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A 8'acklund transformation for the Ernst equation arising in general relativity in con-
nection with several physical problems is derived, using the pseudopotential method of
Wahlquist and Estabrook. A prolongation structure is also constructed, using a method

of writing the equations in terms of differential forms, and an equation in the spirit of
Lax is constructed, somewhat different from that given by Maison. Possible uses of the
8'acklund transformation to generate new solutions are mentioned.

A problem receiving much attention in recent years is that of solving the Ernst equation [(ReE)V'E
= (VE)'] ' for axially symmetric stationary vacuum gravitational fields. ' The existence of an infinite
number of potentials for the equations, ' together with other interesting features, suggests' that the
equation should admit a Backlund transformation (BT). A BT has now been found. The work of Maison
on this problem' provided a valuable clue in the search.

I write the metric in the following form:

ds2 hT(dx1 + Qdx2)2+ S2T 1(dx2)2 ~e2y T 1[(dxs)2 h(dx4)2]

where h. =+I and S, T, Q, and y are functions of x'
and x' only. Physical problems represented by
this metric are axially symmetric stationary
fields' (A. = —1, x' = t, x'= q, x' = p, x'=z), cylindri-
cal waves' (A. = 1, x' =z, x'= q, x' =p, x' = t), or
colliding plane waves' (X=1, x'= p, x'= y, x'=z,
x'= t). S is taken equal either to x' or x'. Coordi-
nates are written so as to appear quasicylindri-
cal. Electromagnetic problems may also be
treated by letting Q= 0 in the metric, but by in-
cluding an electromagnetic potential which oc-
curs in the same place a,s Q in the equations. '

In order to treat several physical situations
with the same equation, I define throughout this
paper k= v A. (i.e., 1 if X= I; i if h=-l), and de-
fine new coordinates x and y as follows: If S=x',
x = —'(x' + kx') and y = —,'(x' —kx4); if S =x', x = —,'(k 'x'
+x') andy=-, '( —k 'x'+x'). Thus, y=x if k=i (A.

= —1). In either case, S=x+y. Define R=k '(x

! —y). I also define a linear Hodge star operator
+ by

wkly =k 6k) +dy = -k dy ~

Then ++=A..
The equation for Q may be satisfied by intro-

ducing a potential y such that *dy= S 'T'dQ. I
define E = T+iy. Then both E-and E satisfy the
Ernst equation, which now takes the form (sub-
scripts represent differentiation)

E„+sS '(E„+E,) = T 'E„E~,
where S=x+y.

I define variables t, u, v, and zo as follows:

t=T E„—S, u=T 'E~ —S

n=T 'E„—S ', w=T 'E, —S '.
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Note that v=t and w=u if X=1; v=u and w=t if
A = —l. Equation (2), for F. and F., together with
the integrability conditions for Eqs. (3), can be
written as four 2-forms which are to vanish for
a solution:

n = -dt h dx + —,
' [tu —tw —S '(t+ w) ] dy h dx, (4a)

p = —du h dy + —,'[tu —v u —S '(u + v) ] dx A dy, (4b)

y = -dv A dx + —,[vw —vu —S '(u+ v) ]dy h dx, (4c)

5= -dwhdy+ 2[vw —tw —S '(t+ w)]dxh dy. (4d)
i

(See discussion on writing differential equations
as differential forms by Harrison and Estabrook'. )

Following Wahlquist and Estabrook, ' we now
attempt to find a pseudopotential q, such that the
1-form

0= -dq+Fdx+ Gdy,

where F and G are functions of x, y, t, u, v, w,
and q, satisfies do'= 0 mod (v, n, P, y, 5). This
condition yields the equations

Fg =Em= Gg= Gv =0

2(FG, —GF, + G„—F,)+[tu —vu —S '(u+v)] G„+[vw —tw —S (t+w)]G —[vw —vu —S '(u+v)]F„
—[tu —tw —S '(t+ w) ]F,= 0. (7)

Motivated by other work, we take F=At+ Bv and G= Cu+Dw, where A, B, C, and D are functions of x,
y, and q. Solution and simplification give

o=-dq+ ,'[t(q+q'r—) —v(q+ g)]dx+-,'[w(q+q'g ') —u(q+ g ')]dy,

where

g = ~ [(ut —y)(ut+x) -']"

(8)

and l is a real constant.
To find the BT, we assume the existence of new

solutions of Eq. (4), t', u', v', and w', which are
functions of x, y, t, u, v, w, and q. %e substi-
tute into Eqs. (4) (with primed dependent vari. —

ables), expand the differential dt', etc. , in terms
of dt, etc. , use the old equations (4) and (8) to
eliminate dt's c5c, etc. , so far as possible, and

equate coefficients to zero. This gives us a set
of differential equations for t', etc. Solution
yields the BT:

t'=-q(q+6 '[(Cq+1)t+S '(1 —&')] (10a}

u'= -(q+ p)-'[q '(gq+1)u+ S 'P '(P' —1)], (lob)

v'= —(gq+1) '[q '(q+ &)v+S '(1 —P')], (10c)

w'= —q(gq+1) [(q+ g)w+S 't '(g' —1-)]. (10d)

Thus, knowledge of an old solution of (2) enables
us to find a new solution, with arbitrary param-
eter l, by means of quadratures. Note that q
must first be found from Eq. (8) (a,nnulled, o'=0).

Maison' demonstrated the existence of an equa-
tion "in the spirit of Lax"" and thus implied the
existence of a pseudopotential. This is easily
seen by writing that equation in the form dg,
=7,$, +7,g„dg, = p, g, + p,,g„where the 7, and p, .

are 1-forms in the variables of the system. If
we put z = g,/g„ then we see immediately that dz
= p,, +( p., —7,)z —7~', so that z serves as a pseu-

(11a)

(11b}

(11c)

v =Be', w =Be',
S=v,

where 8 is related to n by 0+8= n; y=y($); and
a =(d~idy)X.

The pseudopotential equation may also be stud-
ied by an alternative formulation worked out pre-
viously by this author. " Define a potential g by
*dT = S 'T(dg+ Qdy), and define 1-forms g, by
$, = T 'dy, $, =*),=S 'TdQ, 4=S '(dri+Qdy),
g = T 'dT=A *)„ t, =S 'dS, and (, =S 'dR= +(,.
These 1-forms satisfy the following identities:

did= k, h]„d].= (.h((, —(,), d(, = ~, A~„

d$, = $3 A ), —$, A)„d$4= d$, =0.
(12)

The following 2-forms are annulled by virtue of

dopotential. The quadratic form in z shows the
SL(2, fi) group structure discussed by many other
authors. " Maison's paper was also helpful in

identifying variables useful in working out the
pseudopotential equations and their solutions.
Maison's variables A, A, n, o; r, and $ are re-
lated to the variables t, u, v, w, S, A, and y of
this paper by the equations

t=Be ie u=Be ~e
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the field equations (2):

$3 A $, —$, A $4 i $3 A $2
—A. $, A E~,

(5 A $~
—$|A $6, X )s A )i —(2 A $6, (13)

It is easily seen that

tdx=~, +~, +~, +w„
udy =e, +u, —V, —X4,

'UC&C = (d& —(82+ (d3 —
G04~

Sedy —ui Cu2 3+ m4~

(14a)

(i4b)

(14c)

(i4d)

4A4- $.A(., &4A$, -4Ah, .

dq-+ 2t '(C'+ l)(q' I)-~,

where &u, =-,'(g, —$,), &u, =-,'ig„cu, = —,'k(4 —g, ), and

v, = 2ik), . Equations (8) and (10a) become

+a& '(8 —1)(q'+l)~, +2r '(f' —i)(q' —I)&u, + ,'g -'[(g' +1)(q' +I)+4qg](u„

~| + ~2 + 3 + ~& = q(q+ k) —[k'q+ I)(&u, + ~, + &u, + ~,) + —,'(1 —p)($, + k (,)], (i6)

dq ' = ——,'iT' [(t' —v')dx + (u' —ce')dy]. (18)

From the field equations we get an equation for y..

d(y —
z lnT+ 4 lnS) = 2S(tvdx+ uwdy);

the same equation holds for primed variables.
I now attempt to find a "prolongation structure"

as defined by Wahlquist and Estabrook, "by con-
sidering 1-forms for multiple pseudopotentials
q , involving the $;:

c„=—dq„+A '
g, (summed on i). (20)

In the spirit of Eq. (15) I take the A„' to be func-
tions only of pand the q„, also A~'=-A~' and
A„'= -A 4. If we assume the A ' to be linear in
the q~, then

A '=8 ' q~. (2i)

Then the B' = [B„'sj are matrix functions of f.
Solution of the pseudopotential equations that
arise gives B' = & '(&' —1)a, B'=k & '(g'+ 1)a+ b,
B'= f '(p —l)c, and B4=k 'g '(g'+ I) c+dwhere
a, b, c, and d are constant matrices satisfying
the prolongation structure [c,d] = [a, d] = 0, [b, c]
= —A.a, [a, b]= —c, and [b, d]+4[a, c]= b. Use of-
the Jacobi identity shows that we have a complete

since S 'dx = 2(g, +k)6). Equations (10b)-(10d)
yield equations similar to (16). Addition of the
four equations gives an equation for u, '= 2(T' 'dT-'
—S dS) which, with elimination of u~ by means
of Eq. (15), enables us to integrate explicitly for
T'. %e find

T'= kkqS(f' —1)(q+ &) '(I+q&) 'T ',

where h is a real constant. I also write an equa-
tion for y' (from these equations):

Lie algebra:

[c, d] = [a, d] = [e, d] = [c,f]= [a,f ) = [e,f ) = 0,

[a, c]=-e, [d,f]=f, (22)

[a, e ]= —,'c, [c,e ]= --,'Xa,

where f= b+4e. Representations of this algebra
can be obtained by setting f= d = 0 and by taking
a, c, and e proportional to angular momentum
matrices.

Equation (20) (with v„annulled) can be written
as a generalized Lax-type equation dz =Mz, where
z = [q„] and M is the matrix of 1-forms M
= B~'8 $, If M is 2 x2, we have a typical equa-
tion in the spirit of Lax, with M linear in g, u, v,
and xo. This does not appear to be the same as
Maison's, which has these variables appearing
raised to fractional powers.

If we choose the usual flat-space metric in cy-
lindrical coordinates as a beginning solution, we
find a new solution which also turns out to be flat.
If, however, we take the Kasner cosmology as a
starting point, we get a metric which appears to
be a generalization of that found by similar meth-
ods by Belinsky and Zakharov, "which represents
solitonlike motions in cosmology. Details of
some of these calculations will be published else-
where.

The author appreciates very helpful discussions
with Hugo Wahlquist.
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The s and u variations of the np charge-exchange (np Pn) cross section are measured
to be relatively smooth and without structure at intermediate energies —in sharp contast
to previous results.

During the 1960's it was noted' that the shape
of the np charge-exchange (CEX) cross section
could be fitted by an empirical double exponen-
tial in the square of the invariant four-momen-
tum transfer u: do'/du = o.', exp(P,u)+ n, exp(P, u).
Although it was certain that the very sharp peak
at the extreme back angles (-u ~ 0.02) was due

to one-pion exchange (OPE), in Born approxima-
tion the OPE amplitude yields a dip at u =—0 in-
stead of the observed peak. Phillips' suggested
that the sharp peak could be caused by a destruc-
tive interference between the OPE amplitude and
a slowly varying background term. Further de-
velopments of this idea considered absorption
corrections' to the OPE amplitude in both the
initial and final states caused by competing in-
elastic channels. These improvements indeed
turned the dip into a spike but also predicted a
secondary maximum in the cross section which

was simply not observed. Other ways of hand-
ling the background terms have been developed, '
but none have been completely successful in fit-
ting the s and u variations of the nP CEX cross
section at medium energies (s is the square of
the total c.m. energy).

During the past few years two experiments
have produced large amounts of new data relating
to ~P CEX at medium energy. In 1969, the group'
from the Princeton-Pennsylvania Accelerator
(PPA) reported a large peak in both the cross
section and its logarithmic derivative at u =0.
The peak was centered about an incident neutron
momentum (P„) of about 850 MeV/c, and the ex-
periment covered the range 600&P &1730. In
1975 the data from an experiment at Saclay were
published and, while disagreeing with PPA data'
rather markedly for P„)1.2 GeV/c, the data for
the lower momenta (down to their minimum 0.98
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