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Considerations of temperature stability in a cylindrical plasma

S. N. Rasband and Yao-Hui Xu

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

(Received 12 August 1985; accepted 7 May 1986)

A variational formulation is used to consider thermal equilibrium and stability for a cylindrical
plasma modeled by dissipative magnetohydrodynamics. The parameter dependence of
equilibrium solutions and their stability is followed using homotopy techniques. Solution
branches and their connections are studied in relation to the applied fields.

I. INTRODUCTION

Recently a variational principle has been developed for
treating plasma problems modeled by dissipative magneto-
hydrodynamics (DMHD).! This variational method is
based on the work of Prigogine et a/. in nonequilibrium ther-
modynamics.”® Coupled with finite element methods and
cubic B splines, this variational technique becomes particu-
larly effective for finding stationary solutions to problems in
DMHD. In this article we make extensive use of this tech-
nique to study the thermal equilibrium and stability proper-
ties of a thermally conducting, Ohmically heated plasma
that is modeled by DMHD. The study is carried out in cylin-
drical geometry with the axial magnetic field a constant and
typically much stronger than the poloidal field, representing
an approximation to the fields of a tokamak.

In Sec. II we review briefly the local potential (LP)
formulation and its physical interpretation. We also obtain
appropriate LP functionals for the physical model of inter-
est. In Sec. III we do the necessary scaling to obtain dimen-
sionless variables and specialize to cylindrical coordinates.
Section IV contains a discussion of the thermal stability
problem for a cylindrical model of a tokamak and the depen-
dence of equilibrium on boundary conditions and other
physical parameters. In Sec. V we describe the results of our
study employing the analysis of Sec. IV. We also discuss the
accuracy of our numerical methods. Section VI contains our
conclusions.

Il. MINIMIZATION OF THE LOCAL POTENTIAL
A. Physical interpretation and the variations

For brevity we let ¢(x,) denote a composite field vari-
able of position x and time 7. The components of ¢ (x,7) may
consist of temperature 7(x,t), magnetic field B(x,t), veloc-
ity v(x,2), etc., ie, o(x,t) = [T(x,0),B(x,t),v(x,2),...].
The LP functional ®(¢(x,2),d,(x,t)) is a volume integral
over terms involving components of two composite fields
&(x,t) and ¢y(x,7). The field dy(x,?), with the zero sub-
script, is interpreted as the average value of the fields at the
position x and the time ¢. The field ¢ (x,?), without the sub-
script, is viewed as including fluctuations of the fields away
from the average values. The minimization of ®(é,d,) with
respect to ¢ by the methods of variational calculus, is inter-
preted as calculating the most probable value ¢, (x,£) given
do(x,2). Here ®(d,, ,d,) is interpreted as a functional mini-
mum local to &,. 4 posteriori we apply the “subsidiary condi-
tion”? that &, (x,#) = d,(x,?). This subsidiary condition is
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to be interpreted as demanding that the most probable state
¢, (x,1), obtained from the minimization procedure, coin-
cide with the average state ¢,(x,?). The partial differential
equations (pde) that result from this procedure are those
which determine the state of the system. It is, in fact, our
foreknowledge of these pde that guides us in choosing an
acceptable ©(,0,).

The choice of ®(d,b,) is further restricted by the de-
mand that ®(b,d,) > P(dg,d,) for all fluctuations ¢ (x,z)
away from ¢ (x,?). In other words, ®(¢, ,d,) must be a
true minimum of ®(é,é,) for all d(x,?).

Within these constraints a considerable number of LP
functionals are still possible. We further choose among the
possibilities by insuring that the proper boundary conditions
are incorporated. Lastly, we consider the integrals that must
be computed numerically in our approximation scheme and
choose a LP functional that is computationally economical.

B. Local potentials for 7(x,f) and B(x,)

For simplicity we restrict ourselves in this work to a
consideration of DMHD where the number density » is as-
sumed constant in x and . We further assume the velocity
field to be identically zero and simply ignore the momentum
balance equation. For realistic solutions one certainly must
demand force balance, and stability as well, but we leave this
additional complexity to a subsequent study. We are inter-
ested presently in the question of thermal stability and the
dependence of stability on the parameters of the system.
There is no difficulty in principle in treating more general
situations with a LP functional.

With the previous stated assumptions the familiar pde
for local energy balance and the magnetic field are

k9T _ 9.(xVT) +mJ? -5, (1)
y—1 ot

1 6B

LI9B_ vy, 2
- X7 (2)

respectively. The quantities of interest in Egs. (1) and (2)
are, in addition to Boltzmann’s constant £ and velocity of
light ¢: T(x,t): temperature distribution, B(x,¢): magnetic
field, J(x,2) = (¢/47)VXB: current density, S(x,?): sinks
(sources) of energy, 7(7T): resistivity, and x(7,B): thermal
conductivity.

We illustrate the procedure for obtaining a LP by con-
sidering Eq. (1) in detail. Further details for Eq. (2) are
given in Ref. 1.
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In obtaining a LP for Eq. (1) itis necessary to consider a
variation of T, however, (1/7) turns out to be more conven-
ient. Consider the first term on the right-hand side of Eq.
(1). Then V+(kVT) = — V:[«T*V(1/T)]. Multiplying by
8(1/T), integrating over the volume ¥, and performing an
integration by parts results in

fws()rern= - [arfs(t)rs(2)
[ (plo(p)]

A variation as described in Sec. I1 A shows that an appropri-
ate quadratic term for for the LP functional is

f o %75 |y (-1—) :
v 2 T

The zero subscripts are placed on k and T2 to prevent them
from being varied; then only |V(1/T)|? is varied with §(1/
T). The other terms for Eq. (1) are then easily added in the
integral by placing zero subscripts on them and giving them
a multiplying factor of (1/7). Thus an appropriate LP for

Eq. (1) is
® =fdu["°T‘2’
T v 2
ko)) 0

1
— J2—_8S —
+T(n°° 0 y—1 ot

It is straightforward to check that the variational proce-
dure outlined in Sec. IT A applied to Eq. (4) returns Eq. (1).

In a similar fashion one can readily check that
2 1 JdB
® =fdu(M+—B-—°) (5)
By 2 4r a3

is a suitable LP for Eq. (2).
The LP functionals are not unique and indeed a single
LP functional for both fields can be given as

2
o= [afpniv(3)| + 3 -72(2)
v 12 T y—1

(3)

2

7" " Toa
1 ¢ 1 9B 1
HRENT
7 2% VT e 1,) XMoo

(6)

but we will make no use of this LP because it complicates
integrals in the B-field equation with factors of (1/7).

The variation of Egs. (4) and (5) also imply the bound-
ary conditions

5(1/T)KV T,y =0, 7
(cy/4m) (6BX T )|, =0, (3)

respectively. Here V" denotes the bounding surface of ¥ and
ii the outward pointing normal vector.

For our purposes 7 will always be fixed on the boundary
and hence 8(1/T) vanishes there. Consequently in this pa-
per, the LP functional Eq. (4) and the associated boundary
condition Eq. (7) will always be appropriate for the tem-
perature.

In contrast, boundary conditions satisfying Eq. (8) are
not always convenient or suitable for the magnetic field B. If
this is the case, a LP different from Eq. (5) is necessary. We
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postpone the detailed consideration of these additional situa-
tions until we specialize to cylindrical geometry.

IIl. SPECIALIZATION TO CYLINDRICAL COORDINATES
AND SCALED VARIABLES

A. Cylindrical symmetry

We envision the plasma in a long cylindrical container,
symmetric about the axis of this container. Consequently,
we make the simplifying assumption that the only spatial
dependence for any field quantity is in the radial direction.
Then

J dv—»Jﬂrdr, v/ ‘;ff-,

where f is a scalar function and A is a vector function. The
quantity a is the assumed radius of the cylindrical chamber
containing the plasma.

We further assume that B(x,t) = [0,B, (7,1),B,],
where B, is constant. Similarly T(x,t) = T'(#,t).

VAL 9 (4,
r or

B. Scaling

All quantities are scaled relative to values denoted as
follows: T,: scale temperature, nominally taken to be 1 keV;
B,:scale magnetic field, nominally taken to be 1 kG; a,: scale
length, nominally taken to be 20 cm; and n,: scale density,
nominally taken to be 10" cm 3.

For the transport coefficients we take

n? erg (n, cm®/10™)?

B?T" degcmsec (B /kG)*(T,/keV)™

Kk =4.37X10?

_ kn?
BT

_364><10-'8—Lsec( L. ) =1
T" keV T"
With the exponents n, and n, equal to | and 3, respectively,
these transport coefficients represent classical values. We
note that B2 = B% + B with constant B, .

We use the resistive diffusion time 7,=4ma?/5¢* to
scale the time variable and write 7 = ¢ /7,.

The only loss term .S that we consider here is Brems-
strahlung loss. Other heating or loss terms can be included in
a similar manner:

(9

(10)

n.cm>\2( T, \*=
S=535x10"—=8 ZT""( : ) (——) :
X cm? sec " 10 keV

(11)

where ng = 1.

We also define x,, = a/a,, with x = #/a,. Then with
these assumptions concerning geometry and scaling it is
straightforward to obtain specific forms for the LP in Egs.
(4) and (5),

X T (2~ n.) 2
@, = const J- x dx { 2 [i (—-1—)]
0 2B} ox \T

+ L ”(——BB"+B") _pri—y 95|l
T|Ty\ox x ar

(12)
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c?B B, \?
g + _o) ]
2Ty X or

(13)

The dimensionless constants occurring in Eq. (12) are

s B, 4 T, (net+n,—1) (g cm3\ -2

pesiao (@) () ()

B=424%10" (B )2( % )2(—T—S—)(nn+"c_”,
kG/ \20 cm keV

B, \N( T, \**+"@ (n, cm®\~
—sx107() () (Boe)
4 X kG/ \kev 10

One final bit of scaling remains. That is to change the
scale of the independent variable x. The interval from Oto x,,
will be subdivided into N finite elements of equal length.
Since it is convenient to compute cubic B splines over finite
elements, each of unit length, we change to a new radial
variable given by the formula

&E=xN/x,.
With this change of scale Egs. (12) and (13) become

ool eal S ]

2B;
e .
Tq

B ) e
£ To' =37 %,
N 1
<I>B=constf §d§[
0 2Ty

1)
b, = const “xdx [ B .

(14)

(15)
By )’ x,, Bos
’ _° B Tw %
(Ba + £ °*N? or
(16)

where primes denote differentiation with respect to &.

Since we are interested in stationary solutions with no
time dependence, the terms in Eqgs. (15) and (16) involving
derivatives with respect to 7 are dropped. We also drop the
multiplicative constants in front of the integrals since they
can be eliminated by a simple rescaling of the LP,

-[eae G (BT +7
x[To (Boa+—'?) f::z TS"”,

1 B, \?
B = n (B o+ _9“) .
TY &
For the stationary case the pde for B, resulting from Eq.
(18) can be integrated once to give

1y 2) e
T™
where E (a constant of integration) is the scaled electric field
in the axial direction. Note that the left-hand side of Eq. (19)
is a scaled form of #J,, which is E, from Ohm’s law. To
obtain conventional units (V/m) from values of the dimen-
sionless variable E, multiply by the factor 0.43.

If we use the LP of Eq. (18), which demands as a bound-
ary condition that B, (N) = const, Eq. (19) must still be
satisfied. In fact the required constancy of the left-hand side

(17)

(18)

(19)
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of Eq. (19) serves as a useful check on the accuracy of the
numerical solution and gives an indication of the sufficiency
of the number of finite elements V.

We can, however, make even more direct use of Eq.
(19). We can take advantage of the fact that one integration
has been performed with Eq. (19). We can write a LP for Eq.
(19) directly. If we do this then E becomes a parameter of
the solution instead of B, (N) = B,,. Either E or B,, can be
specified, providing we use the appropriate LP. Specifying
B, is equivalent to specifying the total axial current, as is
easily shown by Ampére’s law.

Following the same procedure as outlined in Sec. II B,
we obtain a LP for Eq. (19),

d, = Ngdg[ﬁwse( ',,—fiET:;)]. (20)
o 2& 0 N

It is straightforward to check that ®, under a variation as
described in Sec. IT A gives back Eq. (19) without implying
any boundary conditions.

Thus if we compute equilibria where the total axial cur-
rent, i.e., B, is specified, we use the LP in Eq. (18). If we
instead wish to specify the axial electric field E, then we use
the LP in Eq. (20).

IV. EQUILIBRIUM AND STABILITY
A. Spline expansions

As mentioned in the previous section we partition the
radial interval into V finite elements each of unit length. The
chamber wall where r = a then corresponds to £ = N and
the knot points occur at the integer values (0,1,2,...,N). We
wish to expand 7'(£) and B, (&) in terms of splines defined
on the finite elements in the usual way. However, before one
can specify the spline basis functions it is necessary to specify
boundary conditions.

The boundary condition on T(£) is that

T'(0) =0, T(N) (21)

Using the summation convention for repeated indices we
write

/T =T (&) + /T, i=1L.,N+1,  (22)

where T, is the fixed value of the temperature at the wall.
The ¢, (£) are spline basis functions given in terms of cubic B
splines in Table 1. These spline basis functions satisfy
¢;(0) =0 and ¢,(N) = O for all i. There are exactly N + 1
knot coefficients to be determined.

The boundary condition on By (£) implied by the LP of
Eq. (18) is that

By(0) =0, B,(N) (23)

Again using the summation convention, we expand B, in
terms of spline basis functions,

Bo(£) =B (&), i=1,.,N+2, (24)

where B¥+2= 6B, for the spline normalization chosen.
Again the basis functions #; are given in terms of cubic B
splines and the appropriate combinations to satisfy the
boundary conditions are tabulated in Table I. There are ex-
actly N + 1 knot coefficients B to be determined.

For the LP in Eq. (20), which is appropriate when we

=T, = const.

= B, = const.
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TABLEI. Spline basis functions as used in the text for expanding field variables. The expansion functions are numbered consecutively beginning at 1 to N + 2
for indices with carets. Other indices run from 1 to N + 1. The labels on the B splines denote the knot at which they have their maximum.

Basis function set

B spline® combinations
comprising the basis function set

{¢:}=1{By.B, +B_,,By...By_32.By_1 ~ By, \,By — 4By}

{'2‘1} = {Bo ~4B_,B, — B—I’Bzr'“’BN—ZrBN— 1 BN+ 1By — 4BN+1’BN+ 1}

{l/’;} = {Bo —4B_ pBl - B—I:Bzw-,BN+ 1}

- 3N —
#})= [B., —4B_,B,~B_,By..By_2By_, +-ON =D

BN+ D)

N+ 1PN —

__4 3
(BN+1)

N+1

2 B splines are normalized to have unit area under their curves.

wish to specify E for the equilibrium solution, a different set
of spline basis functions must be used. We still make an ex-
pansion of the form

By (&) =B (£), i=1,.,N+2. (25)

But now the basis functions ¥; (§) must only satisfy the one
boundary condition ¢; (0) = 0. The combinations are also
listed in Table I. In this case there are N + 2 knot coefficients
B’ to be determined.

To obtain the stationary solutions either LP of Eq. (18)
or Eq. (20) can be used. We have used both and checked the
solutions one against the other. There seems to be no advan-
tage to one scheme over the other and the solution set ob-
tained is the same. Consequently, we henceforth consider
only equilibria that use ®, as the LP.

B. Equilibrium equations

With the spline expansion of the fields of interest we can
now perform the variation as outlined in Sec. II A. We com-
pute d® /3T using Eq. (17), where T'(£) is given in terms
of the knot coefficients T/ and 7T,(&) in terms of the knot
coefficients T'. After having 3®,/dT’, then to implement
the subsidiary condition all 7" are set equal to T'§,. Similarly
B, and B, correspond to the knot coefficients B and B [
respectively. In analogous fashion we find 3®,/0B' and
then set all B'= B The result is a system of nonlinear
equations for the 7§ and B, the solution of which gives a
spline approximation to a stationary solution of the pde.

These nonlinear equations are of the form

U, T4+ V, =0, (26)
W;B} — (x,E/N)X; =0. @27

The indices without carets over them range from 1 to N + 1,
the others from 1 to N + 2. The matrices U, V;, Wy, X;
occurring in Egs. (26) and (27) are given in the Appendix.
We note here only that Eqgs. (26) and (27) are highly nonlin-
ear since the matrices depend on the knot coefficients 7'
and B E,, with the exception of W;. The matrix X; also does
not depend on the B §.

The standard Newton method is an effective technique
for solving Egs. (26) and (27) for the TJ and the BJ if a
good initial guess is available. To obtain such starting values
we have used an initial value integrator for ordinary differen-
tial equations (ode). We note that the equilibrium equations
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for T and B, in the scaled variable x = r/a, are

d 1 dT

—_— = )+ uE?*T" - BT"™ =0, 28

dx (327"'c dx) a d (28)
dB B

1 ( o +-—9—)——E=0. (29)

T\ dx X

Defining  y,(x) = (1/B*T *)(dT /dx), y,(x) =T(x),
y3(x) = By (x), then Egs. (28) and (29) become a system of
three ode. We note that y,(0) =0 and y,(0) = 0. Conse-
quently,. we can specify a value y,(0) = T, (central tem-
perature) and integrate forward in x until T takes on the
value 7, at some x,, which we then identify with x,. This
does not happen for all values of T, of course, but when it
does the functions 7'(x) and B, (x) are a solution to Egs.
(28) and (29) with T'= T, at x = x,, and a given value of E.
Solving Eqgs. (28) and (29) in this way gives good starting
values for solving Egs. (26) and (27). We also can use this
procedure to check subsequent solutions of Eqs. (26) and
(27). Solving the Eqs. (28) and (29) using an initial-value
ode solver gives solutions of high accuracy but is computa-
tionally expensive for studying the parameter dependence of
solutions.

To study the dependence of solutions on parameters
such as x,, (size of the containment vessel) and E (axial
electric field) we use a homotopy routine.'®"'? These homo-
topy routines allow the computation of a continuous curve of
solutions and permit the display of solution dependence on
any parameter of choice. We have focused in this article on
the dependence of solutions on parameters that can be
changed by the experimenter, such as E, B,, and x,,, as
opposed to the value of transport coefficients and exponents
of temperature in these transport coefficients.

C. Stability

To study the stability of the equilibrium solutions found
by the methods described in the previous subsection we
let T(&,7) =Ty(&) +t(&,7) and  By(£,7) =By, (£)

+ by (£,7), where T, and B, are the presumed known equi-
librium solutions. We consider perturbations from the equi-
librium solutions to compute the linearized operator asso-
ciated with the pde of Egs. (1) and (2). We scale as before
and find after a tedious but straightforward computation
that

S. N. Rasband and Y. Xu 2642



vxl Ot

N? or
__l__a_ §( t' ZBoaT()be _ n.Tgt )]
& % BlTy (B3)’Ty BITg+!
Bx np ”B ﬂnrxszz n,—
( 1+ N2 T() 1

ux,E ( ba)
—\bs+—}, (30)
+ N P z
2 g b E
_’f.'% o _ 9 _1_(bé+_,,_)_n,x L (31)
N? or O £ N T,

The boundary conditions placed on the perturbed fields
are

t'(0) =0, t(N)=0, (32)

be(0) =0, (bjy+be/8)|y=0. (33)

Equations (30) and (31) along with the boundary con-
ditions in Egs. (32) and (33) can also be formulated in terms

of a LP. Following the outline previously given for con-
structing such functionals, we obtain

W:’-J.Nfdg{—(t’)z-?' t'Ty (2B06b09+nct0>
o

2BXTY B2T¥\ B} To
by —vxi%_(ﬂxinﬂé"”'”
N or N?

X2 BT 2ux, E b
e 2 |

&
(34)
f 3 d§[ ( 5+ b")
§
nx,E (1, )' x2 c?b(,e”
—_— = — . 35
+b“’[ N (To N (9
For the perturbation fields we use the expansions
t(&r) =t(T)$; (£), (36)
be(£,7) = bi(T) P, (£). (37)

The set {¢, (£)} (which has been used previously) and the
set {1}, which are appropriate for the boundary condition
Eq. (33), are given in Table I.

Proceeding as in Sec. IV B gives the following linear
matrix equations for ¢, and b §:

dtf
dr
2 ) Bxin
= VZZ (Y—-H” [(Aik — G — NzB Dy _ﬂ”rEik)
Xt§+ By + Fa0bt ], (38)
dby _N? ( X E )
= Z Hi H,tk+G,b
dr x2 ( ) N koo *
(39)

Once again the matrices Y, Z;;, 4, B;, C;, Dy, E;, Fy, H,

g S Lijr Fijy ir =i Loije
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and G are given explicitly in the Appendix.
These matrix equations can be written symbolically in
the form

HEH]

The eigenvalues of the matrix D are an approximation to the
first 2(V + 1) (N is the number of finite elements) eigenval-
ues of the linear partial differential operator contained in
Egs. (30) and (31). In the following section we consider the
accuracy of this approximation.

Eigenvalues of D with positive real part indicate insta-
bility of the equilibrium solution about which the lineariza-
tion has taken place.’?

(40)

V. EQUILIBRIUM AND STABILITY RESULTS

Allresults reported here were obtained with a wall value
for the temperature T, = 0.01. None of the conclusions or
the general shapes of the curves to be displayed depend upon
this choice. However, the actual magnitudes do. If T, is
lowered to, say, 0.001, everything else remaining the same,
then the corresponding equilibrium solutions have lower
values for the central temperature 7, and the wall value of
B,. But, again there are no qualitative changes in the behav-
ior of solutions or their stability. The value 7, = 0.01 was
chosen simply as a matter of convenience in obtaining equi-
librium solutions. In a similar way we have arbitrarily cho-
sen B, = 2.0.

The values of B, = 2.0 and 7,, = 0.01 were also partly
chosen for comparison with the work in Refs. 14 and 15. The
solution techniques employed in Ref. 14, although essential-
ly numerical, were quite different than those in this work,
and the techniques of Ref. 15 were analytical. It is therefore
important to choose values for the parameters which clearly
demonstrate the consistency of the present results with pre-
vious work.

This work is, in addition, complementary to that in
Refs. 14 and 15 not only because of the different mathemat-
ical methods used, but because of the increased generality in
the functional forms for the field dependencies of the trans-
port coefficients. Although we have presented cases where
B, > B,, and consequently the magnetic field dependence in
x of Eq. (9) wasslight, examples with B, and B, comparable
are also easily computed. Indeed, all of the quantities , 7,,
B,, 1, n,, ng, B associated with dissipation or losses can be
varied or made the parameter of a homotopy. Furthermore
we have included Bremsstrahlung radiation as an example of
losses, and elucidate in a following paragraph the depen-
dence of a critical electric field on the functional dependence
of these loss terms. We have also shown that with Brems-
strahlung losses alone, no bifurcations take place when one
considers the total axial current, or B,,, versus T. Arbitrary
heating or loss terms depending only on temperature and the
magnetic field can be similarly studied.

The heating and loss terms play a critical role in deter-
mining the value of E that divides the solutions into two
classes: those with T, < T, and those with T, > T . The val-
ue of E that separates the two classes we refer to as the criti-
cal E and denote it E.. We can calculate this E, from Eq.

S.N.Rasbandand Y. Xu 2643



(28) as follows. We note that — y,(x) represents the heat
current in the positive x direction. For T, > T,, we expect
this quantity to be positive and for T, < T, we would expect
it to be negative. The situation y, (x)==0 would be for a con-
stant temperature profile, where the temperature every-
where is just equal to the wall value T',,. We have demanded
that y,(0) = 0 and therefore if y, (x) <0, it must be the case
that [dy,(x)/dx] <0. Similarly, for T, <T,, [dy,(x)/
dx] > 0. Hence the critical value for £ occurs when [dy, (x)/
dx]} =0, and this can occur only when the temperature

everywhere equals T,,. Thus from Eq. (28) we find uE*T';
— BT ? = 0, which gives

E =J(B/wT, " "7 =101T; """  (41)

For T, = 0.01 we have E, = 10.1, and if T, were chosen
0.001 then E, would be 31.9. It is thus clear that this critical
value E, is determined by the heating and loss terms alone.
For E < E, the homotopies of stable and unstable solutions
are not connected through a limit point, i.e., a point of mar-
ginal stability. Although not focused on the critical values of
the electric field, clear examples of this behavior in slab ge-
ometry are given in Ref. 15. The manner in which the char-
acter of the homotopies changes as E varies is considered in
detail in the next section.

A. Equilibria

Equilibria do not exist for all choices of x,, and E, and
for situations where equilibria do exist, exactly two solutions
exist for the same choice of parameters, one being stable and
the other unstable. Figure 1 displays values of x,, versus
central temperature T, for two choices of E above E.. These
curves represent 2 homotopy of equilibrium solutions where
x,, is the homotopy parameter. The peaks in these curves are
limit points at which the equilibrium solutions change the
character of their stability. Such a bifurcation is of the sad-
dle-node type'® and because of the lack of special symmetry
requirements on the system near the bifurcation point, is the

1" T T T L ¥ 1
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001 0.02 003 004 005 006 007 0.08
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FIG. 1. For two fixed values of £ > E, a continuous homotopy of equilibri-
um solutions is plotted in the variables x,, versus the central temperature.
For a given value of x,, either no equilibrium solution is possible or else two
solutions exist, one stable and the other unstable. The peak of the curve is a
limit point where the stability changes. Field profiles for the equilibria cor-
responding to points A and B are given in Fig. 2.
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FIG. 2. Field profiles for the temperature T and B,. The profiles with the
larger magnitudes correspond to point B in Fig. 1 and smaller ones to
point A.

type of bifurcation one would expect.

The basic reason for the lack of an equilibrium when x,,
or E are too large is the inverse dependence of the resistivity
on temperature. If the temperature at a given radius goes up,
then the resistivity is smaller causing more current to flow at
this radius, and consequently more Ohmic heating and a
higher temperature leading to a runaway situation. It is ob-
vious that a balance between heat sources and heat losses is
what constitutes a stationary state, or equilibrium for the
system. That there should be a maximum value of x,, for
which there are equilibrium solutions is physically reasona-
ble. The wall is an important sink of energy. For the results
presented in this study (a given choice of parameter values
and loss terms) energy out through the wall is the most im-
portant loss. Therefore if the wall is too far away, all else
remaining the same, then the gradients in the temperature
are too small near the wall and too much heat is retained in
the system, precluding the establishment of an equilibrium.
As examples of stable and unstable solutions, the field pro-
files for the equilibrium solutions labeled by the points A and
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FIG. 3. A continuous homotopy of equilibria with x,, = 4.0. The axial elec-
tric field E is the homotopy parameter and is displayed against the central
temperature T,.
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B are given in Fig. 2. Reference 14 reports a study of the
evolution of an equilibrium, such as that at point B, which
evolves to a stable equilibrium.

Figure 3 is a similar homotopy curve of equilibria with a
saddle-node bifurcation point. In this curve, however,
x,, = 4.0 is fixed and the scaled axial electric field E is the
homotopy parameter. The existence of a maximum E for
which there exist equilibrium solutions (stable or unstable)
is a reflection of the fact that too much E gives too much
Ohmic heating for the heat to be conducted away and conse-
quently a runaway situation again develops.

Itis then interesting to examine the curve corresponding
to the limit or bifurcation points as a functionof Eand x,,. A
portion of this curve is given in Fig. 4. We see that to the left
of the curve two solutions are possible, one stable and one
unstable. To the right of this curve no equilibrium solutions
are possible. On the left the curve asymptotically approaches
E,.

The curve of Fig. 4 is obtained in the following way. We
symbolically denote the nonlinear Eqs. (26) and (27) in the
form

F, (x%) =0,

where x? = (T {,,BEJ ). A Greek indgx (a, B3,...) represents
the union of the index sets for / and i. The Jacobian matrix
Js=(9F,/9x?) is regular everywhere, except at the limit
point where it becomes singular.'” Thus to the set of nonlin-
ear equations we add that

(42)

det[J,5] =0, (43)

along with the addition of a new variable, say E. Then using
x,, as the homotopy parameter we can follow a homotopy of
equilibrium solutions corresponding to the limit points on
curves such as those in Figs. 1 and 3. The curve of Fig. 4
represents the curve of points where the stability of solutions
changes. A plot of x,, vs T, for these limit points looks very
similar to Fig. 4, with E_ replaced by 7,, and the plane is

NO SOLUTION h

10 H TWO SOLUTIONS

E¢

8 A S e L L A — A
10.0 10.5 11.0 11.5 120 125 13.0 13.5 14.0 145
AXIAL E-FIELD

FIG. 4. A curve of x,, vs E at the limit points of the homotopy curves repre-
sented by Figs. 1 and 3. An equilibrium solution with values for x,, and £
lying on this curve is marginally stable to thermal perturbations, i.e., the
eigenvalue with smallest absolute magnitude equals zero and all other
eigenvalues are negative.
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FIG. 5. Homotopy curves of x,, vs T, for E = 8.0 < E.. No longer are the
stable and unstable branches joined through a limit point. Multiple unstable
equilibria are possible for a given value of 7,.

divided in the same way into regions of solutions or no solu-
tions.

For values of E < E, the stable and unstable branches of
the equilibrium solutions are not connected. All of the stable
solutions have a T, < T,, and the profiles have the tempera-
ture rising gradually from 7, until they reach T, at x,,. The
unstable solutions can exhibit oscillations of the profile
about T, as x—x,,. Figure 5 displays the solution homotopy
curves for E = 8.0 < E,.. The multiple unstable solutions for
a given T, are evident.

With this result it is clear that as £ decreases and ap-
proaches E_, the x,, vs T, curves becomes ever more sharply
peaked near T, with x,,— . At E = E_ the stable and un-
stable branches break and for E < E, the homotopy curves
are qualitatively similar to those of Fig. 5 and exhibit multi-
ple unstable equilibria.

In all situations previously discussed B,, maintains a
monotonic relationship to T,. Curves of B,, plotted against
E and x,, are similar in character to those using 7.

B. Stability

The stability of all equilibrium solutions was deter-
mined by computing the eigenvalues of the maxtrix D, sym-
bolically written in Eq. (40). These eigenvalues turn out to
be real and are, of course, only an approximation to a finite
number of the eigenvalues in the spectrum of the partial dif-
ferential operator in Egs. (30) and (31). Table II exhibits
the dependence of these eigenvalues on the number of finite
elements chosen.

VI. DISCUSSION

The foregoing analysis and results demonstrate that the
LP method using finite elements and cubic B splines gives an
effective method for studying equilibrium solutions to prob-
lems in DMHD. When coupled with homotopy techniques,
the dependence of solutions on parameters of the system can
be extensively investigated and the stability studied. We note
that these numerical techniques are not limited to certain
functional forms for the dependence of transport coefficients
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TABLEII. Eigenvalues of the matrix D of Eq. (40), tabulated with respect to the number of finite elements for an equilibrium with x,, = 4.0and E = 12.0.

For N finite elements the dimension of D is 2(N + 1).

Number of finite elements

5 6 7
— 62.78206 — 62.78199 — 62.78179
— 366.7265 — 366.7278 — 366.7285
— 368.0727 — 368.0683 — 368.0608
—918.5126 —917.8225 —917.6970
— 1729.785 —1716.758 — 1713.041
— 1865.642 — 1865.716 — 1865.755
—2943.670 — 2799.082 —2767.233
—4563.562 —4367.156 —4136.517
— 4955.147 —4561.537 — 4561.426
— 8554.193 — 6960.671 — 6057.741
— 14055.28 — 8476.029 — 8459.411
— 24 361.69 — 13 822.76 —9337.676
— 20 609.37 — 13 629.41
—34784.26 —20405.29
—28369.76
—47179.43

8 9
— 62.78195 —~ 62.78195
— 366.7288 ~ 366.7290
— 368.0688 — 368.0691
—917.6778 —917.6795
- 1712.059 - 1711.794
— 1865.775 — 1865.787
— 2755.825 — 2752.020
— 4075.191 — 4049.529
—4561.542 — 4561.651
— 5746.203 — 5645.728
— 8006.846 — 7629.448
— 8455.897 — 8453.235
— 12 086.87 — 10209.79
— 13 570.92 — 13 553.89
—20053.65 — 15206.81
—28305.23 — 19914.36
—37327.84 —271774.51
— 61529.16 — 37 516.55
— 4747991
— 77 819.09

on the temperature and magnetic field. Furthermore, arbi-
trary source or sink terms depending on the field quantities
can be included. The transport coefficients chosen here were
chosen because of their familiarity. Anomalous forms for
transport coefficients are easily studied in the same way but
in the absence of any compelling motivation for one form
over another we have not presented such results here.

For the system specifically studied there is a critical axi-
al electric field E, for which there exist interesting tempera-
ture profiles peaked at the center, which are also stable to
thermal fluctuations. There is in addition a maximum E for
which equilibrium solutions are possible. It is likely that be-
fore these bounds can be approached considerations of
MHD stability become dominant. The question of dynamic
equilibrium and stability has been completely ignored in this
study and would be an appropriate extension. Future work
will also include a variable B, field with dynamo terms.
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APPENDIX: MATRIX DEFINITIONS

n

v, = [ gae T2 _°¢¢,,

V= f§d§¢,[ (B+B?) -

Bx,
N 2

T;;»],
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¢.

a=f§d§rh<¢;-+?’), xi=[ ederiv,

= “cdt g, z,- [ "edt b,

ay=n. [ ga— T‘j+l¢¢,,

B,=2[ gag22To j)TT 49,
o= o= [ edeTi gy,

£, = (22 f §d§T3"‘¢,-¢,-,
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H; = f EdE Y, (8,/T,) .

All integrals are performed using Gaussian four-point inte-
gration over each finite element of the interval.
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