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Analytical methods are presented for transverse mode analysis of a laser resonator having spherical mirrors

with a Gaussian reflectivity profile. The modes of this type of resonator have a form similar to that of the con-

ventional Gaussian modes, but it is necessary to define an additional beam parameter to meet the self-

consistency requirement for resonator modes. Stability of both the conventional complex beam parameter

and the additional parameter is discussed. It is predicted mathematically that small perturbations in the new

beam parameter will cause the intensity profile of the higher-order modes to evolve into that of the

fundamental mode. Mode losses and discrimination are also discussed. The results may be useful in the

design of regenerative laser amplifiers.

1. Introduction

In the design of high-gain laser amplifiers, it is im-
portant to obtain oscillation of only the fundamental
transverse mode of propagation. The presence of
higher-order modes degrades the beam quality, since
the intensity of such modes varies rapidly in any cross-
sectional plane of the beam. Also, higher-order beam
modes are difficult to focus, since much of the mode
energy propagates off the resonator axis. For most
applications, including laser fusion and the study of
laser-plasma interactions, one generally desires a
nearly uniform beam that may be focused onto a small
target.

Discrimination against higher-order modes is espe-
cially important in regenerative amplifiers, since the
beam is passed back and forth along exactly the same
path. Therefore, perturbations in the beam due to
small defects in the optical system tend to grow with
each round trip of the beam through the system.
Hence the higher-order modes resulting from these
perturbations become more manifest in the beam.

In recent years, there has been much interest in
developing laser resonators with high diffraction or
transmission losses at the resonator mirrors. Such
resonators can provide the required mode discrimina-
tion, since the losses of the higher-order modes are
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much greater than the losses of the fundamental mode.
Of particular interest are optical resonators with mir-
rors having a Gaussian reflectivity profile (Gaussian
mirrors), since such resonators have a high-quality
fundamental mode.",2

Resonators employing Gaussian mirrors were treat-
ed by Vakhimov3 and Zucker4 by solving the resonator
integral equation for the fields at the resonator mir-
rors. Arnaud5,6 formulated the resonator problem us-
ing the concept of the complex point eikonal. Casper-
son and Lunman' and Yariv and Yeh2 derived the
ABCD matrix for Gaussian apertures or mirrors and
treated the problem of optical resonators employing
such mirrors with the matrix techniques that describe
the propagation of Gaussian beams. Although this
method yields the correct fundamental mode, the
higher-order modes as stated by Casperson and Lun-
man fail to satisfy the round-trip condition for resona-
tor modes. These modes do, however, form a complete
orthogonal set of confined solutions of the paraxial
wave equation. Ganiel and Hardy7 expanded the ac-
tual resonator modes in a series of the modes drived by
Casperson and Lunman and solved for the coefficients
of the expansion. While this approach is mathemati-
cally valid, it is difficult to apply it to obtain reasonably
accurate solutions with the precision available on most
computers.

In this paper, we preswent another analytical meth-
od for obtaining the transverse electromagnetic
(TEM) modes of an optical resonator with Gaussian
apertures or mirrors. This method involves defining a
complex beam parameter in addition to the beam spot
size and wave front radius of curvature to satisfy the
round-trip condition as well as the paraxial wave equa-
tion. Also, we analyze stability and losses of these
modes at the resonator mirrors. The methods pre-
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sented in each section are illustrated with the example
of a simple symmetrical resonator.

II. Resonator Modes

Assuming a homogeneous medium, the paraxial
wave equation is

Vt - 2ik d= 0 2irn
X= 

may use the separation of variable technique to obtain

d -2t df + 2nf = 0,dt2 dt

-- _2-+ 2mg = 0,
dr' dT

(1)

where V2 is the transverse Laplacian operator. To
solve Eq. (1) for the confined modes of propagation, we
start with the trial solution

u(xyz) = f[ jg9 [ ]

X exp{1 [P(Z) + k(X2 + y2) + ] (2)

(9)

(10)

(11)
do_2 (n+m
dz k kw 2 /

The solutions of Eqs. (9)-(11) must lead to confined
beam solutions of Eq. (1). Therefore, n and m must
both be positive integers, and we identify the solutions
of Eqs. (9) and (10) as the Hermite polynomials.
Therefore, we have

f(-) = Hn () and () = H_
where

P(z) =-i ln 1 +-,

q(z) = q0 + z.

If we define the real functions R(z) and W(z) so that
1 1 2i

q(z) R(z) - kW2(z) (5)

R(z) and W(z) may be identified as the wave front
radius of curvature and beam spot size, respectively, of
the fundamental mode." 8 Equation (2) is similar to
the trial solution used in Marcuse's alternate Gaussian
beam derivation.9 However, it is assumed in this deri-
vation that the parameter w(z) is equal to the beam
spot size W(z). While Marcuse's trial solution leads to
confined modes of propagation, these solutions are not
sufficiently general to satisfy the round-trip condition
for resonators with Gaussian apertures or mirrors.
Therefore, we assume at this point that the function
w(z) remains to be determined. Henceforth, the func-
tion q(z) and w(z) will be referred to as the primary and
secondary beam parameters, respectively.

Substituting the trial solution (2) into the wave
equation (1), we have

/ fdw ~ dw w'_ dok0d+ 2ikx q) f + g + 2iky g 2kW2
f dz~~ dz q1 g dZ

(6)

where primes and dots denote differentiation with re-
spect to the arguments x/w and y/w, respectively. If
we now require

dw w 2i dw2 2w2 4i--- or -- =- (7)dz q zqo+z k

and make the change of variables t = (x)/w and r =
(y)/w, Eq. (6) becomes

1 d2 f df +-d g dg 2 d=T-2tT 2kw 0. ~~~~~~~~~(8)ft 2 dt gd r d 

In Eq. (8), the first two terms depend only on t, the
next two terms depend only on T, and the last term on
the left-hand side depends only on z. Therefore, we

(12)

where Hn and Hm are Hermite polynomials.
3) Let us now solve Eq. (7) to determine the parameter

w2. Multiplying this equation by the integrating fac-
t) tor (qo + z)- 2 , we have

(qo + Z)-2 dw - 2w2(qo + z)-3 = 4 (qo + z) 2

or

d [(q, + Z)-2W2] = 4 (qo + Z)-2.
dz k

Integrating this equation and solving for w2 give us

w2(Z) = (qo + z) °+ (°+ i ) ,
[q0 'q2 kq 0 J

(13)

where wo is the secondary beam parameter at z = 0. At
this point, it should be indicated that Eqs. (4) and (5)
may be used to show that the spot size W(z) is also a
solution of Eq. (7). Therefore, the conventional
Gaussian modes form a subset of the more general
Gaussian modes derived in this section.

It remains now to determine the function (z).
From Eq. (11), we have

d)(z) = -2 I n2m dz' = -(n + m)f7(z), (14)

where

(Z) = 2q2 J dz'0 Jo (qo + z') [kw~q0 + (kw2 + 4iqo)z'] (15)

and 0 was arbitrarily chosen to be zero at z = 0. This
integral may be evaluated by the method of partial
fractions. The result is

i ~~kwo+4i)z
7(Z) = i z) (16)2 Lqokw 2 + (kW2 + 4iqo)z 

Hence we have determined the higher-order modes of a
beam propagating in the positive z direction, assuming
the primary and secondary beam parameters are both
known at z 0. Gathering our results, we have
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Un,m(X,YZ) = Hn (' s)Hm (_ )

Xexp {i [P(Z) + 2(q + z) (n + m)(z) (17)

where w(z) and (z) are given in Eqs. (13) and (16),
respectively.

We may also solve Eq. (1) in cylindrical coordinates
to obtain the Laguerre-Gaussian modes. These
modes are given by

unm(r,O,z) = (dewr Lm (r 2) sin(mO)

Xexp {I P(Z + 2+ z)_ (2n + qz
{- I 2(q + ) ]}

where the Lm are the associated Laguerre polynomi
and the functions P(z), w(z), and q(z) are the same a
Eq. (17).

Let us now consider a high-order Gaussian be
incident on a simple optical element. As indicate
Ref. 8, the optical element transforms the prim
beam parameter according to

Aqin + B
=ut Cqi + D

where A, B, C, and D are the elements of the ray ma
for that optical element. Such matrices for a
simple optical elements are shown in Fig. 1. Cas]
son and Lunman' show that the ray (or ABCD) ma
for a Gaussian aperture is given by

{A B -2i 
(AC D kW2m 

where Wm is the Gaussian reiiectivity spot size of
mirror. Let us establish a transformation law sin
to Eq. (19) for the secondary beam parameter.

From Eq. (13), we see that the secondary beam
rameter, after propagating a distance L in the unif
medium, is given by

Wout = ( qL )2 + 4iL (in +L)

where qin and win are the initial beam parameters.
is assumed here that the primary parameter qin

been determined. This involves the methods
cussed in Ref. 1.) The other optical elements cor
ered in this paper affect only the primary paramel
within the plane of the element. Therefore, we ex

Wout in

for thin lenses, mirrors, interfaces, and Gaussian a
tures. Note that Eqs. (21) and (22) may both be i
ten as

W2 =wi, + 1s

where

a / qin + L 2 4iL /qin + L\
a"1 -1 and 3- -/i k iqn 

Uniform Medium
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(19) Fig. 1. ABCD matrices for a few simple optical elements.
ian beam is assumed to be incident from the left.

-1

L

:1

0

1

n2

Gauss-

)er- for lengthL in the uniform medium; and a = 1, j3 = 0 for
brix all other simple optical elements. Note that Eq. (23)

may be cast in the same form as the transformation
rule (19) for ql 2 8 by writing

aw?,+/
(20) out -= + 

the where y = 0 and 3 = 1. We, therefore, define for each
ilar optical element in the system an oq3 matrix given by

ta Be ta O
pa- ( 3) (aO 1)
orm where a and ,3 are the parameters used in Eq. (23).

Using the same algebra that leads to the ABCD law for
(21) the primary beam parameter, we may show that the a3

matrix for a sequence of N optical elements is given by

(a 1 = (aN flN (N-1 N-i. (as 01

1\0 0/ 0 1 \0 0/
(24)

sild- where a,, and , are the matrix elements of the individ-
ertq ual optical elements, and the subscript n indicates the
er q order in which the optical elements are encountered by

pect the beam. We will refer to Eq. (24) as the a: law.
(22) Let us now determine the transverse modes of a

per- resonator which may include Gaussian apertures or
per- mirrors. The self-consistency requirement for resona-
vrit tor modes",2 implies that both the primary and second-

ary beam parameter must repeat themselves after each
(23) round trip through the resonator. (If the resonator is

symmetric, the beam parameters must repeat them-
selves after each single pass as well as after each round
trip.) Let q, and w8 be the values of the self-consistent
primary and secondary beam parameters in some cho-
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sen reference plane. Then, since the beam parameter
q must reproduce itself after each round trip, we re-
quire

Aq,+ B 1 C +D/q, 5
Cq= + D q. A + B/q(

where we have used Eq. (19), and A, B, C, and D are the
ray matrix elements for the round trip. Solving Eq.
(25) for l/qm

1 D-A+ i [(A+D2
(26)

qs 2B BK2 1j 

where we have used the relation AD - BC = 1, which
applies to all round-trip ray matrices, and the arbitrary
sign is chosen so that the spot size W is real (i.e., the
imaginary part of 1/q, must be negative). Now let ws
be the self-consistent secondary beam parameter in
the chosen reference plane, and let a and be the
round-trip matrix elements for this parameter as de-
termined from the a law. Then, according to the self-
consistency requirement and Eq. (23), we have

w2 = aw 2 + or w' 1 31-a (27)

At this point, we have determined the self-consistent
beam parameters q and ws in a chosen reference plane.
If we define z = 0 as our chosen reference plane, we may
use Eqs. (17) and (18) to obtain the transverse resona-
tor modes.

Consider now a simple symmetrical resonator con-
sisting of two identical Gaussian mirrors facing each
other along a common optical axis. Since the resona-
tor is symmetrical, we consider only a single pass of the
beam rather than a complete round trip. Casperson
and Lunman1 show that the ray matrix for a single pass
of the beam is given by

1_ 2L 2iL
{A By = Rm, k jW_.

kC D 2 _ 2i
Rm kW,

L)
(28)

where Rm and W are the radius of curvature and
Gaussian reflectivity spot size, respectively, of the mir-
rors, and L is the mirror separation distance. This
matrix is obtained by applying the ABCD law to the
matrices given in Fig. 1 and Eq. (20). Substituting the
matrix elements from Eq. (28) into Eq. (26), we have

qs R, k W2 + 27rN i -[ ) (29)

where we have defined the Fresnel number as

N =kW
27rL

and normalized mirror curvature as p = LIRm. If we
consider Eq. (29) in the uniform mirror limit (i.e., the
limit as N - c), we see that a real beam spot size W,
exists only if

I1-pI= - L <1. (30)
R.

Fresnel Number

Fig. 2. Plots of the normalized beam spot size kW'2/2L vs Fresnel
number N for various values of p = L/Rm.

7i 3

2

z~~~~~~~~~~ Q= 3e=
0

10-1 100
Fresnel Number

Fig. 3. Plots of the normalized wave-front curvature R,/L vs N.

Therefore, in the case of a simple symmetrical resona-
tor with uniform mirrors, a confined beam exists only if
the inequality (30) is satisfied. Siegman10 and Yariv"
give a similar confinement criterion for nonsymmetri-
cal resonators. Resonators satisfying such criterion
are generally referred to as stable resonators. Figures
2 and 3 show plots from Eq. (29) of the secondary beam
parameter for the simple symmetrical resonator con-
sidered in this section. The a matrix for a single pass
of the beam is given by

(a AA = ql + L 2 4M ql L {
0 1J- ~ qj ) q, t_ q 0)] GJ ~ 0

0 1 

(31)
_ ql +L 4iL ql +L\

q1 k 1

0 1 i
assumed to be a uniform mirror immediately followed
by a Gaussian aperture. The parameter q is the pri-
mary beam parameter immediately before propaga-
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tion of the beam across the resonator. This parameter
is related to qs by

(32)q q1 +L or ql=q,-L,

since, according to our choice of reference plane, q is
the primary beam parameter immediately before re-
flection (or immediately after propagation from one
mirror to the other mirror). Substituting elements of
the af3 matrix from Eq. (32) into Eq. (31) gives us

2j [(qL)-1 + ) ]s q + (+ 2)]
or (33)

2L {(qs) {[(qs) ] } -

where we have used Eq. (32), and L~q, is given in Eq.
(29). We will refer to the complex quantity (kw 2)/2L
as the normalized secondary beam parameter. Plots
of the real and imaginary parts of the normalized sec-
ondary beam parameter are shown in Figs. 4 and 5.
From the plots, we see that for resonators with values
of p satisfying the inequality (30), the real part of w8

approaches the beam spot size W8, and the imaginary
part of ws approaches zero as N increases. Hence, in
the uniform mirror limit, w(z) and W(z) are equal in
the same reference plane as well as satisfying the same
first-order differential equation governing propaga-
tion along the resonator axis. Therefore, w(z) must
equal W(z) for stable (i.e., confined mode) optical reso-
nators with uniform mirrors. This is expected since
the conventional Gaussian modes apply in this case.

A1 1 
q + B\ 2 q

Therefore, we may write

1 1 1 1 1A-1 =- i6-1
q F2

IIq

where

Fq = A+ B 

(36)

(37)

(38)

By examining Eq. (37), we see that small deviations in
1/q from self-consistency will grow with each round
trip if Fq < 1 and dampen with each round trip if Fq > 1.

We now consider the stability of the secondary beam
parameter. As with the primary parameter we let 5w

2

be the deviation in w2 from self-consistency in some
chosen reference plane. Then we may write

w2 + AW2 = fa(w2 + 6w2) + , (39)

where Aw 2 is the deviation in w2 from self-consistency
after one round trip, and a and iB are the elements of
the round-trip af3 matrix. Subtracting Eq. (27) from
Eq. (39) gives us

AW2 = a(bW2).

Therefore, we may write

IAw21 = 1allbW21 = 2 I5W21,

(40)

(41)

where

Ill. Mode Stability

In this section, we discuss the stability of the resona-
tor modes derived in the previous sections. These
modes will be stable if, and only if, small deviations in
both the primary and secondary beam parameters for
self-consistency do not grow with each round trip of
the beam.

Consider first the primary beam parameter. Let
6(1/q) be the deviation in 1/q from its self-consistent
value in some chosen reference plane. Then we may
write

--- +6 - (34)
q qs q

where q, and q are the self-consistent and perturbed
beam parameters, respectively. Let A(1/q) be the de-
viation of 1/q from 1/q, after one round trip of the
beam through the resonator. Then we may write

C +D I + a-A
1 +A1 qs q (35)

qs q A+B 1 +6 -
\q, qJ

where A, B, C, and D are the elements of the round-trip
matrix from the chosen reference plane. Using a lin-
ear analysis in which we assume small deviations in 1/q
from self-consistency, Eq. (35) becomes1'2

1
Fw = .

W at
(42)

From Eq. (41), we see that there is instability in w2 if FW
< 1 and stability in w2 if FW > 1.

In deriving Eqs. (41) and (42), we have not used any
approximations that require 3w2 to be small. There-
fore, these equations may be used to analyze unstable
behavior of w2, even if 6w

2 >> w2, provided the primary
parameter q is stable. Let us consider the growth of
the perturbation of w2 for an optical resonator with a
stable primary beam parameter and an unstable sec-
ondary parameter. Since the primary parameter q is
stable, we may use Eq. (41) to calculate the growth of
5w

2 regardless of its size. From Eq. (41) we see that
bw2 grows by a factor of Fw with each round trip of the
beam and that this growth is unbounded. By the
triangle inequality

1W21 > 16w21 - 1w21,

we see that as bw2 grows, so also does w2. Since w2

grows with each pass, the argument x/w occurring in
the Hermite polynomials in Eq. (17) approaches zero
with a large number of beam round trips. Therefore,
after a large number of round trips, the intensity pro-
file of each of the higher-order modes approaches that
of the fundamental mode or zero. Hence this instabil-
ity is desirable if the beam is to have the intensity
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Fig. 4. Plots of the real part of the normalized secondary beam
parameter kw 2/2L vs N. For resonators that have confined beam
modes at large N, these curves approach each other as N increases.

profile and focusing properties of the fundamental
mode.

Let us now calculate the stability of the beam pa-
rameters for the case of the simple symmetrical reso-
nator. As indicated before, we need only consider a
single pass of the beam in a symmetrical resonator
rather than a complete round trip. Substituting the
values of A and B from Eq. (28) into Eq. (38), we have

9 | 2L 2Li L |Eq= R. k W q,

= 1-2p -- N qL ,

0~~~~~~~~~~

0~

0~~~~~~~~~~~~~~~.z

10-1 100 101 102 103
Fresnel Number

Fig. 5. Plots of the imaginary part of the normalized beam parame-
ter vs N. For resonators with confined beam modes at large N, these

curves approach zero as N increases.

i.:co

0a-
E

Lr

(43)

where L/q, is given by Eq. (29). Substituting Lq,
from Eq. (29) into Eq. (43) gives us

Eq = 1 P-2')N _[(1-P 2-N) -1]1 ( 

where the sign was chosen earlier for the beam spot size
to be real. Substituting a from Eq. (31) into Eq. (42)
gives us

1 LL =1--
1 +- q

= |1-P i [(1-P_ i 2 _-1]2I2rN Y ;2-N] (45)

The stability factors Fq and F. are plotted in Figs. 6
and 7 for the values of p chosen in the previous sections.
From these plots, we see that Fq is generally greater
than unity, and F, is generally less than unity. There-
fore, the primary beam parameter q is stable, while the
secondary parameter w is unstable. Hence we may
conclude that perturbations in the secondary beam
parameter will grow and cause the intensity profile of
the higher-order modes to evolve into that of the fun-
damental mode. This is desirable for most applica-
tions including the design of multipass or regenerative
laser amplifiers, where nearly uniform beams are de-
sired.

tL

, ni.~

:3)

0

Xo

10-1 100 101

Fresnel Number
Fig. 6. Plots of the stability factor Fq of the primary beam parame-

ter vs Fresnel number for the selected values of p.

10-1 100 101

Fresnel Number
Fig. 7. Plots of the stability factor Fw of the secondary beam pa-

rameter vs Fresnel number for the selected values of p.
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IV. Mode Losses and Discrimination

As indicated previously, it is important to eliminate
the higher-order modes in high-output regenerative
amplifiers. Such mode discrimination can be ob-
tained with the use of Gaussian mirrors, because with
such mirrors the losses of the higher-order modes are
greater than those of the fundamental mode. In this
section, we derive expressions for the power losses of
the resonator modes due to transmission through the
Gaussian mirrors.

We define the reflection coefficient yn,m of the
TEMnm mode as the ratio of the reflected mode power
to the incident mode power in the plane of the mirror.
For the Hermite-Gaussian modes, this is given by

: J Hn H. (,, exp[-2(x2 _ y2)/Wsfdxdy

In,. (H,, ) H_ (V22 ) 2e [ 2(2 - y2)/W ]d y
JJ Hn( w )H(-) exp[-2(x -Y )/s2dXdy

(46)

where W and W ' are the beam spot sizes immediately
before and after reflection, respectively, w, is the second-
ary beam parameter in the plane of the mirror, and Ro is
the reflectivity at the center of the mirror. Note that W
and W ' are related by

w' 2 w2 + w2 ' (47)

where Wm is the reflectivity spot size of the mirror. If
we wish to work with the Laguerre-Gaussian modes, we
have

y01 ' a R2
JO)

Jo

r3 exp(-2r 2 /W, 2)dr

r3 exp(-2r 2 /Ws2)dr

(51)W4

Therefore, the loss coefficients A 0,0 and A o,1 are given
by

w 2

A 0,O = -Ro W2 '

- R 2 WA', =I R W4 .

(52)

(53)

To evaluate the mode discrimination property of the
resonator, let us define the discrimination parameter
D as

D = 1- '19.
Yo,o

(54)

Thus, if D = 0, we have no mode discrimination; and if
D = 1, we have total discrimination (i.e., all higher-
order modes are lost after a single reflection). (Neither
of these extremes will in fact be realized.) Substitut-
ing Eqs. (50) and (51) into Eq. (54) gives us

D=1--WS
2 (55)

Let us now calculate the mirror loss coefficients A 0,0

and A 0,1 and the mode discrimination parameter D for
the simple symmetrical resonator. For simplicity, we
will assume that the mirror centers are totally reflect-
ing, so that Ro = 1. In this case, we have from Eqs. (52)
and (53)

J jI 2r2)|2 2

= rsm L_ exp(-2r 2/W2rdr
Znm = R0 () 2 2\ 2 

2 /
Jorm L exp(-2r Ws2rdr

(48)

where the Ln,m are the associated Laguerre polynomi-
als.

The loss coefficient Am of a resonator mirror is
defined as the ratio of the power lost from the TEMn,m
mode on reflection to the incident mode power. Since
the incident beam energy must be either reflected or
lost due to transmission, we have

A nm =1 - yn,m' (49)

where Yn,m is given by Eqs. (46) or (48).
To calculate the losses of the fundamental mode and

the mode discrimination property of the resonator, we
must have expressions for the reflection coefficients of
the two lowest-order modes (i.e., the fundamental
TEM0,o mode and the TEM0 ,1 mode). Since the Her-
mite-Gaussian TEM0,0 and TEM0 ,1 modes are equal to
the Laguerre-Gaussian TEM0,o and TEMo,1 modes, we
may use either Eqs. (46) or (48) to calculate the reflec-
tion coefficients yo,o, and 'yoj. From Eq. (48) we have

J exp(-2r 2 /W 2)rdr W 2

20 f 2 s
'yO1o =R 0WI

J exp(-2r2 /W )rdr
(50)

2L

AOO = D =1- =1-t -

/ 2L \

I4kW2)

k2 L {P + 2N + [(1- - 2N) -1 }

= I {[-27rN 1] } N

(56)

(57)

(58)

and from Eq. (46) we have

2L 2L 2L 2L 1
2= + = +

kWs2 k W 2 k W' kWS irN

= Im {[(1 - 27r-N) 1 - (59)

Substituting Eqs. (58) and (59) into Eqs. (56) and (57),
gives us

A = 1 - IImj[(2irN - 2irNp - i)
2 - 4,r2 N211211 -1

A°,° IImj[(2rN - 2rNp - i)2 - 4r2N2]1/2 11 + 1
(60)

A0,= 1-_ (IIm[(27rN - 2rNp - i)2 - 47r2N2]1/2 Il - 1)2 (61
(IIm{[(2,rN - 2rNp - i)2 - 47r2 N2]"/211 + 1)2
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Fig. 8. Plots of the loss coefficients A0 ,0 (solid curves) and A0 ,1
(dashed curves) for the selected values of p.

Plots of these loss coefficients are shown in Fig. 8.
As can be seen from the plots, confocal resonators (p =
1) have the lowest losses, and unstable resonators have
high losses and, therefore, high-mode discrimination.
This may be useful in the design of regenerative laser
amplifiers since such amplifiers require mode dis-
crimination. Also the large beam diameters associat-
ed with unstable resonators tend to fill the cavity and
make much more efficient use of the gain medium than
the narrow beams associated with stable resonators.

V. Conclusions

An analytical method has been developed for calcu-
lating the transverse modes of optical resonators with
Gaussian mirrors. Also, we have considered stability
and losses of these modes at the resonator mirrors.

To meet the self-consistency requirement for all
resonator modes, it was necessary to define a second-
ary beam parameter w .in addition to the conventional
primary parameter q. Each higher-order mode in the
resonator must have the property that the secondary
beam parameter repeat itself after each round trip of
the beam through the resonator as well as the primary
parameter.

When considering the stability of the resonator
modes, it was necessary to consider the stability of
both the primary and secondary beam parameters.
Calculations showed that the primary beam parameter
is generally stable while the secondary parameter is
generally unstable. Therefore, small perturbations in
the secondary beam parameter would cause the inten-
sity profile of each higher-order mode to evolve into
that of the fundamental mode. Hence, this instability
is desirable since a nearly uniform beam is generally
desired.

The methods presented in this paper may be applied
to any periodic optical system consisting of lenses,
spherical mirrors, interfaces, and Gaussian apertures.
By applying these methods to a simply symmetrical
resonator, we were able to gain useful insight into the
design of a regenerative laser amplifier.

Dwight Walsh is currently employed at the Air Force
Weapons Laboratory, Kirtland AFB, NM.
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