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Computer model of a fast toroidal plasma compression,

with application to the topolotron

H. Mark Nelson, Keith H. Brown,* and Charles A. Hart

Brigham Young University, Provo, Utah 84602

(Received 21 November 1975; final manuscript received 28 May 1976)

The method is developed for a computer sequence which models a fast toroidal theta or screw pinch for
a highly conducting axially symmetric plasma. The computer sequence takes into account the self-
inductances of the plasma and the external conductors which drive the compression as well as the mutual
inductance which electromagnetically couples the two. The computer sequence is divided into three phases:
a snowplow compression phase, an adiabatic compression phase, and a crowbarred circuit phase. The
computer sequence is applied to a topolotron and an example is given of a magnetohydrodynamic
equilibrium geometry for which the plasma surface possesses an asymptotic magnetic field with limit cycles.

I. INTRODUCTION

The topolotron is a toroidal magnetic plasma confine-
ment device with a noncircular cross section. ! It is
distinguished from conventional toroidal magnetic plas-
ma confinement devices by the magnetic field configura-
tion on the plasma surface. That configuration is nei-
ther closed nor ergodic as is conventional, but rather
every field line asymptotically approaches a limit cycle,
i.e., an isolated closed field line (see Fig. 1). This
asymptotic magnetic field configuration possesses a the-
oretically advantageous property which is best under-
stood in the context of topology. The topological term
“structural stability” is applied to a property which
manifests itself physically through the behavior of the
magnetic field under small perturbations, viz., the
topology of the magnetic field configuration does not
change. For example, under a small perturbation, the
magnetic field configuration would not change from
asymptotic to closed. Conventional toroidal magnetic
field configurations do not posses this property, how-
ever, and are subject to a change in their topologies un-
der small perturbations, e.g., from ergodic to closed,
possibly with a corresponding tendency toward those
magnetohydrodynamics instabilities associated with ge-
ometrical resonance, e.g., the breaking up into islands
of the magnetic structure.

The physical realizability of an asymptotic magnetic
field configuration has been studied previously? from the
point of view of finding the proper boundary currents re-
quired to create a given magnetic field configuration
which is known to be asymptotic. That method suffers
a serious defect in that the approach to equilibrium is
not included. Consequently, the physical requirements
of producing the equilibrium are not known. Further-
more, the external currents computed to exist in the
presence of those prescribed equilibria which were
treated by that method were impractical to produce ex-
perimentally, inasmuch as they required precisely pro-
grammed surface currents and conductor shapes which
were not easily machined. This paper,by contrast,
discusses a computer sequence which simulates the
compression of a high beta plasma under the influence
of given external currents in the sharp boundary model.
This compression can be made to ultimately end in
equilibrium of the plasma (meaning constant pressure

1810 The Physics of Fluids, Vol. 19, No. 11, November 1976

surface). The plasma equilibrium geometry is then ex-
amined for the desired asymptotic magnetic field con-
figuration. It turns out that a wide variety of simple
external current configurations give rise to plasma
equilibria with asymptotic magnetic field configura-
tions, thus circumventing the need for the highly spe-
cialized boundary current and conductor shapes derived
from given magnetic fields. The motivation for develop-
ing the computer compression sequence was to aid in the
design of an apparatus to generate an asymptotic mag-
netic field configuration on a toroidal plasma surface,
i.e., to aid in the design of a topolotron. However, the
computer sequence is not restricted in its application

to the topolotron, but rather it can be applied to any
axially symmetric toroidal device for high-beta plasmas.

The simulation of a plasma compression is modeled
after an experimentally observed time sequence as fol-
lows: Consider a fast straight theta pinch of a high
beta plasma. McKenna® has shown that a magnetic field

FIG. 1. A torus showing asymptotic field lines on its surface
approaching one limit cycle and diverging from another.
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trapped in the plasma (a residual field left from pre-
ionization) varies in time as shown in Fig. 2. This
graph gives an indication of internal pressure (within
the plasma column) during the compression sequence,
because the magnetic field lines are “frozen” into the
conducting plasma. The gas pressure at the axis of the
cylinder appears to remain constant until the plasma,
which is being swept up by the imploding magnetic pis-
ton, reaches that axis, whereupon there is a rapid in-
crease in the pressure there. Following that rapid rise
is a slower increase due to the increasing magnetic
pressure on the plasma surface caused by the still-in-
creasing external currents which drive the compres-
sion. The time sequence for the simulation is idealized
from these observed events. Figure 3 shows the inter-
nal pressure of a plasma compressed according to the
idealized time sequence. The simulation is meant to
model the gross features of a physical plasma. As such
it has phenomenological features, rather than purely
theoretical ones. It does, however, include the com-
plicated, electromagnetic coupling between a conducting
plasma and externally applied currents, not only as it
affects the plasma, but also as it affects the distribution
of external current, and it represents a practicable way
to choose design parameters for an experimental plas-
ma compression. *

The first stage of the sequence is a simple snowplow
compression® in which the driving currents in external
coils together with the induced currents in a perfectly
conducting plasma produce a magnetic pressure which
compresses the plasma surface rapidly inward and
sweeps the interior plasma along with it. The dynamics
of the compression are classical, essentially Newton’s
law: F=d(mv)/dt applied to small sections of the
boundary.

The snowplow part of the compression is allowed to
continue without a retarding back pressure until the
work done by the magnetic driving force has increased
to the point where the gas pressure of the plasma com-
puted as will be described is greater than or equal to
the average magnetic pressure on the plasma surface.
At this time in the sequence, the computer program
stops the snowplow sequence and introduces the com-
puted internal plasma pressure as a back pressure
which diminishes the effective driving force on the plas-
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FIG. 2. A graph showing the magnetic field strength on the
axis of a straight theta pinch during a fast compression of a
high beta plasma. The abscissa is time elapsed since the
compression was initiated. Experimental data points are in-
dicated by crosses.
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FIG. 3. A schematic drawing showing internal pressure of a
plasma compressed according to a time sequence idealized
from the experimental time sequence of Fig. 2. The abscissa
is time elapsed since the compression was initiated.

ma surface. Moreover, at this point in the sequence,
the adiabatic ideal gas relationship is introduced: PV’
=const, where y is the ratio of heat capacity at constant
pressure to that at constant volume, so that, with subse-
quent increments of time, this equation governs the re-
lationship between pressure and volume. The volume

is changed, in these subsequent computer sequences, by
moving each section of the plasma boundary in a direc-
tion perpendicular to the boundary and by an amount pro-
portional to the difference between the magnetic pres-
sure computed for that section and the internal gas pres-
sure. If the external currents lie within certain (fairly
nonrestrictive) limits, the procedure moves the bound-
ary in such a way that equilibrium (i.e., constant mag-
netic pressure on the boundary equal to the internal gas
pressure) is approached. This process is iterated until
the circuit crowbarring time, which is chosen to be that
time when any one of the external currents changes sign,
about one-quarter period of the oscillatory discharge of
the external capacitor bank through the coil inductors.
This repeated equilibrium-seeking sequence corre-
sponds to the stepped portion of the graph in Fig. 3.

At the circuit crowbar time, the circuit equations are
altered to represent the shorted coils {crowbar condi-
tion). At this time a circuit resistance is introduced.
The equilibrium-seeking process is continued as long

as would be physically interesting, as the currents in
the coils gradually decay due to the circuit resistance.

The method of computing magnetic pressure will be
discussed in Sec. II. Detailed descriptions of the snow-
plow, adiabatic compression, and crowbar portions of
the computer sequence will be given in Secs. III, IV,
and V, respectively. Section VI will give an example
of the application of the computer sequence to the topol-
otron,

Il. COMPUTATION OF MAGNETIC PRESSURE

The basic equations governing equilibrium in magneto-
fluid dynamics are

vV.B=0,
VxB=uj,
jxB=vP,

where the first two equations are simply time indepen-
dent Maxwell’s equations in mks units, and the third
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equation expresses the balance between magnetic pres-
sure and fluid pressure, P. These equations can be
combined to give the result: P+ B?/2y is constant
across the plasma boundary. For the sharp-boundary
perfect-conductor model, moreover, the magnetic field
within the conductor (plasma) vanishes so that the in-
ternal gas pressure balances the external magnetic pres-
sure. This result from magnetofluid dynamics is used
in the computer sequence to calculate the plasma equi-
librium, ¢

In the computer model discussed here, the high-beta
toroidal plasma is regarded as a perfect conductor,
Currents are induced in the surface when the driving
currents in external coils are turned on. Currents
arise from capacitor banks discharging through the ex-
ternal coils. There are three external coils as shown
in Fig. 4: (1) a poloidally wound coil (hereafter called
the 6-coil), (2) a toroidally wound outer coil (called the
C coil), and (3) a toriodally wound inner coil (called the
Icoil). The currents in the external coils and in the
plasma surface are governed by the coupled effects of
the discharging capacitors and the inductance of the cir-
cuits. Faraday’s law and the loop theorem require that
the time rate of change of the flux linking a conductor
be equal to the emf applied to it, If there is no applied
emf, as in the case of the plasma, then the flux linking
the conductor remains constant:

. d .
@-ELB-ndS—O.

For the case of the external conductors:

d .
== B-# = -

where & is the applied emf due to the capacitance and
any other source of emf which may be present. Note
that the flux, &;, linking a given conducting circuit may

—
—_—
—_—

VNN

FIG. 4.
with two limit cycles.
lope, (3) the 6 coil, (4) the C coil, and (5) the I coil. The di-

rections of the currents in the coils are indicated with arrows.

A view of (1) the poloidal cross section of a plasma
Also shown are (2) the vacuum enve-
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be written in terms of the inductances and currents as
follows:

<1>,.=f B-ndS=_L,J;,
s4 J

where L;; is the inductance between the ith and jth cir-
cuits and J; is the current in the jth circuit. These flux
conditions based on Faraday’s law are, in turn, the
basis upon which the currents in the various conductors
may be calculated, and subsequently, the pressure which
drives the plasma compression is obtained. The fact
that the C coil and I coil are orthogonal to the 8 coil al-
lows us to treat separately the problems of calculating
the current induced in the plasma by driving currents in
these orthogonal coils. In applying the computer se-
quence to the topolotron, the I and C coils will carry
oppositely directed currents. The computer sequence
is not restricted to these I and C coil shapes, or cur-
rent directions, but applies to any axially symmetric
arrangement of orthogonal conductors.

A. Pressure due to the 0 coil

The flux condition for the toroidal flux linking the
plasma and the 6 coil may be written:

. d ~
<I>,,~;1—t_£PBt-nds—0

56

where the emf applied to the 8 coil consists of @,/C due
to the capacitance and Leé, due to lead inductance. The
charge on the capacitor is @;, and the superior dots
indicate the time derivatives. From the first of these
flux conditions, &, is constant in time, and we shall in-
vestigate the case where it vanishes. Both the 8 coil
current, Ql, and the induced plasma current, Qz, are
poloidally directed and the magnetic field produced by
them is

B, = (10Q,/2m7)2,
in the space between the 6 coil and the plasma, or
B, = [#0(@1 + Qz)/ZWV]éo

within the plasma. No magnetic field arises in the re~
gion outside a torus for poloidal surface currents.
Here, g is the permeability of free space (u,=47x1077
in mks units), » is the distance from the axis of the
torus, and g, is a unit vector in the toroidal direction.
The vanishing of &, implies that B, vanishes, inside the
perfectly conducting plasma. Consequently, the flux
linking the 8 coil may be written

&, =f (uo/z-rnf)QldS—f (o/2m)Q, dS .
sg sp

The time derivative of a surface integral for which the
surface changes in time, can be written as

a
1[13- ﬁdS=fﬁ-[—E+v(V- B)+V x(va)]ds ,
dt J s at
where v is the velocity of the surface element. For a

magnetic field, V. B=0, from Maxwell’s equation, and
by Stokes theorem, the last term in the integral may be
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changed to a line integral around the boundary of the
surface

9B
d[B AdS= [ ndS+fov d .

Upon applying this result to $,, one obtains

b, f (“"Ql)ds f (#le) ds — f (#lev )dl
277 s \ 277 2nr
where use has been made of the fact that the # coil does
not move and it is assumed that B, x v, is tangential to
the boundary of the poloidal cross section of the plasma,
i.e., that v, is perpendicular to that boundary. Using

these results one may write the flux condition for the ¢
coil as follows:

51 - 28Q,+ wiQ;=0

where

(el g2 [ 2- 8L 2)
s=teuij2 [ (%) ]

Because the plasma surface is moving, 8 and w, are

not constant; however, they are slowly varying in the
sense that A8/8 or Aw,/w, remains less than 107? during
an iteration., For this reason, one may numerically
solve the differential equation by letting 8 and w, be
fixed at their initial values for a short interval of time;
next, solving the resulting equation analytically as will
be shown, and then obtaining new values for 8 and w,
which lead to a new solution, etc. The solution of the
differential equation for the nth iteration is

Q,(t,) =exp(8,a1)[Q,(t,.,) cos(w,At)
+ M1, - B,Q: (¢, )] sin(w, A1) ,

and

where

At=t,~
and

wi= wﬁn -8,

The accuracy of this numerical method for solving the
differential equation was checked by decreasing the time
interval by a factor of five. The corresponding change
in @(2,) after sixty iterations was less than 0.02%. The
current is similarly given by the expression:

Q,(t,) = exp(8,at){cos(w,at)Q, (t,.,)
- Ban(tn-l)] - w"Ql(t,,-l) sin(w,,At)} + ﬁ"Ql (t,,) .

Once the current, ,, is obtained, the toroidal com-
ponent of magnetlc field can be computed from the for-
mula: B, =u,Q,/277, and the contribution of this field
component to the magnetic pressure at the plasma sur-
face is given by the magnetohydrodynamic equation
P, =B/2u,.

B. The pressure due to the | and C coils

The poloidal flux condition for the I coil, the C
coil, and the plasma are, respectively:
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‘i’1= - L,C:)', -Q/C;,
‘i’c= - LcQ_c" Qc/ Ce»
$=0.

The poloidal flux linking each of these conductors may
be conceptually decomposed into three contributions,
namely, those originating from the toroidal currents in
these conductors. This decomposition is simply an ap-
plication of the principle of superposition for magnetic-
fields. Each of these flux contributions may be further
decomposed by imagining the conducting surface as
toroidally segmented. Because # - B=0 for a perfectly
conducting surface (i.e., the magnetic field is tangential
to the surface), each surface segment of a given con-
ductor is linked by the same flux:

i‘: nimyp nytnging
1P -

b, = <I>“+ Z (I>,,+ Z &y, i=1,...,m

i=1 F=ny+1 Jenynpel

ny nytng ny4ng+n3

=2l 2L 8t D off

i=1 I+l j=nimao+l
i=m+1,...,n+n,

n n{+ng nytgtng
®p= Z‘: off+ D, P4 oPP

P= 15 15 1y

=1 j-nld Jonyingl

i=ny+ny+ 1, ..., 0y + R+ 7

where the first and second superscripts indicate the con-
ductor linked by the flux and the conductor which is the
source of the flux, respectively, and where the first
and second subscripts indicate particular surface seg-
ments of these two conductors, respectively. There
are n,, I-coil segments, n,,C~coil segments, and n,,
plasma surface segments. The motivation for treating
the conducting surfaces as segmented, is that the to-
roidal current density in these conductors is thereby
rendered accessible.” The inductance, L, of a circuit
is defined in terms of the flux, &,;, linking that circuit
and the current, J;, which is the source of the flux as
follows:

1= Ligds .

The foregoing flux conditions provide a set of differen-
tial equations from which the currents in the surface
segments may be computed. Those currents divided by
the length of the surface segment give the average sur-
face current density in the segment.

The differential equations given by the flux conditions
are the following, in matrix notation:

-E'= d%[L”J’ +L°3°+ /737,
C_i CI yI CC yC CP P
- B¢ = L0+ LO°J° + LOFJP]
0= d_dt [LPIJI+LPCJC+LPPJP] ,
where E’ and E are column matrices having », identical

elements L,Q, +Q;/C, and n, identical elements LoQ,
+Qc/Cc, respectively. The elements of the column
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matrices, J’, J° or J¥ are the toroidal currents in the
ny, ny, Or n; surface segments of the I coil, the C coil,
or the plasma surface, respectively. The nine induc-
tance matrices, L4?, are labeled by the conductors be-
ing coupled, and their dimensionalities are determined
by the number of surface segments treated in each con-
ductor,

It is convenient to further combine these matrices as
follows:

EEE EI ’ JEE JI , LEEE LIILIC ’
EC JC LCILCC

LIP

LEPE ’ LPEE[LPI, LPC]
LCP .

where the superscript E refers to the external conduc-

tors and currents, i.e., external to the plasma. With
this notation, the matrix equations become

~-Ef= %[L”JE + LEPJP)

0= d%[LPEJE +LPPIF]

The second of these equations may be integrated, and
we will treat the case where the integration constant
matrix vanishes, This case corresponds to the physical
situation where no poloidal flux links the plasma. For
this case one may solve for the plasma current matrix,
if LP? has an inverse

JP — (LPP)-ILPEJE .

Using this expression in the first matrix equation, one
gets

- EE = _dc.ii[(LEE - LEP(LPP)-ILPE)JE]E

| &

(KJ%) ,

Iy

t

where K is defined through this equation. This equation
may now be integrated and solved for J® when K has an
inverse

JE=-K"fEEdt ,

where [ Ef gt is a column matrix having L,Q, + C;'f @, dt
for its first n, elements and L Q¢+ Cilf Q. dt for its next
n, elements. Next consider the equations relating
charge on the capacitors and current in the circuits:

"1 ny+ny
N E N — E
Q=2 JF, Q= 2 IF .
i=1 i=ny+l

One may write
ny ny
Q== Z Z (K1)¢J(C;1er dt"’Lth)
i=1 j=1

ny Yll"ﬂz

- Z Z (K“)u(C'c‘ch dt*‘Lch)

151 i=nyel

nytnp  ny

Qo= 2, Z(K“),,(c;l [ Quat+ L,Q,)

i+l §=1

lll'"lz ﬂl"ﬂa

—‘2;1 ,Zl (K“)”(c;;ch dt+Lch)
=ny+1 jeny
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or in matrix form
(1+ML)Q+MC™! det:O ,

where
Q- Qr , L= L;0 , C= C,0
c OLo 0C,

ny ny ny o onyeny

2w, >

i=1 j=1 i=1 j=npsl
M= nyn, Ny

Z Z(K-I)U

1Tl 751

and

(K—l)g j

Nyt nytng

2. 2 &Yy,

§=ng+l =n+

One may write this as

Q+w§det=0 ,

where
wi=Q@1+ML)'MC™!
Upon differentiating, one gets the equation
s d 1A
Q- [k—t (wﬁ)] (wBr'Q+ wiQ=0
which has the solution
Q1) = exp(Bt) cos(w?)A + sin(wt)B] ,
where
1|d
=3 [d—t (wﬁ)] (Wi, Ww=wi-g

and where A and B are (column) matrices of integration.
This form for the solution involves the condition that g
commute with wﬁ. In practice, the commutator was
found to be of the order of 0.01 times the product of the
matrices. The sinusoidal and exponential functions of
matrices are to be understood in the sense of matrix
power series. In terms of the matrices Q(f) and Q(f,)
evaluated at ¢=1;, the charge and current matrices Q)
and Q(#) at any time f are given by

Q(¢) = exp[ B(t - £5)]{cos[ w(t - £,)1Q(t,)
+w lsin[w(t - 1) Q) - BQ() 1}

Q) = expl Bt - t,)] {cos[ wlt - t,)] [Q(t,) - BR(E,)]
- wsinfw(t - ) Q(,)} + ARLE) .

The solution of the matrix equation in this form is es-
pecially adapted to computer computations in which Q(t)
and Q(t) are given in terms of their values in a previous
iteration.
Next, use the equation
JE=K" f E®dt .

In component form

ny
Ji= Z (K-l)tj<C;1th di+ LIQI)
=1

ny+ng
> (K“),,(C;} f cht+Lch)

F=nq+l
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From the equation Q+ w3/ Qd¢=0, one can see that

Jarat| | @Ditér+ @b

det= =— ’

JQeat| | (@DEdr+ @Piede
so that one may write the following expression for J f
n
TE= 3 0, - AR - G Db

ny+ny
+ 2 (K, (Lo - CH@IEIe - CFH @S] -
f=n1+l
The plasma currents J§ are obtained from the matrix
equation

JP = (LPP)-ILPEJE .

Once the currents J% are obtained, the contribution to
the magnetic pressure of the poloidal component of mag-~
netic field, B,, is computed as follows: The boundary
condition®

ax(B,-B.)=px

for the change of tangential component of magnetic field
across a surface current is used. For the perfect con-
ductor, B_=0 and

|7 xB,| =B, .

The average surface current density || at the position
of the jth surface segment is J}/Al,, where Al is the
length of plasma boundary which is alloted to the jth seg-
ment. Using these relationships, the contribution to

the magnetic pressure at the jth segment from this
source is given by

(B’?/ZIJ‘O)] =3 Jf)zﬂo/(Alj)z .

We make use of the reflection symmetry in the mid-
plane to reduce the dimensions of the matrices to one-
half their original sizes. The self-inductance L;; of a
single turn of thin conducting tape of mean radius R,
and width #, is given approximately by Grover.® For
R, > r;, the orientation of the strip is irrelevant. The
mutual inductance L;; between two concentric circular
filaments is well known.® Expressions for these in-
ductances are shown here in mks units

Ly; = RyuIn(8R; /7)) - 3],
Ly;=(uoRY2RY?/R) (2 - kDK (k) - 2E(R)] ,
K=4R,R[(R, + R+ (2, -2, T,

where z; - z; is the axial separation of the concentric
loops and where K and E are complete elliptic integrals
of the first and second kind, respectively.

1. THE SNOWPLOW MODEL

In the snowplow model of the plasma compression,
the magnetic pressure on the surface of the plasma im-
plodes the plasma surface inward, sweeping in the plas-
ma as it moves. To calculate this movement, the po-
loidal cross section of the plasma surface is considered
to be composed of several segments which are identified

1815 Phys. Fluids, Vol. 19, No. 11, November 1976

with the segments used in the calculations of the I and

IC coil currents. Under the influence of the magnetic
pressure, which is computed as described in the previ-
ous sections, each segment is assumed to be accelerated
in a direction perpendicular to a line reaching between
midpoints of the adjacent segments. The equation of
motion is F=d(mv)/dt, where F is a constant force (dur-
ing a short time interval), m is the mass of the moving
portion of the plasma, and v is its velocity. This pro-
cedure is dictated by the fact that the force is not given
a priori but rather is dependent upon the movement.

The method converges as evidenced by the fact that
shorter time increments make negligible difference to
the results obtained in the cases tried (see Sec. VI).

Upon integrating, one gets: F(t— t,) = Mv — mqv,,
where m,, vy, and f, refer to the beginning of the time
interval. The plasma mass is being swept up according
to the relationship: dm/dt=pAv, where p is the (uni-
form) uncompressed plasma density and A, the surface
area in this section of plasma surface (4, = Al,2m7,,
where 7, is the average radius of the jth segment). Sub-
stituting v from this equation into the previous equation,
one gets (m/pA)(dm/dt) = mgvo+ F(t=t;). Upon integrat-
ing, one obtains m = my[1+ 20Av,(t - t,)/mg+ FpA(t - to)?/
m?]¥2. By using this expression for = in the equation
v=x=[mgvy+ F(t - t,)]/m, one arrives at the expression,
x—~ %= (m—mg)/pA. Of course, the force is not ¢on-
stant during the compression because the inductance
matrices depend on plasma position and because the
capacitors are discharging. Consequently, after a short
interval of time, during which the plasma moves a dis-
tance (x - x,), a new force and area are computed, again
giving rise to a plasma surface movement, etc. After
each movement of the plasma, the midpoints of the sur-
face segments are slightly moved along the surface in
order to maintain segments of equal length. The plas-
ma mass associated with each segment was not adjusted
after this movement. The reason for shifting the sur-
face segments is that the segments in a convex region
of the surface tend to cross over each other during the
compression causing computational difficulties. The ef-
fect of shifting the surface segments in this way is a
slight migration of mass away from highly convex re-
gions of the plasma surface and toward slightly convex
or concave regions. The mass, velocity, and position
of the n + 1st iteration are related to the mass, velocity,
and position of the nth iteration as

M. =m,[1+2pA,0,8t,/m, + F,pA, (AL, /miV?
Upa1= (m,,v,, + FnAtn)/mn#l ’
Xpat = Xp + (mnol - m,,)/pA,, .

The work done by the magnetic driving force after »n
increments of time is taken to be 3., (m,v; - m;_1v;_y)
summed over all the sections of the plasma. This work
plus the initial internal plasma energy is interpreted to
be the internal plasma energy, E,, after » increments
of time. The internal energy, E, of an ideal gas in
equilibrium is related to its pressure and volume
through the equation PV=(2/3)E. Consequently, a pres-
sure P,=(2/3)E,/V, is computed after each increment of
time in the computer sequence, and this simulated gas
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pressure is compared with the average magnetic pres-
sure P(mag) on the surface of the plasma. When P,(gas)
> P(mag), the snowplow portion of the computer sequence
is stopped and an adiabatic compression stage is initi-
ated as the currents continue to increase until crowbar
time is reached.

The snowplow sequence just described involves some
rather severe approximations. First, the collisions of
the plasma surface with the particles of the interior
plasma are considered to be completely inelastic,
whereas the whole range between elastic and inelastic
collisions is to be expected. This assumption for the
snowplow model implies that the interior plasma pres-
sure remains constant. Second, the velocity compo-
nents of the surface segments which are tangent to the
plasma surface are ignored (or, more precisely, the
total velocity of each segment is redirected at each iter-
ation to remain perpendicular to the surface). Third,
the segment lengths are adjusted at each iteration, al-
though their masses are not.

The neglect of tangential velocity and the adjustment
of segment length probably result in errors smaller
than those introduced by the snowplow model itself,
particularly since the snowplow sequence ends rather
early in the compression (see contour 2 of Fig. 5) when
most of the plasma surface segments are still being ac-
celerated approximately in the direction of their initial
accelerations. Although the mass which is continually
added to the moving shell causes no change in the tan-
gential component of momentum, it does decrease the
tangential velocity, thus further mitigating the effect of
neglecting the tangential velocity.

In view of the adiabatic stage of the compression which
follows the snowplow stage, the only end results re-
quired from the snowplow are: (a) the total energy of
the plasma, (b) the coil currents, and (c) the plasma
contour, Furthermore, since the plasma contour at the
snowplow end is significant only as it affects the coil
currents which, in turn, are largely governed by the
self-inductance of the circuits, items (b) and {(c) are of
secondary importance. Thus, the approximations of
the snowplow sequence are serious only to the extent that
they affect the calculation of the total work done on the
plasma by the magnetic field up to crowbar time. These
approximations limit the quantitative accuracy of the
final equilibrium position, but probably do not affect the
qualitative result that a plasma equilibrium exists for
the conditions of the compression which this computer
sequence simulates. This conclusion is supported by
the fact that the equilibrium position can be altered in
a controlled and predictable way by changing some of
the parameters of the compression, e.g., the initial
voltages on the capacitors.

1V. ADIABATIC COMPRESSION

During the adiabatic compression stage of the com-
puter sequence, the internal gas pressure (assumed uni-
form) is subtracted from the computed magnetic pres-
sure for each boundary segment and the movement of
that boundary segment is taken to be proportional to the
pressure difference. The physically complicated pro-
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cess of the imploding plasma colliding with itself at the
center of the vessel is ignored and instead, the previ-
ously ordered particle velocities are assumed to be-
come immediately randomized by collisions and a ther-
modynamic equilibrium state approached. A moreelab-
orate and sophisticated calculation incorporating the com-
plexities of magnethydrodynamic theory isnot inthe spirit
of this physically oriented phenomenological calculation.
Consequently, the simple proportionality relationship Ax;
= a,[ P,(mag) - P(gas)] seems an appropriate model to
represent the gradual approach to a constant pressure
surface, which constitutes equilibrium. Note that a;
may be chosen to be different for each plasma section.
In a refinement of this adiabatic approach to equilibri-
um, the magnetic pressure acting on each section of the
plasma is compared with P(gas). If the approach toward
P(gas) for that iteration was an overshoot for a given
plasma section, then «; for that section was diminished
(usually by 0. 5) for the next iteration. If that approach
was an undershoot, then «; was increased (usually by a
factor of 1,1). This refinement was an attempt to take
into account the differing slopes in the effective potential
well for different parts of the plasma surface.

The gas pressure is changed after each movement in

~such a way as to keep PV?”=const as for the adiabatic

compression of an ideal gas. This adiabatic compres-
sion portion of the computer sequence continues until
the current in either the 6 coil, the I coil, or the C coil
begins to decrease. At that time, the “crowbar” condi-
tion is introduced into the computer sequence.

It should be emphasized that the adiabatic compres-
sion portion of the computer sequence does not model
an actual dynamical process, i.e., no equation of mo-
tion is solved here. What is carried out rather is a
search for an equilibrium state which is consistent with
the plasma. internal energy at the end of the snowplow,
consistent also with the increasing currents in the coils
due to the still-discharging capacitors, and consistent
with the flux conditions on the various conductors. This
adiabatic sequence could be carried out in a single step
if the coil currernts at crowbar time were known. The
process used allows for coarse modeling of the changing
coil inductance due to its coupling with the changing
plasma and thus may give a more valid equilibrium con-
figuration at crowbar time simply because the coil cur-
rents are perhaps determined more accurately than if
some other method were used to estimate them.

V. CROWBAR CONDITION

In the crowbar condition portion of the computer se-
quence, the flux condition for the ¢ coil (changed from
that used during the snowplow compression and the
adiabatic compression stages of the sequence) is

b=~ L,Q, - RQ; .

Note that a circuit resistance has been introduced here.
The differential equation governing the current in the
6 coil becomes, where the notation is that of Sec. II

Q1+3'é1=0 ’

where
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o= (Lot ek &) (r- £ [ 2a) .
2 Jyy 7 21r,"r ch’r

Solving this equation for the @ coil current Ql, one ob-
tains

éx(t) = Q1(to) exp[— g (t- to)] ’

where the integration constant has been evaluated in
terms of the current at ¢£=£,. Once more, the noncon-
stancy of #8' is taken into account by the technique of
short time iterations for each of which a new value of g’
is introduced.

The flux conditions for the I and C coils also change in
the crowbar portion of the computer sequence. They
become

b=~ L@ -RiQr

‘i’c == Lcéc- R; Qc ’

where R; and R, are the resistances of the crowbarred
I and C coil circuits respectively. Making use of

"
él = ZJf

i=1

nyng
Ay = B
Qc_ Z J(
f=’ll"1

and the notation of Sec. II one may write the flux condi-
tion equations in matrix form

LJE+RJB+d1t(KJE)=o,

where the matrices L and R are both block diagonal hav-
ing L, and R,, respectively, as all the elements of the
first n, Xn, block and L_and R,, respectively, as all the
elements of the next n,Xn, block. Rearranging this
equation, one gets

JE 4 (L+K){R+K)IE=0,
which has the solution
JE(#) = exp[ - (L+K) 'R+ K)( - t,)]3% (¢,)

where the matrix exponential is to be understood in
terms of a power series expression. The plasma cur-
rents, J¥, are obtained in the usual way from

JP - (LPP)-ILPEJE' .

After the currents J* and Jp are found in this way,
the magnetic pressure on the plasma surface is com-

and puted in the same way as for the adiabatic compression
TABLE 1. Parameters for the computer sequence illustration.
Mutual
inductance Resistance
Initial Voltage at Current at Self- with plasma at External lead after
voltage crowbar time crowbar time inductance crowbar time inductance crowbarring Capacitance Energy

Coil (V) ) (A) (nH) (nH) (nH) Q) (uF) @
[ 50000 10450 —1.01x10° 33 1.6 3.3 4.4x107 16.7 20 900
I 30000 -4400 +9.47x 10 330 30.0 3.58x 107 1.858 836
C -40000 11000 —1.63x 10° 230 30.0 1.9x1078 3.716 3000
Major radius of torus 0.25m Total energy transfer to plasma 15004
Minor radius of vacuum chamber 0.095m by crowbar time
Half-height of plasma at crowbar time 0.027 m Preionization temperature 1000 °K (0.09 eV)

. 3 Equivalent temperature of plasma
Initial volume of plasma (volume 0.03 m at crowbar time (nkT=2E) 3.19x108 °K (275 eV)

of vacuum chamber)

R R 19

Volume of plasma at crowbar 0.0036 m? Total number of particles in plasma 3.0x10

time Mass density for hydrogen initially  1.67x107® kg/m®
Compression ratio (initial plasma 8.3 Mass density at crowbar time for 1.39% 1075 kg/m?®

volume/plasma volume hydrogen

@crowbar time) Particle density initially 102/ m?
Aspect ratio (major radius of torus/ 9.3

half-height of plasma
@crowbar time)

Filling gas pressure

Gas pressure after preionization
(to 1000 °K)

Gas pressure at crowbar time

Magnetic field strength on plasma 0.83 Tesla
surface at crowbar time
Total energy of capacitor banks 24710 J

4.14 nt/m? (0.031 Torr)
13.81 nt/m? (0.104 Torr)

2.80%10° nt/m? (2109 Torr)

Particle density at crowbar time 8.3x10%/m?

Time increment before crowbarring 5 nsec
Time increment after crowbarring 1.0 usec
Time at snowplow end 0.3 usec
Time at crowbarring of circuits 1.05 usec
Iteration number at snowplow end 68
Iteration number at crowbar time 210
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FIG. 5. The plasma surface position in the poloidal plane of a

topolotron compression. Positions shown are for (1) 0.01,

(2) 0.32, (3) 0.76, (4) 1.05 usec after the compression was
initiated, and (5) the equilibrium position of the plasma. Con-
tour (2) is near the end of the snowplow phase and contour (4)
is near the crowbar time.

stage of the computer sequence. Moreover, the move-
ment of the plasma toward a constant pressure surface
is also carried out by the same procedure as during the
adiabatic compression.

VI. RESULTS OF THE APPLICATION OF THE
COMPUTER SEQUENCE TO THE TOPOLOTRON

The computer sequence discussed here was used as
an aid in the selection of coil and energy bank parame-
ters for a topolotron. That computer sequence repre-
sents a practical way of taking into account the intimate
coupling between the conducting plasma under the influ-
ence of the electromagnetic forces present. Several
sets of parameters were used in successive runs of the
computer sequence. Such a parameter set which gives
promise for a viable physical apparatus is listed in Ta-
ble I. The results of the computer-simulated compres-
sion are shown in graphical form as Figs. 5-8. In Fig.
5, the plasma surface position in the poloidal plane is
shown for successive stages of the compression. In
Fig. 6, the position of the I and C coils and the plasma
surface are shown. Also drawn are several constant
magnetic flux function (p) lines. The difference in ¢ be-

S
T

Z{METERS)

)

(Il

R (METERS)
FIG. 6. A computer-drawn graph of the poloidal magnetic
field lines in the neighborhood of a compressed high beta plas-
ma. The positions of the I and C coils and plasma surface are
shown for an equilibrium configuration of the plasma.

OO
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. FIG. 7. A graph showing the energy in (E,) the capacitors,

(E,,) the magnetic field, -(E,) the plasma, (Eg) dissipated in the
resistance and (E) the total energy, as a function of time dur-
ing the simulated plasma compression. Note the change in the
time scale after crowbarring indicated by the dotted line.

tween pairs of adjacent lines is a constant in a given
plot so that the graph is the usual magnetic field line
plot for the poloidal component of magnetic field. The
graph shown is the equilibrium configuration. The fol-
lowing features are evident from the plots and from the
data of Table I. Except for the first few iterations of
the computer sequence, the discrete surface segment
approximation used gives a good approximation to a
continuous conductor both for the plasma surface and
for the external coils. This fact is evident from the
lack of significant penetration of the magnetic field
lines (constant 8 lines) into the conductor and from the
smoothness of the y lines even near the conducting
surfaces. The shape of the plasma surface does not
change drastically during the snowplow portion of the
compression. ! The shapes of the poloidal cross sec-
tion of the 6, I, and C coils do not seem to affect this

result. ThelI and C coils do affect the equilibrium shape
AXIALLY SYMMETRIC PERTURBATION M=2
.IOr —_— - ,,,}

750~ 1

g _

2 600~ g ‘

g = U)

> ; N |

2 450 ™ | == (

w |

z i I

oo i

2 300~ |

[ H -19| sttt o S————

z i 25 30

o | R (METERS)

Q |5ot~

PERCENT OF MAXIMUM PERTURBATION

FIG. 8. A graph showing the work done by the net force (ex-
cluding the perturbing force) acting on the plasma surface dur-
ing an axially symmetric perturbation. The work is inter-
preted as a potential energy and is plotted to show the mini~
mum at equilibrium. The M =2 perturbation is shown together
with its potential well: The abscissa shows percent of the
maximum perturbation.
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of the plasma in a significant way; it is the influence of
these coils that produces the limit cycle (asymptotic)
form of the magnetic field configuration on the plasma
surface. The end of the snowplow portion of the se-
quence occurred at 0. 3 usec after the capacitor dis-
charge began, which is 0. 07 of a period. This time is
is that for which the work done on the plasma (compres-
sion heating energy), when randomized, would give rise
to an (ideal) internal gas pressure equal to the average
magnetic pressure acting on the plasma surface. The
magnetic pressure on the surface of the plasma is not
uniform at the end of the snowplow sequence, of course,
since the plasma is not in equilibrium then. Equilibri-~
um is approached during the adiabatic compression se-
quence, however (in this computer model), The cir-
cuits are simultaneously crowbarred at 1. 05 usec after
the capacitor discharge was initiated.

The volume of the plasma decreased by a factor of
0. 19 during the snowplow portion of the computer se-
quence. A further decrease in volume occurs during
the adiabatic compression phase, making the final vol-
ume a factor of one tenth of the initial volume. This
decrease comes almost entirely from the decrease in
the cross-sectional area of the toroidal plasma; the
major radius remains essentially unchanged during the
compression. The final aspect ratio (i.e., at crow-
barring) is 9. 3, based on the definition: R=major ra-
dius/half-height of plasma. The limit cycle is clearly
visible in the graph (Fig. 6) as the position of minimum
radius (one limit cycle in the half-plane).

The graphs of Figs. § and 6 show the existence, by
construction, of a simulated plasma equilibrium for the
given coil geometry and the parameters listed in Table
I. The magnetic field on the plasma surface has limit
cycles, and therefore possesses the asymptotic mag-
netic field configuration which has “structural stability”
in the topological language discussed in the introduction.
If a perturbing force displaces the plasma in such a
way that its perfect conductor character is retained and
such that the perturbation is axially symmetric, then
the computer sequence shows that the same equilibrium
position will be regained by the plasma when the per-
turbing force is removed. This return occurs under
steady state conditions where the circuits have been
crowbarred and the decay of the currents is much slow-
er than the perturbation. The restriction to axially
symmetric perturbations is purely a computational re-
striction and no information regarding asymmetric per-
turbations may be inferred.

The energy involved in the plasma compression can
be easily calculated using the parameters of the com-
puter sequence. This energy calculation has provided
substantiation of energy conservation during the three
stages of the computer sequence, and it has proved to
be a convenient debugging tool. Figure 7 shows the en-
ergies in the capacitors, the magnetic field, the plas-
ma, and the energy dissipated in the resistance after
crowbarring, as well as the total of these energies for
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the example discussed above. The work done by the -net
force (excluding any perturbing force) acting on the plas-
ma surface can also be readily calculated. This work,
when interpreted as potential energy is a minimum for
the equilibrium configuration of the plasma; that is,

the plasma at equilibrium resides in a potential energy
well, at least for perturbations which are axially sym-
metric. The potential well is dependent upon the pres-
ence of the external I, C, and 6 coils, and it is a mani-
festation, in part, of the so-called “wall stabilization.”
Figure 8 shows this potential energy well for the per-
turbation sketched on the graph.

The foregoing discussion has been directed toward
the application of the computer sequence to the topolo-
tron. It has been pointed out above, however, that an
application of the sequence may be made to any axially
symmetric toroidal device with orthogonal conductors
in the sharp boundary approximation. Within the limita-
tions caused by its simplicity, this sequence provides
confidence that a conjectured plasma equilibrium exists
as the end product of an actual magnetic compression.
It also reveals design parameters of an apparatus and
gives insight into the range of variation which should be
provided in those parameters to insure that the device
can be adjusted or tuned to compensate for approxima-
tions in the computer model.
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