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A complete solution is obtained for nonaxisymmetric resonant vibrations of a free cylinder or disk 
involving infinite sums. For axisymmetric longitudinal vibrations an alternative to previous solutions 
is included. In principle, the solutions satisfy exactly the stress-free boundary conditions, in contrast 
to the approximate bending-mode solutions due to Pickett or approximate solutions based on a small 
diameter/length ratio and small shearing stresses at the ends. 

Subject Classification: 40.26: 40.24, 20.40. 

INTRODUCTION 

A recent application of resonating cylinders has been 
their use as gravitational wave detectors. • To date only 
the lowest axisymmetric longitudinal mode has been of 
interest. However., with the anticipated advent of cryo- 
genically cooled aluminum cylinders weighing several 
tons a large number of cylinder modes may prove use- 
ful. Consequently, the need for a detailed understand- 
ing of these modes provides the primary motivation for 
this study. 

Vibrations of rods and cylinders have been studied 
ever since the early work of Pochhammer in 1876 and 
Chree in 1889 which focused on the infinite-length case. •' 
The extension of their work to actual cylinders of finite 
length has been difficult, however, because it is not 
possible to completely satisfy the zero stress boundary 
conditions in a simple way. Zemanek a has given a re- 
cent account of elastic waves in cylinders in which the 
semi-infinite case is solved and vibrations other than 

just the axisymmetric longitudinal ones are considered. 
For flexural vibrations Pickett 4 has given an analysis 

leading to the eigenfrequencies for finite cylinders. 
This solution is also not shear free everywhere on the 
plane end faces, but it does have vanishing total shear 
and total moment on the ends. The numerical solutions 

of Pickett's equations have been studied by Tefft 5 and by 
Gram, Douglass, and Tyson ø and appear in good agree- 
ment with experiment. 

Hutchinson 7 has given a completely shear free solution 
for axisymmetric longitudinal vibrations of finite cylin- 
ders. Many important aspects of the present work have 
their root in Hutchinson's solution. 

Section I presents the solutions to the differential equa- 
tions of elasticity in cylindrical geometry with the at- 
tendant notational conventions. Section II considers the 

boundary problem and its solution. In Sec. 111 the spe- 
cial case of axisymmetric modes is considered with dis- 
cussion in Sec. IV. 

I. SOLUTIONS TO THE DIFFERENTIAL EQUATIONS 

The notation for the geometrical and physical parame- 
ters of the cylinder follow. L and R denote the length 
and radius of the cylinder, respectively. We denote cr 
as Poisson's ratio, E as Young's modulus, g = E/2(1 +or) 
as shear modulus, • as density, C t = (g/•)x/•' as trans- 
verse {shear)wave velocity, Ct as longitudinal wave 
velocity, and X=Ct/C • =[(1-2cr)/2(1-cr)] x/•' as the ratio 
of the transverse to longitudinal wave velocity. 
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We use as cylindrical coordinates p, qb, z with the di- 
mensionless forms being given by r= p/R, •p, • = z/R. 
The angular frequency is given by w and the dimension- 
less form by •= ooR/C t . Ur, U•, Uz denote the compo- 
nents of the displacement vector in the radial, azimuthal, 
and axial directions, respectively. 

In standard fashion the displacement vector U is ex- 
pressed as the sum of the gradient of a scalar potential 
• and the curl of a vector potential • (components ½i, i 
= 1, 2, 3 corresponding to p, •, z). The equations of elas- 
ticity then give, as differential equations for the poten- 
tials, the following: 

02• 1 02• 02• 1 O• Or •+• •+0• + + X• =0 (1) 

O• + -- + -- + + =0• 

•2 + - • + + + + = 0 (2b) 

• +- + + + =0 (s) 

We choose the potential solutions in the following form: 

•(n •, e) = 2AR •J•{ar) {cosn• sinOe ]' (4a) 
where 

ae + 6' = 5e• e; (4b) 

{cosn• sin• • ½•{n ½, e) = BR•{n/r)Jn{ 5r) sinn• ] {- cos•e] ' {5a) 
and 

R•{r, •, •)- - BRe OJn {•r) • sinn• • sin• } r 0r (- cosn½]{- cos•e ' 

where (Sb) 
5• + • = 5•; 

jcosn½ { cosye ½a(r' ½' •)= - CR2Jn(•r) { sinn½ t siny• !' (6a) 
where 

• + y• = 5• . 

A, B, C are arbitrary donstant coefficients and the J• de- 
note Bessel functions of the first kind of order n. 

By the usual route from potentials to displacement 
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TABLE I. Solutions of elasticity e•quations with arbitrary azimuthal symmetry. Primes denote differentiation with re- 
spect to the argument and •.(x)=xJ..l(x)/J.(x)- (n + 1). 

(A) (B) (C) 

U._r [sinnq• • •0os6• 2•J•(•r) ) cosnq)) [sin81; } cos nqb) t sin•g ) 

R r sinnO, [sin81; } •nJ"(•r) [sinriO, ,sinfi!; } 
U_• 2&/•(ar) •sinnO • sinS• 0 cos/• cos8• cos n•, {- ; 
• rr 

2• 2Jt•(øt•') { •2 - 1) + (•.2/2) (2(52 - •2) - •n(o/•-)} •.2 

x •cosn•) •sin/5•) 

tsinn• jcos6l:• (2•t 2 -To2)Jn (•tr) [cos nqb) [sinS• J 

sinn•J [sin8!; ) 

4aSJ•(ar) Jsinnqb sinS• cos8• 

# r sinnqb ) cos8•) 

,i,.2 

x l- sinnqb oo.o}l 
sinn• • Jcos/•!; a=•a"&r){ - oosnO• [sinfig 

r 2 [sinn4)) [sinfig J 

sinnO 

cosnO• sinfig (•2--•2)• Jn(•r) {sinnO, l- 

n sinnO • $cos•!; 

(sinn•5 J Isin•g J 

_n { sinn• • Jcos•g[ 

2--- jn (-• r ) { (n 2 -1) - (•r )---• - •/ n (-• r ) } •.2 

x {oo•.• Soos•r• sinn•b ) •sin•f ) 

sinnqb • {-sinWg • nT jn(-•r ) {_ cosno• r cos•g• 

•oosnO• sin•g •J•(•r) ,sinnO)l- } cos•g 

vector, from displacement vector to strain tensor, from 
strain tensor to stress tensor via Hooke's law we obtain 

the solutions as given in Table I. The functions in 
brackets, for example, in Eq. 4a, are alternative inde- 
pendent solutions. Thus Eq. 4a summarizes four inde- 
pendent solutions for the potential 

II. BOUNDARY CONDITIONS 

In the past the major obstacle to obtaining a complete 
solution for the resonant vibrations of a cylinder has 
been the boundary conditions. In terms of stress tensor 
components, these boundary conditions are as follows: 

In order to satisfy Eqs. 7, it is necessary to take an 
infinite sum of solutions, each in turn partially satisfy- 
ing the boundary conditions. The infinite sum is then 
required to be orthogonal to a complete set of functions 
over the appropriate interval. For 0 •< r •< 1 we choose 
Bessel functions and for - h •< i; •< h we choose the Fouri- 

er functions, sines and cosines. To obtain the solutions 

partially satisfying the boundary conditions we proceed 
as follows. 

Let 6 =/•=y and then make the notational change 6 =/• 
= y- a, a-0, & =•-/•. The solutions of Table I take 
on the forms given in Table II. We then take a super- 
position of the (A)-, (B)-, (C)-type solutions and sub- 
stitute into Eqs. 7. The resulting boundary condition 
equations for the upper •b function are the following' 

(a•. - •'-) 2Aa,, (O )[ (n •' - 1)+ 2 

x[ (n •' - 1) - •' - •.(fi)] + CnJ.(•)•.(fi (sinai; J 0; 

{ 2•r•. ½)•.(•)+ 

+CJ.(f•)[(n •'- 1)- (/•a/2)- •.(fi)]} {sinag. =0; 
{ 4Aa6J•(6) + BB(a • - •)J•(B) + 

{sina• } x eosag =0; 

{ a (z,• - •)a.(, r ) + 8•= a:. (•r)} { s•nah = 0; 

•a•a;(Or) +•a'- •)a•(•r) 
Cna f} {s•nah } + •.(• =0; 

• cos •h 

(8a) 

(Sb) 

(8c) 

(8d) 

(8e) 
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TABLE II. Specialized solutions of elasticity equations with arbitrary azimuthal symmetry. The solutions listed in this table 
are obtained from those of Table I by letting 6 =fi=•/---c•, (• =•--• fi, and c•--6. 

901 

a2 +62 =•2X2 
(A) (B) (C) ez2 +fi2 =•2 

R r sinn•b) tsinn•b ) fij•(fir)I osn•b• r sinn•b ) [sinot• t 

(yzz sinnq• • sinnq5• 
½os nq5 ) [sinot•;J 

/• sinnq•) sinnq• } ø•fiJ• (fir) {• øsnq• sina• 1. r innq• J {- eosa/;• 

4A. otn , } r J.(6r)+B(ot •'- fi•')(n/r)J.(fir)+C•t•J.(fir) 

{sinah } x eosah =0' (8f) 
HereMter we speak of even and odd solutions accord- 

ing to whether or not U• is even or •d. Even (odd) so- 
lutions correspond to the lower (upper) • function. 

Choosing •o from amo• Eqs. 8a-8c, the constants 
A, B, C are determined to within a common factor. 
Choosing Eqs. 8a and 8b, then (A, B, C)= •, • •), 
where 

X=aJ.(•){[(n z- 1)-•z/2- •.(•)] [(n z - 1)- •- •.(•)1 
_ .z•(•)} , (9a) 

x[ (n z - 1)+(a z - •)/2-•.(•)]+nZ•.(•)•.(6)}, (9b) 
•= 2a•.(•){[ (n z - 1)+ (az - •)/2 [•.(•)- 

Choosing Eqs. 8a and 8% then M, B, C) = •, •, •), where 

• =•.(•){- aZ[(n z- 1)- •z- •.(•)] 

+(a •- •)&.( •)[•.(•)+ •]}, a0a) 

D = 2a•.(6){[(n z- 1)+(a z- •z)/2- •.(6)] 
- 2•.(•)[•.(•) + x]}, a0b) 

• = 2j.(•)½.(•){2• •- [(.• - •)- •-] + (a •- - •-)} 

- ½.(•){ (a •' - fi•') [(n •' _ 1)+(a z _ 
- 5•[•.(o)•.(•)- (n • - •) +•/2 ]). (•oc) 

Equations 8b and 8c give (A, B, C) = (•, D, • ), where 

] :J.(•){(a •- • •)[½.(•)+ 1] [ (n •- 1)- •/2- ½.(•)] 
- nZaZ½.(fi)} , (11a) 

•= aa•(•){a [•(•) + x] [•(•) +•/a- (.•- x)] +.%•(•)}, 
(•b) 

• = a.•(•) { aa %•(•) - (a• _ • •)•(•) +;• (•)•(•) }. 
axe) 

Partial satisfaction of boundary conditions of Eqs. 8d- 
8f are obtained by le•i• •= g•m•/• or a= • (2m 
+ 1)•/2•, w ith m = 0, 1, 2, .... 

Table 1II enumerates the different solutions obtained, 
each of which satisfies the boundary conditions of Eqs. 
7a-7f in part. Repeating the previous steps of this sec- 
tion for the lower qb function leads to the same results. 
The solution to which we apply the condition of orthog- 
onality is obtained by adding together all of the solutions 
of Table III. 

We let •7.(r; a)= 2•XJ.'(•r) + •aflJ.'(f)r)+ (fn/r)J,(flr). 
•.(r; a) and 3•(r; ot ) have similar definitions but with a 
tilde or caret over the A, B, C functions (cf. Eqs. 0-11). 
Using this definition we write out as an example the com- 
plete solution for U,, omitting the sinusoidal function of 
time. 
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TABLE III. Coefficients for solutions partially satisfying 
boundary conditions. 

Odd (upper) Even (lower) 

Coeffi- Coeffi- 

cient a (A) (B) (C) cient a (A) (B) (C) 

The stress tensor components are formed in the same 
fashion as Eq. 12 and then are required to satisfy the 
boundary conditions of Eqs. 7 by being orthogonal to the 
appropriate complete set. The equations 

_h(r•(r = 1, •) sinvk• d•=0 (13a) 
and 

f-i' r'(r •) cosgk• d• =0 cr =1, (13b) 

lead, respectively, to the followirfg equations for the 
coefficients, where the subscript n is hence forth sup- 
pressed. 

and 

•- •m•m + • f• = 0 (14a) 

C k (•k + • •km F• = 0, (14b) 

where 

c =2•;.(•) •'- •)+ 2 

+•a•.(•)[(n • - •)- •_ •.(•)] + •.(•)•.(•). 
(•5) 

The choice of • or • is made depending on whether a 
equals • or •. We have defined 

•,= 2 • c(•, )•(- •)* (• •a) 
and 

•, = c(,, ) •(- •)*. (• •b) 
where 

1, k=0 J= 0, otherwise. (17) 
Also we use 

• = C(/•+•) g•+• ,m+• (18a) 
and 

F,• = C(v•)•,y• , (18b) 
where 

ß •: 2(- •)V(• - • ) ß (•) 

The equations 

h(r • •(r = 1, t;) sinvk t; =0 (20a) 
and 

fh crr•(r =1, •) cosg• =0 (20b) -h 

lead, respectively, to the following equations for the co- 
efficients: 

•.g,,•m + •œk = 0 (21a) 

and 

where 

•a: 2 •B(g•)h(- 1)• , (22a) 
•= B(v•)h(- 1) • , (22b) 

• = B(•+•) •+• •,•+• , (23a) 
•,. = •(,.)r.,,., (23b) 

with 

ß •;.(•)[(n •- •)- (•V•)- •.(•)] ß (•4) 
In Eq. 24 g or y is chosen depending on whether a equals 
g or y. In similar fashion• the equations 

n•r•(r = 1, •) siny, • d• = 0 (25a) 
and 

.• (r r'(r = 1, •)cosgk• d• =0 (25b) 
lead to 

•-• •,., A,,, +/•, D, = 0 (26a) 

and 

•{• + •../• •)• = O. (26b) 

We have defined 

•= 2•A(/•)h(- 1)• , (27a) 
b,=A(v•,)h(- 1) • , (27b) 

•m = A(•,t)•t•,•+t , (28a) 
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/•km =A(Vm)VmTmk, (28b) 
where 

with again the choice of /• or r determined by a. 

For the remaining boundary conditions, we make use 
of the functions rt/"Jn(y•r)which are orthogonal over 
the interval 0 • • • 1, where y• denotes the }th root of 
•j(•) =0. Rather than using Eq. 7d in the form given we 
use the two equivalent equations. 

•(• = h) +•(• =- h)=• •(• =h)=0 (30a) 

and 

a"(• = h)- a"(• = - h)= aoaa(•= h)= 0 . (30b) 

Thus we require 

re •,•(r, • = h)an( yn nr)dr=O (31a) 

and 

•• •[•a(r, • =h)d•(y}r) dr=O. 
These yield the following equations for the coefficients' 

and 

where 

j(2, ( + [ 

Once •ain the choice of • or • depends on whether 
equals • or •=. 

,re(r) and • (½) 
are given by Eq. 33 with (•, •)- (•, •) and (•,/}), 
respectively. 

As was done with Eqs. 7d, we focus on the even and 
odd parts of Eqs. 7e and 7f. We find 

Because of the nature of the Bessel functions occurring 
in these equations it is more convenient to consider the 
sum and difference of Eqs. 34a and 34c and likewise the 
sum and difference of Eqs. 34b and 34d. The use of re- 
cursion relations makes for considerable simplification. 
We find that 

! 

f. r[a"' +(r •' ]Jn ,(y•4r)dr=O (35a) eV on eV on 

0 

and 

1 

•_o r [( • r = .,. y . ) at= o (35b) 

result in the following equations for the coefficients: 

E •mU•m(•m)"F•m Vhm(•l'ra+l)+(•mWl•ra(•l'm+l )=0 (36a) 
m 

and 

E •mRkm(l"tm)+•raS•m(•m+l)+•m T•m(•m+l) =0, (36b) 
m 

where 

+ ( y._•)• _ fi• . (37) 

W • and ''(v) 
are obtained from Eq. 37 by letting (•, 
and (•,/•, (•), respectively. 

•., , T R.m(•), $ (•)and 
are obtained from 

respectively, by letting (n- 1)- (n + 1). Again the choice 
of g or • is determined by a. 

The requirements that 

odd q- O' odd (38a) 

and 

•0 • r [a •'- *' •r odd O' odd ] Jn+ 1 ( Y ) tiT' = 0 (38b) 

yield for the coefficients 

E DraU'l•m(Vm) + Zm Vl•m(Vm) + .Fro •Irl•m(Vm) = 0 (3Oa) 

and 

(39b) 

Equations 14b, 2lb, 26a, 32a, 39a, and 39b are conve- 
niently summarized in matrix form. 
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0 0 /•k 0 0 A 

o •. o .o /:.. o 

o o o o 
:0. 

•..(•.) c•..(•.) o o o 

o o o •..(v.) s•.(v.) •.. 

i t Equations !4a, 2!a, 26b, 32b, 36a, and 36b are contained matrix equation 

•.k 0 0 •)•= 0 

0 .•,, 0 0 

o o •.. o o 
-0, 

u•,=(•=) v,,=(•=+•) w,,=(•.,+•) 0 0 

(40) 

(41) 

Submatrices with only one index are diagonal matrices with 
their diagonal elements given by the indicated quantity. 

For a nontrivial solution, the determinant of the co= 
efficient matrix must vanish, which determines the al- 
lowed frequencies. The matrix of Eq. 40 gives the fre- 
quencies for odd modes and that of Eq. 41 for the even 
modes. 

III. THE AXISYMMETRIC MODE 

The determinants associated with Eqs. 40 and 41 are 
different of course for each n. The axisymmetric mode 
n=0 requires special attention since some coefficients 
vanish for n=0 (cf., Eqs. 10a and 10b) and since it is in 
this mode that comparison with previous work v is possi- 
ble. 

Examination of the boundary conditions contained in 
Eqs. 8 shows that for n-0 there is a natural splitting. 
Equations 8b and 8f concern only the (C)-type solution of 
Table I and the remaining boundary conditions couple 

i 

the (A) and (B) types together. The boundary conditions 
for the (C)-type solution are easily satisfied by choosing 
c• equal to •m or vm and • satisfying •aj•.(/•)=0. These 
are the well-known torsional oscillations and are not 
considered further here. 

For the axisymmetric longitudinal mode the Eqs. 40 
and 4! reduce to 

0 /• o 

=o 

(42) 
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a•d 

=0. 

(43) 

The matrix coefficients are given by the equations in the 
previous section specialized to the case n-0. 

IV. DISCUSSION 

In the previous sections a complete solution for the 
resonating modes of a free disk or cylinder are obtained 
in the form of an infinite series for each mode. A par- 
ticular mode is selected by fixing n and then choosing a 
particular frequency solution to either the even or odd 
parity equation given by requiring the vanishing of the 
determinant of Eq. 41 or 40. Thus, a particular mode 
is labeled by (n,ñ, l). The label n determines the geo- 
metric character of the mode. For example, n = 0 se- 
lects the axisymmetric longitudinal or torsional modes 
(cf. Sec. III, Refs. 2, 3, and 7) and the exact solution 
of this paper is an alternative to that given by Hutchin- 
son; n = 1 selects the bending modes [Refs. 4, 5, and 6]; 
n = 2 selects the longitudinal modes with quadrupole sym- 
metry. The plus or minus sign denotes mode parity. 
In contrast to the I•ochhammer-Chree solution (the in- 
finite rod solutions as applied to finite cylinders by re- 

quiring the normal stress at the ends to vanish but ig- 
noring the tangential stress), it is not possible to deter- 
mine the radial node structure without a detailed exam- 

ination to U, as a function of r. 

Exploratory numerical computations have been done 
to obtain the frequencies giving a vanishing determinant 
for the matrices in Eqs. 42 and 43ø Excellent agree- 
ment with Hutchinson's results was obtained at selected 

points. It should be noted, however, that the number of 
terms included in the expansions, necessary to obtain 
equivalent accuracy, was somewhat larger. Also we 
remark that no false roots appear since terms such as 
Jj(5)/[(y•,)•'-6 •'] which occur in Eqs. 33, 37, etc. have 
a finite limit as 5- y•. 
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