see for example Eq.~11! of Ref. 13#, we see that
resonance occurs with a Doppler shifted rotation frequency,
gṽ05(12eṽ02e2ṽ0ṽp

2)ṽ0 . In the limit e→0,
I 1→1/(ṽ2mṽ0) and becomes a simple pole consistent with
the cold-fluid approximation. In order to elucidate the singu-
lar nature of the phase space integralsI 1 and I 2 , we
look closer at their properties. For brevity we define
G5e2mr2ṽp

2h8/4r and then let

z5~ṽ2mgṽ0!/G. ~36!

The quantityz can, of course, be complex if the eigenvalue
v has an imaginary part indicating mode damping or growth.
Letting j5W2/v

T

2, thenI 15I /G where

I5E
0

` e2j dj

z1j
. ~37!

Note also that

I 25
1

G E
0

` je2j

z1j
dj5

1

G
~12zI!. ~38!

In the notation of Abramowitz and Stegun, Ref. 14, the inte-
gral I is given by

I5ezE1~z!, ~39!

with

E1~z!52g2 ln z2 (
n51

`
~21!nzn

nn!
, uarg zu,p, ~40!

whereg50.57721••• is Euler’s constant.14 Asymptotically
I;1/z and thus even thoughI 1 as it occurs in Eq.~31! as-
ymptotically behaves like a pole, as in the cold-fluid
approximation,13 the singularity has been changed by the in-

clusion of FLR effects from a simple pole to a logarithmic
singularity. Furthermore, whenz,0 the integralI 1 will nec-
essarily have an imaginary piece, and this must happen when
the profile is hollow andn(0) has a vanishing derivative at
some point in the interval. This then forcesv to have a
nonvanishing imaginary part and the perturbed potential
f (1) is complex. This change from a pole to the integralI 1 is
the most significant qualitative change in the mode equation
from the cold-fluid form and in a subsequent paper we hope
to explore in detail the full implications of this change for the
spectrum of Eq.~31!.

IV. NUMERICAL INVESTIGATIONS OF THE m51
MODE

To obtain a numerical solution to the mode equation
~31!, we expandf (1)(r ) as a sum of cubic B-splines,
f (1)(r )5(cic i(r ), for a finite element partition of the in-
terval @0,rwall#. Then applying a standard Galerkin technique
to Eq. ~31! and normalizing the eigenfunctionf (1)(r ) at
some intermediate point in the interval leads to a standard
eigenvalue problem for the eigenvaluev and the eigenvector
of expansion coefficientsci . As is evident from the depen-
dencies in Eq.~31! and the equations for the coefficient func-
tions that follow, the eigenfrequencies and functions depend
on the temperature, the magnetic field, and the equilibrium
profile n(0)(r ). We choose values corresponding to those re-
ported in Ref. 1 and a similar profilen(0)(r ). Specifically we
choose a temperature ofT51.2 keV, a magnetic field of
B5375.0 G, and a density profile given by the function

n~0!~r !5n̂@11m1~r /r p!
2#exp@2~r /r p!

m2#, ~41!

wheren̂ is the central density,m1 controls the hollowness of
the profile,m2 controls the steepness of the cutoff, andr p
controls the position of the cutoff. We used the values
n̂53.63106 cm23, m150.95, m258, rwall53.81 cm, and
r p /rwall50.47, resulting in a profile that is a reasonable
match to that reported by Driscoll.1 Denoting
vmax51.0983106 s21 as the maximum value ofgv0 , our
investigation of modes for Eq.~31! was undertaken primarily
in the neighborhood ofvmax, except for verifying the exist-
ence of the neutrally stable diocotron~wall! mode. In the
neighborhood ofvmax, Re(v);vmax, we find only modes
with growth ratesIm(v);122310233vmax, which are
about a factor of 10 lower than those seen in Driscoll’s ex-
periment. As one check on the code performance we kept
only terms corresponding to the model considered by Smith3

and successfully duplicated his results. The growth rates
found by fully including all FLR corrections in Eq.~31! fall
between those found by Smith3 and those reported in Ref. 4.
We conclude from this study that FLR, i.e., finite tempera-
ture effects, have little to do with the exponentially growing
instability observed by Driscoll.1
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In passing we note that setting all terms ofO (e2) equal
to zero, but keeping terms ofO (e) corresponds to keeping
only corrections corresponding to the polarization drift and
returning the singular integralI 1 to a pole. For the magnetic
field value chosen above and the indicated profile, the mar-
ginally stable, cold-fluid mode withRe(v)5vmax becomes
unstable with a growth rate roughly half that obtained with
the full FLR effects included. Leaving everything else the
same but replacing the pole with the singular integralI 1 ,
reduces the growth again by about 40%. Qualitatively, the
most important change introduced by including FLR effects
is the change from the pole singularity, 1/(ṽ2mgṽ0) to the
logarithmic singularity of the integralI 1 . This implies that it
is no longer possible to haveIm„f (1)(r )…50.

The correction terms in Eq.~31! that are most important
for giving the computed growth are those in the coefficient
functionsb0 andb3 . The terms with coefficientsb2 andb4
are unimportant and the corrections terms inb1 make a dif-
ference on the order of 10%.
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APPENDIX: LIE TRANSFORMATION TO GC
COORDINATES

The fundamental ideas behind the usage of a Lagrangian
in extended phase space have been thoroughly discussed in
Refs. 5, 6, and 10. Following this procedure, we view the
Lagrangian in Eq.~1! as a 1-form on extended phase space.
Furthermore, we view this Lagrangian as an expansion in the
ordering parametere, wherev/V,r/L areO (e). We write

g5
1

e (
n50

`

eng~n!, ~A1!

where from Eq.~1! we identify

g i
~0!5

MV

2
e i jkb

jxk,

gu
~0!5gu

~0!5gw
~0!50,g t

~0!52qF~x,t !, ~A2!

g i
~1!5Mubi1mwci1MvEi ,

gu
~1!5gu

~1!5gw
~1!50, ~A3!

g t
~1!52

1

2
~u21w21ve

2!2Mwĉ–ve . ~A4!

All other g ( i ) are zero. We recall that the phase space coor-
dinates are (x,u,u,w,t) and other notations as defined in
Section I. The Latin vector indicesi , j ,k,l ,m, . . . , runover
1,2,3 and refer only to spatial coordinates. Frequently the
spatial part of phase space vectors will be denoted with bold
type, e.g.g denotes the spatial part of the phase space vector
field g.

We represent the Lie derivative operator with respect to
the vector fieldg in the form Lg . The succession of Lie
transformations corresponding to increasingly higher order is
given by

G5•••e2e4Lg4e2e3Lg3e2e2Lg2e2eLg1g, ~A5!

where the transformed 1-form~Lagrangian! is also ordered in

e, i.e., G5 1
e (n50

` enG (n). Representing the exponential op-
erators in Eq.~A5! as a power series in the Lie derivatives
and matching order by order gives

G~0!5g~0!1dF ~0!, ~A6a!

G~1!5g~1!2Lg1g
~0!1dF ~1!, ~A6b!

G~2!5g~2!2Lg1g
~1!1L2g

~0!1dF ~2!, ~A6c!

G~3!5g~3!2Lg1g
~2!1L2g

~1!1L3g
~0!1dF ~3!, ~A6d!

G~4!5g~4!2Lg1g
~3!1L2g

~2!1L3g
~1!1L4g

~0!1dF ~4!,
~A6e!

where

L25
1

2
~Lg1!

22Lg2, ~A7a!

L35Lg2Lg12
1

6
~Lg1!

32Lg3, ~A7b!

L45
1

24
~Lg1!

41
1

2
~Lg2!

22
1

2
Lg2~Lg1!

21Lg3Lg12Lg4.

~A7c!

We denote components in phase space with Greek letters
m,n, . . . , andrepeated indices denote a sum in the usual
way. For purposes of brevity in computation it is convenient
to write

@Lgig
~k!#m5gi

n~gm,n
~k! 2gn,m

~k! ![gi
nvnm

~k! . ~A8!

In this equationi labels which generator is used in the Lie
derivative and the indexk labels which 1-form in the
e-expansion. The indicesm andn are phase space coordinate
labels. The comma denotes partial differentiation, i.e.,
gm,n
(k) 5]g (k)/]xn with xn one of the phase space coordinates.

In a similar fashion we define

@~Lgi !
2g~k!#m5gi

n~gi ,n
s vsm

~k!2gi ,m
s vsn

~k!1gi
svnm,s

~k! !

[gi
nv̄nm

~k,i ! , ~A9!

@~Lgi !
3g~k!#m[gi

nv% nm
~k,i !, ~A10!

wherev% nm
(k,i ) is obtained from the definition ofv̄nm

(k,i ) given in
Eq. ~A9! by replacingv (k) with v̄ (k,i ) in that definition,

@~Lgi !
4g~k!#m[gi

nv%̄ nm
~k,i ! , ~A11!

wherev%̄ (k,i )is obtained fromv% (k,i ) just asv% (k,i ) is obtained
from v̄ ( i ,i );
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@LgiLgjg
~k!#m5gi

nṽnm
~k, j ! , ~A12!

where

ṽnm
~k, j ![gj ,n

s vsm
~k!2gj ,m

s vsn
~k!1gj

s~vsm,n
~k! 2vsn,m

~k! !. ~A13!

Likewise

@Lgi~Lgj !
2g~k!#m5gj

nv! nm
~k,i ! , ~A14!

wherev! (k,i ) is obtained fromv̄ (k,i ) as ṽ (k,i ) is from v (k).
The calculation of the transformed 1-forms,G ( i ), given in
Eqs. ~A6! and ~A7! is simplified considerably by using the
antisymmetric tensors given in Eqs.~A9!–~A14!.

The hierarchy of Eqs.~A6! and ~A7! is used in the fol-
lowing way: the vector fieldsg1 ,g2 , . . . , and thegauge
functionsF (0),F (1), . . . , arechosen level by level to elimi-
nate the dependence of the Lagrangian 1-forms on the gy-
roangleu. This objective does not fully specify the func-
tional dependence of the generating vector fields or the
gauge functions, but nearly so. Simplicity arguments com-
plete the specification. Despite our intent to only obtain the
GC transformation toO (e2) so that FLR effects may be
properly included, it soon becomes apparent that to fully
determine the GC transformation toO (e2) one must carry
the transformation of the Lagrangian 1-forms toO (e4).

Once the generating vector fieldsg1 ,g2 , . . . have been
determined, then the corresponding coordinate transforma-
tion in phase space is also determined. Actually, it is the
inverse of this coordinate transformation that is needed. De-
note the new~phase space! GC coordinates asZm and the old
phase space coordinates aszm,

zm5~e2eLg1e2e2Lg2••• !Zm. ~A15!

Using the fact thatLgi(Z
m)5gi

m , the power series expan-
sions of the exponential operators, and keeping only to
O (e2) gives

zm5Zm2eg1
m1e2S 12 g1n ]g1

m

]Zn 2g2
mD 1O ~e3!. ~A16!

Once the gyrophase has been eliminated to the required
order through Lie transformations and this transformation is
known, the problem of solving the Vlasov equation in GC
coordinates can be addressed. In covariant form the Vlasov
equation is

dF

dl
1
dZm

dl

]F

]Zm 50, ~A17!

wherel is just some convenient parameter marking the path
of a particle in extended phase space. In the familiar GC
coordinates and with timet chosen as the path parameter this
simplifies to Eq.~12!.

Knowing the distribution functionF(X,U,W,t) then al-
lows us to obtain the particle density distribution in space

through the result

n~x,t !5M3E TF~X,U,Q,W,t !d3~x

2x8~X,U,Q,W!!
]~x,u,u,w!

]~X,U,Q,W!
d6Z, ~A18!

where d6Z5W dW dU dQ d3X, ]( . . . )/]( . . . ) denotes
the Jacobian of the transformation, andTF(X,UQ,W,t) de-
notes the transformed distribution function having exactly
the same value at the GC coordinatesZm as the distribution
function f (x8,u,u,w,t) has atzm,

TF5•••ee2Lg2eeLg1F. ~A19!

Writing the exponentials as a power series and keeping only
to O (e2), Eq. ~19! gives

TF5F1eg1
m ]F

]Zm 1e2Fg2m ]F

]Zm 1
1

2
g1

n
]

]Zn S g1m ]F

]ZmD G
1O ~e3!. ~A20!

With this sketch in place as to the manner in which the
calculation proceeds we now supply some details. We omit
lengthy algebra, giving only results when the procedure is
clear. First we focus on the details of obtaining the GC trans-
formation toO (e2). For brevity we use the convenient no-
tation for arbitrary vectorsA,B,C,

~ABC![A–¹B–C5AiBj ,iCj . ~A21!

Also for convenience we define

c5¹3ve , v i5
q

MV
~ b̂–E!. ~A22!

Before beginning the procedure for solving for the vari-
ousg’s we make a preparatory transformation using the vec-
tor field gp where

gp
i 52

w

V
ai , ~A23!

and all other phase space components ofgp are zero. We
compute the various Lie derivatives needed for Eqs.~A6! as
defined in Eqs.~A7!–~A14!. The gauge functions in Eqs.
~A6! are, of course, zero for the preparatory transformation,
which is a specified transformation, not one in the process of
being determined.

Using the preparatory transformation, the Lie trans-
formed Lagrangian 1-forms become

Ḡi
~0!5

mV

2
e i jkb

jxk,

Ḡu
~0!5Ḡu

~0!5Ḡw
~0!50,Ḡt

~0!52qF~x,t !, ~A24!

Ḡi
~1!5Mubi1MvEi ,

Ḡu
~1!5Ḡu

~1!5Ḡw
~1!50, ~A25!

Ḡt
~1!52

M

2
~u21w21vE

2 !, ~A26!
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Ḡi
~2!52

Mw

2
e i jka

jck,

Ḡu
~2!5Ḡw

~2!50, ~A27!

Ḡu
~2!52

Mw2

2V
,

Ḡt
~2!52

Mw

2V
a–¹vE

22
Mw2

2V
~avEc!2

mw

V
~a–vE,t!,

~A28!

Ḡi
~3!52

Mw2

2V2 a–¹~a3c! i ,

Ḡu
~3!5Ḡw

~3!50, ~A29!

Ḡu
~3!5

Mw2

2V2 b–c,

Ḡt
~3!52

Mw2

4V2 a–¹~ â•¹vE
2 !2

Mw3

3V2 a–¹~avec!

2
Mw2

2V2 a–¹~a–vE,t!, ~A30!

Ḡi
~4!52

Mw3

6V3 e i jka
jalamc ,l ,m

k ,

Ḡu
~4!5Ḡw

~4!50, ~A31!

Ḡu
~4!5

Mw3

3V3 ~acb!,

Ḡt
~4! : is not needed.

We see that this preparatory transformation moves all depen-
dence on gyroangle toO (e2) and higher in the Lagrangian
1-forms.

With the preparatory transformation accomplished
we return to the task of determining the transformation
vector fields g1 ,g2 , . . . , and gauge functions
F (0),F (1),F (2), F (3), F (4), . . . , so as toeliminate any depen-
dence on gyrophase from the Lagrangian 1-forms and deter-
mine the GC transformation toO (e2). We do not alter the
time coordinate and consequently none of the vector fields
g1 ,g2 , . . . , have a time component.

A number of results relating products of various sorts
with the vectorsâ and ĉ are useful. They are analogous to
]â/]u52 ĉ and ] ĉ/]u5â in that these identities are useful
for relating quantities involvingâ and/or ĉ to derivatives
with respect to gyroangle (u or Q). For arbitrary vectorsa
andb,

~aaa!1~cac!5¹–a2~bab!, ~A32a!

~caa!5~aac!1b̂–~¹3a!, ~A32b!

~ â–a!~ â–b!1~ ĉ–a!~ ĉ–b!5a–b2~ b̂–a!~ b̂–b!, ~A32c!

~ â–a!~ ĉ–b!2~ ĉ–a!~ â–b!5b̂–~b3a!, ~A32d!

~aac!~ ĉ–b!1~aaa!~ â–b!5~aab!2~ b̂–b!~aab!,
~A32e!

~aac!~ â–b!2~aaa!~ ĉ–b!52b̂–~b3â–¹a!. ~A32f!

These results are readily proved in Cartesian components
and depend on the definitions ofâ,b̂,ĉ as given in Section II.
As an example of the many ways these results are used we
note that

~avec!52
1

2
b̂–c2

1

2

]~avea!

]Q
, ~A33!

which follows from Eq.~A32b!.
To obtain the GC transformation toO (e2) and to elimi-

nate the dependence on gyrophase in the phase space La-
grangian, we use theḠ from Eqs.~A24!–~A31! for theg in
Eqs.~A6!–~A7!. To achieve the results

GX
~0!5

MV

2
b̂3X,

GU
~0!5GW

~0!5GQ
~0!50, ~A34!

G t
~0!52qF~X,t !,

GX
~1!5MUb̂1Mve ,

GU
~1!5GW

~1!5GQ
~1!50, ~A35!

G t
~1!52

M

2
~U21W21ve

2!,

GX
~2!50,

GU
~2!5GW

~2!50,

GQ
~2!52

MW2

2V
, ~A36!

G t
~2!52

MW2

4V
b̂–c,

we make the following choices:

g150, F ~0!50, F ~1!50, ~A37a!

g25
W

V2 @~ b̂–c!â1~ â–c!b̂#, ~A37b!

g1
U5

W

V
ĉ–c, ~A37c!

g1
W5

W

V F12 ~avec!2
1

4
~ b̂–c!G1

1

V
â–SDveDt

1v icD ,
~A37d!

g1
Q5

1

2V
~avea!2

1

WV
ĉ–SDveDt

1v icD , ~A37e!

F ~3!5
MW2

4V2 ~avea!2
MW

V2 ĉ–SDveDt
1v icD . ~A37f!

The procedure followed to carry this transformation to
one more level is the same. We choose the appropriate com-
ponents ofg2 ,g3 and the gauge functionF (4) to achieve
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GX
~3!50, GU

~3!50, GW
~3!50, GQ

~3!50, ~A38!

and force all corrections intoG t
(3) with no dependence on the

gyrophaseQ. The algebra is tedious and the results lengthy.

In arriving at these results in the forms given we have made
frequent use of Eqs.~A32!. We use the notationg3

a ,g3
b ,g3

c to
denote the components ofg3 along the directionsâ, b̂, ĉ. The
lengthy expression forF~4! is available from the author upon
request.

g3
a5

W2

V3 F12 ~acb!2
1

4
ĉ–¹~avea!G1

W

V3 F ~ â•c!22
3

4
~ b̂–c!22

1

2
~avec!~ b̂–c!1S cDveDt

cD G
1
Wv i

V3 ~ccc!2
1

V3 F ~ b̂–c!S â–DveDt D G2
v i

V3 ~ â–c!~ b̂–c!, ~A39a!

g3
b5

W2

16V3 @~bcb!14~aca!22b̂–¹~avec!#2
3Wv i

V3 ~bca!1
W

V3 F34 ~cvec!1
1

4
b̂–~c3â–¹ve!2

3

2
~ â–c!~ b̂–c!

2S bDveDt
aD1S ĉ–Dc

Dt D2~ â–c!~ b̂–¹v i!G2
v i

2V3 @c22~ b̂–c!2#2
1

2V3 Fc• DveDt
2~ b̂–c!b̂–

Dve
Dt G , ~A39b!

g3
c5

W2

4V3 ĉ–¹~avec!1
W

V3 F12 ~ b̂–c!~avea!1~ ĉ–c!(â–c)2S cDveDt
cD G2

Wv i

V3 ~ccc!2
1

V3 ~ b̂–c!ĉ–
Dve
Dt

2
v i

V3 ~ ĉ–c!

3~ b̂–c!, ~A39c!

g2
U5

W2

4V2 @ b̂–¹~avea!12~acc!#2
W

V2 F S bDveDt
cD1

1

4
~avec!1

7

8
~ ĉ–c!~ b̂–c!G2

Wv i

V2 ~bcc!1
1

2V2 b̂–SDveDt
3cD ,

~A39d!

g2
W5

1

2V
~ b̂–c!g1

W1
W

2V2 @~ b̂–c!22~ ĉ–c!2#2
W2

3V2 ~acb!2
V

MW

]F ~4!

]Q
, ~A39e!

g2
Q5

1

2V
~ b̂–c!g1

Q2
1

2V2 ~ â–c!~ ĉ–c!1
V

MW

]F ~4!

]W
. ~A39f!

Using the definitions given in Eq.~5! and Eq.~4! we find
for G t

(3) the result given in Eq.~3!. From this point on the
pattern is the same. We select the equations

GX
~k!5GU

~k!5GW
~k!5GQ

~k!50 and
]G t

~k!

]Q
50 ~A40!

to determine the generating vector fieldsgk and gauge func-
tionsF (k) while pushing all corrections into the Hamiltonian
functionG t

(k) .
With the GC transformation fully determined to the or-

der needed, we turn our attention to the functions required
for the density in Eq.~A18!. The Jacobian of the transforma-
tion J[M3](•••)/](•••) is easily computed from the com-
ponents of the Lagrangian 1-forms. Using

vmn5
]Gn

]Zm 2
]Gm

]Zn , m,n51,2,...,6 and det~v!5J2,

~A41!

we find

J~X,W,t !5M3WS 11
e

V
~ b̂–c! D , ~A42!

accurate to all orders.

For F in Eq. ~A20! we substitute

F1egp
m ]F

]Zm 1
1

2
e2gp

n
]

]Zn S gpm ]F

]ZmD , ~A43!

obtained from the preparatory transformationgp of Eq.
~A23!. Keeping terms only toO (e2) we find

TF5F1eA11e2A21O ~e3!, ~A44!

where

A15~gp
m1g1

m!
]F

]Zm ~A45!

and

A25g2
m ]F

]Zm 1
1

2
g1

n
]

]Zn S g1m ]F

]ZmD1
1

2
gp

n
]

]Zn S gpm ]F

]ZmD
1g1

n
]

]Zn S gpm ]F

]ZmD . ~A46!

With the results obtained for the generating vector fields
given in Eqs.~A37! and the fact theF does not depend on
Q, we find
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A1~X,U,Q,W,t !52
W

V
â–¹F1g1

UF,U1g1
WF,W , ~A47!

A2~X,U,Q,W,t !5g2–¹F2
1

V
g1
Wâ–¹F1

W

V
g1

Qĉ–¹F1
1

2
F,U~2g2

U1g1
Ug1

U ,U1g1
Qg1

U ,Q1g1
Wg1

U ,W!1
1

2
F,W~2g2

W

1g1
Ug1

W,U1g1
Qg1

W,Q1g1
Wg1

W,W!1
1

2
~g1

U!2F,UU1
1

2
~g1

W!2F,WW1g1
Ug1

WF,UW1
1

2

W2

V2 â•¹~ â–¹F !

2
W

V
g1
Uâ–¹F,U2

W

V
g1
Wâ–¹F,W . ~A48!

The Dirac delta function in Eq.~A18! evaluatesx8 at
x, where from Eq.~A16! we find

x85X1
eW

V
â2

e2W

V2 @~ b̂–c!â1~ â–c!b̂#. ~A49!

Writing X5x1Dx we must then expandTF of Eq. ~A43!
aboutx where

Dx52
eW

V
â1

e2W

V2 @~ b̂–c!â1~ â–c!b̂#5egp1e2g2 .

~A50!

Note that theO (e2) term in Eq.~A48! can be written imme-
diately as a function ofx or X; theO (e) term is not a func-
tion of the spatial coordinates. Thus inTF of Eq. ~A43!, F
must be expanded to second order,A1 to first order, and
A2 to zero order. Then we write

TF5F1eA11e2A21O ~e3!, ~A51!

where

A1~x,U,Q,W,t !5A12
W

V
â–¹F, ~A52!

A2~x,U,Q,W,t !5A21g2–¹F1
3W2

2V2 â–¹~ â–¹F!

2
W

V
â–¹~g1

UF,U1g1
WF,W!, ~A53!

with the functions on the right-hand sides depending onx
and notX. Similarly the Dirac delta function requires the
expansion of the Jacobian of Eq.~A41!,

J~x,W,t !5M3WS 11
e

V
~ b̂–c!2

e2W

V2 â–¹~ b̂–c! D
1O ~e3!. ~A54!

Substituting these results into Eq.~A18! gives the par-
ticle density at the field pointx,

n~x,t !5M3E FF1eH 1

V
~ b̂–c!F1A1J

1e2H 2
W

V2 â–¹~ b̂–c!F1
1

V
~ b̂–c!A1

1A2J GW dW dU dQ. ~A55!

The integral overQ kills all terms that are of odd order in
â andĉ. Only when we have terms even in these vectors can
we get something other than zero. For example, we find

E
0

2p

A1dQ52
pW

V
~ b̂–c!F,W . ~A56!

Carrying out the integrations over angle in Eq.~A55! results
in Eq. ~21! for the density.
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