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This paper is concerned with the dynamical behavior of the 
cochlea. It is assumed that a length of the basilar membrane which 
is equal to its width at each position vibrates as a unit, and that the 
forces exerted upon it by adjacent units are negligible compared to 
that exerted by the difference in pressure in the scala vestibuli and 
scala tympani. The boundary conditions at the stapes end is 
simply that the pressure difference in the two canals is equal to P0 
any desired pressure difference. However, at the helicotrema the 
pressure difference must be equal to that between the two ends of 
the capillary opening at the helicotrema. 

Then from the fundamental hydrodynamical equations and the 
experimental constants obtained by Bdk•sy it is shown that the 
speed of sound through the liquid of the inner ear may be con- 
sidered infinite compared to the speed of the wave along the basilar 
membrane. In other words, the liquid may be considered incom- 

ß 

pressible so that the rate of liquid displacement at the oval window 
is equal to that 'at the round window, a.nd is'also equal to that 
produced by flexure of the basilar for frequencies above 200 cps. 
Below this frequency some of the liquid goes back and forth 
through the helicotrema. 

With these assumptions, the following quantities were calcu- 
lated from the fundamental dynamical equations and found to be 
in good agreement with the experimental results of Bdkdsy; (a) 
displacement amplitudes and phases of the basilar membrane at 
different distances from the stapes and for different frequencies, 
(b) time for wave to travel from stapes to various dista{aces from 
stapes, and (c) volume displacement, at various frequencies, per 
dyne difference of pressure at oval window and that at round 
window. 

ß 

N this paper the dynamical behavior of the cochlea is deduced from the fundamental hydrodynamical 
equations and the known constants of the ear. Although 
the fundamental differential equation which is used is 
the same as that used by Petersen and Bogert I and 
Zwislocki/except for a term involving the viscosity of 
the fluid, the interpretation of the constants and the 

, boundary conditions are very different and therefore 
lead to very different results. These results give a very 
good agreement with those obtained experimentally by 
B (•k(•sy. 

Since the basilar membrane is long compared to its 
width, it seems reasonable for calculation purposes to 
break its length up into small square vibrating units, the 
length of each unit being equal to its width. There would 

x L. C. Petersen and B. P. Bogert, J. Acoust. Soc. Am. 22, 369- 
381 (1950). 

•- J. Zwislocki, J. Acoust. Soc. Am. 22, 778-784 (1950). 

then be about 140 such vibrators in a 35-mm length 
basilar membrane. As an approximation each little 
element will be considered to vibrate as a piston with an 
area b •' where b is the width of the basilar membrane. 

The forces driving each little element are the pressure 
differences on the two sides of the membrane multiplied 
by b = and the mutual forces exerted by adjacent ele- 
ments. These latter forces will be considered negligible 
in comparison to Pb •. If .0, then, is the average displace- 
ment across the membrane at a position x cm from the 
stapes end of the basilar membrane, then 

. •O=nPb•/--moo•q-sq-jroo, (1) 

where m is the mass, s the stiffness constant, and r the 
mechanical resistance of the little element at this posi- 
tion. The factor n is a number which is probably be- 
tween 0.3 and 1.0 and takes care of the fact that the 

edges of the element are fixed. 
637 
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•Fm. 1. Width of basilar membrane and average area of two canals 
for different distances from the stapes. 

The problem then is to find m, s, r, and b from 
measurementg which have been made and then find P 

from the fundamental differential equation. 
First consider the mass m. It is the radiant mass 

carried by the area b •' plus the mass of the structures 
carried by this area (rods of corti, etc.). it is well known 
that the radiant mass for such a small vibrating element 
in water carried by both sides of the area is 0.85b 3 if the 
area were circular having a diameter b. For the equiva- 
lent square area it would be somewhat greater than this 
and it was taken as b 3. This is equivalent to saying that 
a volume of liquid extending out from the membrane a 
distance only equal to one-half the width of the mem- 
brane vibrates in phase with it. The basilar membrane 
tself, the rods of corti and other structures carried by 

the basilar membrane have a thickness of about one-half 
the width of the membrane. Also it is assumed that the 

density of the structure is about 1.5 so the mass of the 
little element itself is 0.75b 3. Consequently, 

m- 1.75b 3. (2) 

It is important to notice that the vibration of the little 
element depends only upon the mass of the liquid which 
is within one- or two-tenths of a millimeter of the surface 

of the membrane. So the extent of the liquid beyond this 
small distance does not influence the vibration except as 
it modifies P. In other words, the resonant characteristics 
are independent of the size and shape of the vessel in 
which the basilar membrane is immersed. This is in 

accord with B (•k•sy's findings. The values of b vs x were 
taken as the average values taken from 25 specimens as 
given by Wever. a They are shown by the lower plot in 
Fig. 1. The upper part of this figure will be discussed 
later. In Fig. 2 the values of m vs x obtained from (2) are 
plotted. 

Next consider the stiffness constant s. Until B(•k•sy 
made his epoch-making experiments there was con- 
siderable speculation and controversy concerning the 
elastic properties of the basilar membrane. Many have 
claimed that its structure was such that only small 
variations in the stiffness constant for different positions 
along its length were possible, and therefore the so- 
called resonance theory must be ruled out. 

B(•k•sy measured directly this stiffness constant. He 
measured the deflection produced on a human basilar 
membrane by a hair probe. This probe was calibrated by 
noting that a hair fastened to its end started to bend at a 
definite applied force. The magnitude of this force de- 
pended upon the length of the hair. The deflection of the 
basilar membrane was measured with a calibrated 

microscope. In this way the dynes force per centimeter 
of deflection, which is called the stiffness constant s, was 
measured at three positions along the membrane; 
namely, 10 mm, 20 mm, and 30 mm from the stapes end. 
The values of s found were: at 10 mm, s= 1.8X 104; 20 
mm, s= 1.4X 103; 30 mm, s= 2.5X 10 •'. The total length 
of this basilar membrane in his sample was found to be 
35 mm. These values are also plotted in Fig. 2. 

At the two ends the straight line chosen to fit the 
points is dotted indicating an uncertainty. It is to be 
noticed that to obtain the values plotted the force was 
applied over a small area near the center of the mem- 
brane. When it was applied near the edge the deflection 
was smaller. For about one-half the width b of the 

basilar membrane the deflection per dyne was ap- 
proximately constant. 

Before considering the mechanical resistance let us 
consider the resonant frequency f0 of each little element. 
It is seen from (1) to be given by 

2•rfo=o•o= (s/m)l. (3) 

Fro. 2. Stiffness constant and mass of each little element along a E.G. Wever, Theory of Hearing (John Wiley and Sons, Inc., 
the basilar membrane. New York, 1949), p. 100. 
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DYNAMICS OF THE COCHLEA 639 

The values of s and m are given in Fig. 2. If one uses the 
straight lines given in the plot and represented by 

and 

Then 

S= 10 •'ø7-ø'•4• (4) 

m= 10 -5.a•+ø.5ø•. 

fo = 25,000-10 -ø'7•. (5) 
This then gives f0--25,000 cps at the stapes and 76 cps 
at the helicotrema, which it will be seen gives good 
agreement with observed data. This equation is repre- 
sented by the straight line of Fig. 3. A somewhat better 
fit of the data was obtained by using the solid line which 
departs somewhat from the straight line at 'the low 
frequencies. The solid dots give the calculated position 
for maximum displacement of the basilar membrane. 
This position is always shifted toward the stapes from 
the position for the resonant frequency. The circles and 
crosses are two sets of experimental data by B6k6sy 
giving the positions for maximum displacement. 

There is considerable uncertainty of the values of f0 
below 200 cps due to peculiar variations of the width of 
the basilar membrane and consequently of its stiffness 
in this region. However, it will be shown that the 
controlling factor for the response of the membrane in 
this region is the damping factor so these variations 
produce only small changes in the calculated results. 

It should be emphasized that the position for these 
resonant frequencies remains the same regardless of the 
manner in which the sound is conducted to the cochlea, 
that is, whether it is by bone conduction, air conduction, 
through the stapes, or the round window, or both. 

Next consider the mechanical resistance r. Again we 
are indebted to B6k•sy for values of this frictional 
resistance. He found that the logarithmic decrement 
was about the same for all positions along the mem- 
brance less than x= 2.85 cm and was equal to 1.6. For 
positions nearer the helicotrema the decrement in- 
creased. 

If A •. and A • are two successive amplitudes 

loge(A •/A 2)= 1.6= r/2mfo 
or 

r=O.5wom, (6) 

where o•0 is equal to 2•r times the resonant frequency f0 
at the position considered. 

One can compute the radiation resistance of the little 
element to be 

rr= •r2 ffb4/2c, (7) 

where f is the frequency of the impressed tone, and c the 
velocity of sound in water. This value of rr lies between 
10 -4 and 10 -6 for the audible range of frequencies. It 

ß 

will be seen to be negligible compared to the value g•ven 
by (6). So the measured resistance does not arise from 
the radiation but probably from frictional sources 
within the membrane'structure. 

For positions nearer the helicotrema than x= 2.85 the 

increased resistance is no doubt due to the liquid moving 
back and forth in the helicotrema. To obtain an estimate 

of this for the little element adjacent to the helicotrema 
at the position x= 3.5 cm one proceeds as follows. If an 
alternating force fie i"'e is impressed upon this element 
while the others are held at rest then a pressure P will be 
created on the two sides of the helicotrema. If the 

helicotrema is considered a small capillary of length A1 
and cross section •ra 2 where a is'the radius then it can be 
shown 4 that 

.4 8n\Vc 
P= (j•o•+•) •ra2. A1, (8) 

where n is the coefficient of viscosity of the liquid in the 
ear and Vc volume velocity of the fluid in the small 
capillary representing the helicotrema. But the volume 
velocity in the capillary is the same as the volume 
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Fro. 3. Resonant frequency of each•little element of 
basilar membrane. 

displacement due to the little element or 

•b 2= Vc, (9) 

where • is average velocity of the elementß It is given by 

•= (•- Pb2)/j(mo• -- s/•o)+r. (10) 

Combining (8), (9), and (10) one obtains 

( b4 ) $ 8rpr ff/o=j•o m+nl-•.A1 --j-+r+•.Alb 4. (11) 

This shows that the mass has been increased by 
(3/4)(b/1.75)(A1/•ra•')m. If A1 is taken as 0.1 and •ra u as 
0.0025 then this reduces to 0.Sin, or the mass has been 
increased by a factor of 1.8. This shows that the action 

• L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics (John 
Wiley and Sons, Inc., New York, 1950), p. 241. 
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640 HARVEY FLETCHER 

of the helicotrema has the effect of adding mass to the 
little elements near the helicotrema. 

If the dotted line in Fig. 2 is adopted for the effective 
mass then this increase in mass has already been added. 

Equation (11) also shows that the added resistance 

Ar= (8rt•-b4/ (•-a2)2) . A1. (12) 

Using the same values as used above and with 7=0.02 
then Ar is equal to 8000' b 4 or Ar/m= 183. The value of 
coo for this last resonator obtained from (3) is 477 and so 
rim obtained from (6) is 238. The value of rim then is 
increased by a factor of 1.8. So for calculation purposes 
the values of rim were taken as shown in Table I. 
This damping varies from sample to sample depending 
upon the dimensions of the helicotrema and width of the 
basilar membrane. 

Values of the mechanical constants r, m, and s for the 
little element at each position are now available. It 
remains then to find the value of P at each position, 
then the value of • can be calculated for each position. 
To do this turns out to be rather complicated. 

TA•.v.I. Damping constants for the little elements along the 
basilar membrane. 

x=3.5 

r 

--=430 
m 

w0=477 

rl 

m•0 

3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 

470 500 540 570 610 645 755 890 

560 630 786 920 1080 1290 1510 1780 

----= 0.9 0.83 0.80 0.68 0.62 0.56 0.5 0.5 0.5 

One can get a notion of what is taking place by the 
following consideration. First let us assume that the 
canal walls and basilar membrane are unyielding and the 
cross section is uniform and that the round window is a 

pressure release so that the pressure at this position falls 
to zero. The equations representing this condition show 
that the amplitude of the acoustical pressure difference 
falls linearly from the oval window to the helicotrema 
for frequencies below 5000 cycles per second. The 
situation is the same as for a stretched string fixed at 
one end and moved sinusoidally up and down at the 
other end. As long as the string is short compared to the 
wavelength being propagated the whole string moves up 
and down in phase with the driving force. For 10,000 
cycles however, for a 7-cm tube of water, the length of 
the tube is one-half wavelength so resonances would 
occur giving rise to amplitudes much larger than the 
driving amplitude. 

This pressure distribution builds up quickly (order of 
10 -5 second) because the time it takes the walls and 
basilar membrane to yield is of the order of 10 -•' second 
for the 100-cycle position to 10 -4 for the 10,000-cycle 
position. The first time is the time for sound to travel 

7 cm in water and. the second time that for the little 
element to build up to • of its maximum amplitude. So 
during this period of reaching the steady state the 
elements near the oval window build up to their maxi- 
mum first, then successive elements build up as one goes 
from there toward the helicotrema. This then produces a 
traveling wave along the basilar membrane very differ- 
ent from the acoustic wave going through the liquid and 
greatly modifies the initial pressure distribution. The 
fundamental equation governing the motion of the 
liquid and membrane will now be developed. 

The quantities S•, u•, p• will refer to the cross- 
sectional area, the fluid velocity parallel to the length 
of the canal, and pressure at the point x in the scala 
vestibuli. Similarly, the letters S•., u•., and p2 will refer 
to similar quantities in the scala typani. 

Consider an elemental box in the scala vestibuli which 
is Ax long and has the cross section S•. It will contain 
a mass equal to 

S•pAx, 

where p is the density of the fluid in the inner ear. The 
rate that the mass occupying this little element is 
changing is equal to the rate that the liquid flows 
through the cross section at x minus the rate that it 
flows through the cross section at x-t-Ax minus the rate 
it flows out at the bottom due to the bending of the 
basilar membrane. Putting these statements into mathe- 
matical language gives the continuity equation, 

/ ax+ = o, (13) 

where V is average velocity across the element and 
directed from the scala vestibuli to scala tympani. The 
force pushing this elemental mass along the canal in the 
direction x away from the stapes is equal to 

- Xx. 

This is opposed by the inertial force of the small mass in 
the element plus the frictional forces. 

It can be shown 5 that this leads to the force equation 
- (14) 

Where, in general, 

l/Q= [-1'-- (2J•(Ka)/KaJo(Ka))-] (15) 
the symbols J0 and J• indicating bessel functions of the 
zero and first order, a the radius of the canal, and 

K •'= -(jpco/rl) (16) 

and where now a is the average velocity over a cross 
section of the canal. This value of Q reduces to the one 
used earlier if S•f is small compared to unity or 

Q=4/3-jO.O8/Sf (17) 
and reduces to 

Q= l+O.14/(Sf)•(1-y), (18) 

when Sf is large compared to unity. 
See reference 4, p. 20. 
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DYNAMICS OF THE COCHLEA 641 

It is well known that in a fluid medium 

•lp/ •t= (joo/c2) p•, (19) 

where c is the velocity of sound waves in the medium. 
Equations (13), (14), and (19) can be combined to give 
for the steady state 

1 O•(&p•) 
-- •-•-k•S•p•-jt•oob•=O. (20) 
Q• Ox •. 

A similar equation holds for the scala tympani using 
subscript 2 and reversing the sign of • or 

1 
-- •-b k"S•.p•.+jtxol•=O. (21) 
Q•. Ox •- 

It is difficult to handle these two equations unless it is 
assumed that S•=S2=S at each position x and conse- 
quently Q•=Q•.=Q. This will be assumed and the value 
of S taken as (S•+S•)/2. These are the values of S 
plotted in Fig. 1. 

Anatomical measurements indicate that this assump- 
tion is approximately true except within 2 or 3 mm of the 
stapes where S• becomes many times S2. So for all 
regions except this one near the stapes the value of S for 
calculations is taken as the average values of S• and S•. 
from three samples given by Wever in his book and are 
shown by the solid line in Fig. 1. Below x-- 0.3 the dotted 
line was estimated to be more nearly the value of S to 
use. 

Subtract (21) from (20) and substitute 

The result is 
(px .-- p•)S=SP= yei•'. (22) 

1 O2Y 

- •-•-k•-Y - 2jt•oob•= O. (23) 
Q Ox 2 

But the value of • is jco•3 and p= 1, so from (1) 

2joob•= 2uP/1.75F (24) 
where 

(½), F-I-- _ _1_o 
moo 

(25) 

So our fundamental differential equation becomes 

lO•Y( 2n ) -•-•- k •- Y=0. (26) 
Q Ox 2 1.7-•F 

When Q- 1 this reduces to the same equation as used by 
Petersen and Bogert and Zwislocki. 

The wave constant k 2 is equal at 10,000 cps to 0.18 
and proportional to the frequency for other driving 
frequencies. 

The value of n was taken as « so the value of 1/1.75SF 
becomes as high as 120. Therefore k •' is usually negli- 
gible. This means that for the wave travelling down the 
membrane the fluid may be considered incompressible. 

The values of Q for frequencies 50, 100, 200, and 600 
cps are 1.28-j. 18, 1.2-j. 12, 1.1-j. 10, and 1.06-j.06, 
respectively. In the range where Q differs appreciably 
from unity there is considerable uncertainty in the value 
of (r/m)(l/½o). So for calculation purposes the value of 
Q was taken as unity. Also the value of k •' was taken 
equal to zero. So Eq. (26) reduced to 

O"Y/Ox 2= Y/1.75SF. (26A) 

To solve this equation by numerical integration consider 
that 1.75SF is constant and equal to its value at x= x• 
for the interval between x= x• to x=x•+/Xx•. Then 
Eq. (26A) integrates into 

Y= 1.75SF(Ax)2/2+C•Ax+C2, (27) 

where Cx and C,. are constants of integration. At Ax= 0, 
Y= Y• and Oy/Ox=m•. Therefore 

Y= Y•+m•Ax+(1/1.75SF)((Ax)2/2), (28) 

where m• is the slope of the curve Y vs x at x= x• and Y• 
is the corresponding value of Y. Now let 

Y=A+jB, (29) 
and 

1/1.75SF=R+yX. (30) 

Then Eq. (28) is equivalent to the two equations in- 
volving only real quantities 

and 

-Xa) A,.=A•+•AX=+(RA (31) 
zXX•. 2 

aB1 ) (aXe.)" B•.= B2+•AX2+ (RB+ XA . (32) 
AX• 2 

The process of numerical integration then is to start 
with initial vanes of A •, B•, (AA/AX)•, and (AB/AX)•. 
From these values calculate the values A,_ and B2 for a 
a step AX from (31) and (32). Then 

A ,.- A 1 = AA 2= (AA 1/AX1)AX2 

+(RA-XB)((AX2)2/2), (33) 

and consequently the new slope is AA •.//xX2 or equal to 
the old slope plus (RA-XB)(AX2/2). ' 

Thus one proceeds step by step from one end of the 
membrane to the other and obtains values of A and B 
corresponding to each position x. 

The boundary conditions at the stapes are for x= 0 

SoP0= (Ao+jBo)ei•t, (34) 

where P0 is th.e difference in pressure in the scala 
vestibuli at the stapes from that in the scala tympani 
at the round window and So the cross-sectional area of 
the stapes, or 

= (,4 + jzV.4 o+ jZo) (So/S). (35) 

This equation then enables one to find P both in 
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FIG. 4. Volume displacement per dyne pressure at the stapes. 

magnitude and phase for any value of x since A and B 
are known for each value of x. 

To find the boundary conditions at the helicotrema 
one proceeds as follows. The volume displacement V• of 
liquid along the scala vestibuli at any position x is given 
by (14) as 

- (O(S•p•)/Ox)=joo•Q•(OV•/Ot). (36) 

Similarly for the scala tympani 

-o(s•pO/ox=joo•Q•(OV•/Ot). (37) 

Near the helicotrema 

(0 V,f Ot) = - (0 V•/Ot). 

So Eqs. (36) and (37) combine into 

- (o(P,&)/Ox)= 2jo.•p•(o vJot), (38) 

the sub•.cript c indicating values in the two canals at 
x--3.5 cm, the position of the helicotrema. 

Now consider the helicotrema as a small capillary 
cm long and having a cross-sectional area Sn. Apply (14) 
to this small capillary and there results 

-O(SnPn)/Ox=jooopn(ov•/ot). (39) 

The volume rate going through the helicotrema is equal 
to the volume rate going along the canals or 

(1/2Q,)(o(P•S,)/Ox) = (1/Qn)(o(snPn)/Ox) 
=- (1/Qn)(SnPn/ai), (40) 

or the boundary conditions at the helicotrema where 
s= 3.5 cm are given by 

2 Q•Sn 
O(A •+jB•)/Ox= --•(A •+jB•). (41) 

A1Qn Sc 

An estimate of Sn and Sc and zXl gave 0.0025 

0.006 cm-" and 0.! cm. Using these values and taking 
Qc/Qn equal to unity then Eq. (41) gives the two con- 
ditions that must hold at the helicotrema 

(OA/Ox)•= -8A•, (42) 

(OB/Ox)•= --8B•. (43) 

It is convenient to start the calculation at the helicotrema 
in which case each step zXx is negative. So if one starts 
with A•= 1, zXx=-0.05, and B•=0, then the initial 
increments 

aA •= (OA •/Ox)•Ax= +0.4 
and 

Starting with these values will yield values of A0 and B0 
at the stapes. These can then be scaled down to fit any 
desired conditions there. 

It is obvious that Eq. (38) can also be applied to 
conditions at the stapes or 

O(SoPo) 0 Vo 
• - 2jwPQo = - 2w•PQo Vo, 

Ox ot 

or taking 0 and Q0 equal to unity 

1 

Vo=•(m.4o+jm,o)ei•*, 
2o• • 

(44) 

where mA0 and mB0 are the values of the slopes giving 
A vs x and B vs x at the position x=0. B•k•sy made 
measurements of V0 per dyne or 

Vo So (m.4o+jmBo) 
--= • . (45) 
Po 2• • Ao+jBo 

In Fig. 4 are shown results calculated by this equation 
and the values measured by B •k. •sy. ø The solid curve is 
calculated and circles observed. It is seen that the 

calculated and observed results are in excellent agree- 
ment. Indeed the agreement is too good since the 
statistical error due to sampling as given by B•k(•sy is 

FIO. 5. Distribution of pressure in the inner ear due to various 
driving frequencies. 

6 G. v. B6k•sy, J. Acoust. Soc. Am. 21, 233-245 (1949). 
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DYNAMICS OF THE COCHLEA 643 

indicated by the arrows. At the higher frequencies it is 
about a factor 5 and at the lower frequencies a factor of 
2 or 3. The calculated phase difference varied from 0.84•r 
to 0.92•r and agrees with B•k•sy's result, that is, V0 lags 
P0 by about 0.%r, within the observational error. The 
values of SP/SoPo from (35) were calculated and are 
shown in Fig. 5. The vertical arrows on these curves 
indicate the position for the maximum displacement of 
the basilar membrane as calculated below. 

The displacerfient of the basilar membrane per dyne 
pressure difference between that of the oval window and 
that at the round window is given by 

• So(Rq-jX) (A-I-jB) 
- (46) ß 

Po Q• 2bco 2 (Aoq-jBo) 

The displacement • per unity volume displacement at 
the stapes is given by 

, 

•q 1 (Rq- jX) (A q-jB) 
ß (47) 

Vo Q•b mAoq-jm•o 

Equation (46) shows that the displacement • per dyne 
varies inversely as the square of the frequency and the 
other quantities in (46) vary slowly with frequency. 
Likewise (47) shows the displacement • per unit dis- 
placement of the stapes varies slowly with frequency. 

.•/y,,,,= ((Rq- iX) (A q- jB) / (R,•q- jX,•) (A,•q- jB,•)) 
X (b.,/b) (48) 

where the values with subscript m are the values which 
produce a maximum displacement. Calculations from 
this equation give the curves shown in Fig. 6. The 
circles and crosses are from one set of data by B•k•sy 
and the' squares are from another set published at an 
earlier date. The phase angles given in the upper plot by 

6000• • •00 

•ooo iooo c,,a'oo •oo 

o 

Fro. 6. Amplitude and phase of the vibration of the basilar mem- 
brane at various distances from the stapes. 
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Fro. 7. Propagation time of wave traveling along 
basilar membrane. 

the solid line are calculated from 

X B Bo 
0= tan-l--+ tan -1---- tan -1---- •r, (49) 

R A A0 
ß 

for all cases except for 100 cps and 50 cps. This phase 
angle is the difference in phase between • and P0 as 
shown by (46) or the displacement •0 per dyne is given 
by 

So ( .... cos(t- 0). (so) • 2bco•' \ Ao"+Bo" 
The value of tan-•(X/R) is equal to •r at x=0 so 0 is 
equal to zero and • is in phase with the pressure at the 
stapes. The calculated phase angles shown in Fig. 6 for 
50 cps and 100 cps are taken from (54) simply because 
the calculated results agree with the observed ones. 
They show the phase between displacement of stapes 
and displacement of membrane at position x for these 
two frequencies. If 0 is plotted the two curves for phase 
are shifted downward 0.%r. The difference in phase will 
be the same for • vs Po or • vs Vo, and it is my under- 
standing that this is what B•k•sy observed. 

The time for the wave to travel from stapes to any 
position x should be the same as the phase difference 
between maximum V0 and maximum • divided by co or 

tan-•(Xm/Rm) -- •rq- tan-•(Bm/A•) 
, -tan-•(m•o/mAo) 

r= , (51) 

where the subscripts m refer to values which make • a 
maximum. Calculations from (51) give the solid curve in 
Fig. 7. The circles are data observed by B•kF•sy. The 
measured time was that taken from the instant the 

stapes was struck to the time when a noticeable de- 
flection of the basilar membrane occurred at the point 
observed. For example, for 200 cps x• = 2.84, X• = 117, 
R•=61, Bin=0.73, A•=00, m•0=2.9, and m•0=--1.5. 
Therefore, 

r= (116-- 180+90-- 117/360X200) 
= 1.23X 10 -3 second 

and this is the time for the wave to travel from stapes to 
x= 2.84 cm. 

Since it has been shown that the fluid may be con- 
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Fro. 8. Shape of basilar membrane during vibration at times which 
are successively } of a period apart. 

sidered incompressible, the volume displacement V0 
would be the same as the total displacement of the 
membrane provided nothing goes through the helico- 
trema. The pressure curves in Fig. 5 show that this 
should hold for frequencies above 200 cps. Therefore 

8.15 

V0- •0 b•Odx, (52) 
and these two quantities must be in phase. For example, 
for 200 cycles, V0 leads •m by 89 ø as seen from the above 
calculation. Consequently, the maximum displacement 
produced by entire membrane occurs about } period 
before ,the ym occurs. This is illustrated by the curves 
shown in Fig. 8 which shows a plot (for 200 cps) of 

(•O/Y,•) cos(•0t- 0) (53) 

for times which are T/8 and T/4 and 3T/8 before t= t• 
the time when • occurs and for times which are T/8 
and T/4 after t= t• where T is the period of vibration. 

The area under each curve which is above the zero line 

minus the area under the zero line is proportional to the 
integral in (52). These areas are plotted against time in 
Fig. 9 and it turns out to be sinusoidal as it should be. 
Also this diagram helps to make clear the meaning of the 
travel time r. It is interesting to note that when • 
becomes a maximum, the total displacement of liquid 
due to the basilar is almost zero for this case of 

f- 200 cps. 
It has been shown that the calculated results are all 

/.o 

go o 

/%1 •.5 

7' aT T T 0 7' T ST 7' 
Z 8 4 8 8 4 8 

7• M• 

Z_ = 5' • 

• max occur• l Z •10'•econd• 
earlier ond/k equal to . 08 b m •m 

Fro. 9. Variation with time of the total displacement of the 
basilar membrane. 

in excellent agreement with the experimental results 
which seem to justify the assumptions made in deriving 
the equations. However, there is yet one comparison 
between calculated and observed results which shows 

larger differences than any noted above. It is the 
absolute values of •O,/Vo given from Eq. (47) which are 
given by 

1/b( (RA -- XB)2+ (RB+ XA )') •' : - 

mAo 2-4-mBO 2 

where R, X, A, and B correspond to values giving • a 
maximum value. These values are shown in Table II. 

The observed values are from 3 to 8 times larger than 
the calculated ones. As a check on the calculated value 

for 200 cps, Eq. (48) was used as follows. It can be 

TABLE II. Volume displacement at the oval window divided 
by maximum displacement of the basilar membrane for different 
driving frequencies. 

Values of Vol,O 

f Calc Obs 
100 2.4X 10 -a 20X 10 -a 
200 1.4X 10 -a 12X 10 -a 
300 3.1X 10 -a 10X 10 -a 
600 2.0X 10 -a 8X 10 -a 

1000 2.0X 10 -a 6X 10 -a 
2000 1.0X 10 -a 5X 10 -a 
6000 1.5 X 10 -a -.. 

written as follows' 

Vo=y,,b,• 
8.5 

where 

0= tan-• (RB-+ - XA IRA -- XB) 

-- tan-•(R•B,•+ X,•B,/R,•A,•-- X,•B,•). 

The integral was found by graphical means to be 0.083. 
Therefore, 

Vo/y,• = 0.041X 0.083= 3.4 X 10 -3. 

This is closer to the observed value of 12X 10 -a but the 

difference is still large. 
One can deduce from the curve of y/y,• derived by 

Bdkdsy from his data/The value of Vo/y,• is as follows' 

V0= •, b--dx. 
y,• 

7 G. v. B•.k6sy and W. A. Rosenblith, "The mechanical prop- 
erties of the ear." In S.S. Stevens (Editor), Handbook of Experi- 
mental Psychology (John Wiley and Sons, Inc., New York, 1951), 
Fig. 36, p. ! 100. 
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The integral was found by graphical means to 2X 10 -3. 
The curve of y/ym which was used had a phase of •r/2 
ahead of the one where y comes to maximum. There may 
be an uncertainty of a factor 2'in the calculated results 
as a result of the size of step used in the numerical 
integration and m.4oq-jmBo which is a factor in E.q. (54) 
depends upon the last step in this process. Also B•k•sy 
gives the statistical va?iation of V0 as a factor 2 to 5. 
This uncertainty more than covers the difference ob- 
served but still one should look for a reason not yet 
apparent to explain this difference, since the agreement 
seems so good for all of the other relations. 

APPENDIX. List of symbols and their meanings 

A, B real and imaginary parts of Y. 
a radius 
b width of the basilar membrane 

Ci constants of integration 
c velocity of sound in water 
ff = force 

PH 

f frequency of impressed tone 
f0 resonant frequency of an elementary unit of the membrane 
J• bessel functions of order i 
K = (1-j)(p,o/2n) ø.5 
k 2 wave constant (= •o2/d) 
A1 length of helicotrema 
m mass of an elementary unit of the membrane 
ml slope at Xl of function relating Y to x 
n constant between 0.3 and 1.0 (for edge effects of elementary 

units) 
P pressure difference on the two sides of the membrane 
Pc pressure between scala tympani and scala vestibuli at 

helicotrema 

pressure across the helicotrema 
pressure on the membrane at the stapes 
pressure at point x in the scala vestibuli 

P2 pressure at point x in the scala tympani 

Q (1 2Jl(Ka)) -t = 

Sn 
So 

S•. 
$ 

T 

Vo 

V•. 

X 

Y 

real part of 1/1.75SF 
mechanical resistance of an elementary unit of the 

membrane 

radiation resistance of an elementary unit of the membrane 
average of St and S•.; cross sectional area 
average cross-sectional area of canals at helicotrema 
cross-sectional area of helicotrema 

cross-sectional area of stapes 
cross-sectional area of scala vestibuli 

cross-sectional area o f scala tympani 
stiffness of an elementary unit of the membrane 
period of vibration 
fluid velocity parallel to length of scala vestibuli 
fluid velocity parallel to length of scala tympani 
average fluid velocity over a cross section of the canal 
volume velocity of fluid in helicotrema 
volume displacement of liquid at stapes 
volume displacement of liquid in scala vestibuli 
volume displacement of liquid in scala tympani 
average velocity of an elementary unit of the membrane 
imaginary part of 1/1.75SF 
distance from stapes in centimeters 
amplitude of quantity SP which is varying sinusoidally 

with time 

average displacement across membrane at x cm t•rom the 
stapes 

coefficient of shear viscosity of liquid in the ear 
density of liquid in the ear 
propagation time of wave along the basilar membrane 
angular frequency of resonance of an elementary unit of the 

membrane 

Note: A paper "On the dynamics of the middle ear 
and its relation to the acuity of hearing," which is a 
continuation of this paper, will appear in the March 
issue of this journal. A summary of the results will 
appear in my paper published in the December number 
of Physics Today. 
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