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Inclusion of wave steepening in a frequency-domain model
of trombone sound production

Michael W. Thompson and William J. Strong
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

~Received 31 July 2000; revised 30 January 2001; accepted 21 March 2001!

A frequency-domain model of trombone sound production that includes the effects of wave
steepening is proposed. This model builds upon the work of Msallamet al. @Proceedings of the
Institute of Acoustics19~5!, 419–424~1997!# by including thermoviscous wall losses in a more
realistic manner, by applying wave steepening systematically to the entire instrument, and by
making quantitative comparisons to the experimentally measured output of the same trombone that
the model is based on. The trombone is approximated as a set of contiguous cylindrical tubes with
superposition of incoming and outgoing waves in each cylinder and with continuity of pressure and
flow at each cylinder junction. The far-field radiated pressure spectrum is calculated on the basis of
the spectrum of a measured pressure wave in the mouthpiece. This calculation includes the effects
of wave steepening for the outgoing wave in each cylinder. The equations describing the model are
given. Mouthpiece spectra are processed both with and without the effects of wave steepening. The
predicted far-field spectra are compared to the corresponding measured far-field spectra. In all cases
analyzed, the inclusion of wave steepening greatly reduces the error between predicted and
measured spectra. ©2001 Acoustical Society of America.@DOI: 10.1121/1.1371759#

PACS numbers: 43.75.Fg@RDA#
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I. INTRODUCTION

For several years, wave steepening has been know
be partially responsible for the typically bright timbre
loudly blown trombone tones. Beauchamp~1980! observed
that differences in sound pressure levels between radi
harmonics and corresponding harmonics in the mouthp
are not constant for all dynamics, as a linear model wo
predict. An example of such a nonlinear response is show
Fig. 1, where the divergence of the two curves is the resu
amplitude-dependent behavior.

Hirschberget al. ~1996!, documented shock waves
the bell of the trombone using a flow visualization techniq
They also suggested that the change in timbre due to
observed wave steepening could be modeled by calcula
the outgoing pressure wave in the mouthpiece based on
ear theory, steepening the outgoing wave appropriately,
filtering the wave with a linear model of the horn to obta
the radiated pressure.

Msallamet al. ~1997!, developed a simple time-domai
model that includes wave steepening in the slide of the tro
bone. The slide was treated as a single 3 m long cylindrical
tube, and thermoviscous losses at the walls of the slide w
applied prior to the wave steepening calculation. This s
plified method of handling wall losses may have be
adopted in order to avoid the numerous convolution su
encountered if the slide had been treated instead as a s
many shorter elements. To obtain the radiated sound,
steepened wave was processed by a linear filter represe
the bell. Although their results were encouraging, Msall
et al., did not quantitatively compare the output of the
model to that of a real instrument.

The present research attempts to build on the work
Msallamet al., by exploring the effect of wave steepening o
sustained trombone tones in the frequency domain, b
556 J. Acoust. Soc. Am. 110 (1), July 2001 0001-4966/2001
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computationally and experimentally. Thermoviscous los
are more easily handled in the frequency domain, allow
the slide to be broken up into many smaller elements with
incurring excessive computational load. Also, wave steep
ing is more systematically applied throughout the ent
instrument—not just in the slide. A model has been dev
oped that predicts well the radiated spectrum of the tromb
at several combinations of dynamic and pitch. The outpu
the model is compared to experimentally measured to
from the same trombone that the model is based on, w
good success.

II. THE FREQUENCY-DOMAIN MODEL

The instrument being modeled was a King Clevela
605 tenor trombone with a Vincent Bach 12C mouthpie
The shape of the instrument was approximated with a se
152 cylindrical tubes; the lengths and radii of the cylinde
were varied to provide a match to the trombone bore~Plitnik
and Strong, 1979!. All dimensions except those of th
mouthpiece were taken from Copley’s previous work~1995!
on the same trombone.~Detailed dimensions are available
Appendix I of Thompson, 2000.!

A frequency-domain model of sound production was d
rived by considering lossy wave propagation in the cylind
and pressure reflection at the cylinder junctions. Since o
steady, periodic waves were considered, the waves were
resented as sums of harmonic components. Various pa
eters, including reflection coefficients and impedances, w
specified only at harmonic frequencies.~A detailed deriva-
tion of the model is given in Appendices C and D of Thom
son, 2000.!

Throughout this paper, the model is called linear wh
wave steepening is ignored and nonlinear when wave st
/110(1)/556/7/$18.00 © 2001 Acoustical Society of America
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ening is included. Also, a time dependence ofej vt is as-
sumed throughout and has been omitted in order to simp
the notation.

A. The linear model

The equations for the linear model are given for a sin
frequency to simplify the notation. The subscriptn refers to
cylinder number, where 1<n<N andN5152.

The trombone can be characterized acoustically in te
of the complex pressure reflection coefficients at the in
ends~the ends nearest to the mouthpiece! of the cylinders. At
the input of a given cylinder, the reflection coefficient is

Rn5
Pn

2

Pn
1 , ~1!

wherePn
1 and Pn

2 are the outgoing and incoming comple
pressure amplitudes, which can be treated as complex
rier coefficients. Let us also define a dimensionless in
impedance

Zn85
An21kn21

r0v
Zn , ~2!

whereZn is the acoustic input impedance,An21 andkn21 are
the cross-sectional area and complex wave number of
adjacent cylinder nearest to the mouthpiece,r0 is the ambi-
ent density of air, andv is the angular frequency. At th
junction of two cylinders, pressure and flow are continuo
which implies that acoustic impedance is also continuo
From these conditions~and after some algebra!, the follow-
ing equations can be obtained:

Rn5e22 jknLnS Zn118 21

Zn118 11D ~3!

and

Zn85
An21kn21

Ankn
S 11Rn

12Rn
D , ~4!

whereLn is the cylinder length. The dimensionless radiati
impedance at the bell is

FIG. 1. Difference between measured radiated SPLs~see Figs. 3 and 4! and
measured mouthpiece SPLs~see Fig. 2! at the pitch D4. D4-3 is a loud tone
and D4-1 is a soft tone. The divergence of the two curves is evidenc
amplitude-dependent behavior. Only values at harmonic frequencies ar
cluded.
J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001 M.
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ZN118 5
ANkN

r0v
Zbell , ~5!

where Zbell is the acoustic radiation impedance of an u
baffled, plane circular piston in the end of a long cylindric
tube ~Beranek, 1996!. The reflection coefficients of all cyl-
inders can be obtained by starting with Eq.~5! at the bell and
alternately calculating Eqs.~3! and ~4! back to the mouth-
piece.

An experimentally measured pressure wave in
mouthpiece serves as the input to the model. Let the s
script ‘‘mouth’’ represent the index of the cylinder whos
input end is nearest to the position where the mouthpi
pressure is known, and letPmouth be a complex Fourier co
efficient of the measured pressure wave. This Fourier co
ficient can be separated into outgoing and incoming p
using linear theory. The outgoing pressure in the mouthpi
is

Pmouth
1 5

Pmouth

11Rmouth
, ~6!

and the outgoing pressure at each of the subsequent cyli
inputs is

Pn11
1 5Pn

1e2 jknLnS 11Rne2 jknLn

11Rn11
D . ~7!

Equation~7! is calculated repeatedly to model the filterin
that occurs as the outgoing wave propagates through e
cylinder in the model. The total pressure at the bell is

Pbell5PN
1e2 jkNLNS 2ZN118

ZN118 11D . ~8!

At a sufficiently large distance from the bell, the on-ax
pressure is approximately equal to the pressure that woul
radiated by a simple source having the same source stren
The radiated pressure can be expressed in terms of the
pressure at the bell and the radiation impedance as

Prad5
Pbell

Zbell

j r0v

4pxrad
expS 2 j

v

c0
xradD , ~9!

wherexrad is the distance from the plane of the bell, andc0 is
the sound speed in air. From these predicted Fourier co
cients, the far-field radiated pressure wave can be syn
sized.

B. Inclusion of wall losses

Thermoviscous losses at the walls of the cylinders c
be included if we allow the wave number to be compl
valued~Kinsler et al., 1982!:

kn5
v

cn
2 j an , ~10!

where

an5
1

r nc0
Aheffv

2r0
~11!

and

of
in-
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cn5c0S 12
1

2r n
A2heff

r0v D ~12!

are the attenuation coefficient and sound speed assoc
with these losses. In these expressions,r n is the cylinder
radius; and

heff5hF11~g21!A k

CPhG2

~13!

is an effective viscosity, whereh is the shear viscosity of air
g is the adiabatic constant of air,k is the thermal conductiv-
ity of air, andCP is the specific heat of air at constant pre
sure.

C. The nonlinear model

The discussion of wave steepening that follows app
to the case of an outgoing wave in a single cylinder;
cylinder number index,n, is omitted and a harmonic numbe
index, h, is used instead to handle the nonlinear interact
of harmonics, where 1<h<H and H5200. The choice of
200 harmonics was somewhat arbitrary and limited by
available computational resources. A much greater num
of harmonics would be required in order to accurately mo
shock formation.

The Burgers equation predicts the wave steepening
occurs as an outgoing pressure wave propagates thr
each cylinder in the linear model. In the frequency doma
this equation is~Ginsberg and Hamilton, 1998; Appendix
of Thompson, 2000!

d

dx
Ph

152
dvh

2

2c0
3 Ph

11
bvk

r0c0
3

j

4 H (
h851

h21

~Ph8
1 Ph2h8

1
!

12 (
h85h11

`

@Ph8
1

~Ph82h
1

!* #J , ~14!

wherex is the distance from the input end of the cylinder;vh

is the angular frequency of harmonich;

d5
1

r0
S 4

3
h1hBD1

k

r0
S 1

CV
2

1

CP
D ~15!

is the diffusivity of sound~Hamilton and Morfey, 1998!,
wherehB is the bulk viscosity of air, andCV is the specific
heat of air at constant volume;

b5
g11

2
~16!

is the coefficient of nonlinearity; and* represents the com
plex conjugate. The first term on the right-hand side of E
~14! is proportional to the attenuation in the bulk of the flu
~Ginsberg and Hamilton, 1998!,

uh5
dvh

2

2c0
3 , ~17!

which reduces the amplitudes of the high-frequency harm
ics as they increase due to wave steepening. The second
on the right-hand side of Eq.~14! is inversely related to the
shock formation distance~Blackstocket al., 1998!
558 J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001
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r0c0

3

b maxF d

dt
pmouth

1 ~ t !G . ~18!

The shock formation distance is inversely related to f
quency and to acoustic pressure amplitude through the m
mum value of the time derivative of the outgoing mouthpie
pressure wave in the denominator. This frequency dep
dence appears in the second term on the right-hand sid
Eq. ~14! asvh , and the amplitude dependence appears in
sums as pressure squared. The nonlinearities describe
this equation are maximal at large pressure amplitudes an
high frequencies, or equivalently, at small shock format
distances.

It should be noted that Eq.~14! accounts for changes in
the outgoing Fourier coefficients due only to wave steep
ing and thermoviscous losses in the bulk of the fluid; ph
change due to propagation and losses at the wall of the
inder were already included in Eq.~7!. Wall and bulk losses
are handled asymmetrically because wall losses are bes
plied to both the outgoing and the incoming waves via
complex wave number, while bulk losses are needed in
steepening of the outgoing wave in order to control the a
plitude of the high-frequency harmonics during shock form
tion.

A good numerical method for solving Eq.~14! is fourth
order Runge–Kutta. Since this method requires real eq
tions of real variables, this equation must be separated
real and imaginary components:

d

dx
Xh52uhXh2fhF (

h851

h21

~Xh8Yh2h81Yh8Xh2h8!

12 (
h85h11

H

~Yh8Xh82h2Xh8Yh82h!G ~19!

and

d

dx
Yh52uhYh1fhF (

h851

h21

~Xh8Xh2h82Yh8Yh2h8!

12 (
h85h11

H

~Xh8Xh82h1Yh8Yh82h!G ~20!

where the substitutions

Xh1 jYh5Ph
1 ~21!

and

fh5
bvh

r0c0
3

1

4
~22!

have been made to simplify the notation, and the Fou
series has been truncated atH harmonics.

Wave steepening can be included in the linear algorit
as follows: At the input of the cylinder in the mouthpiec
where the measured pressure wave is known, the outg
pressure coefficients are computed from Eq.~6!. If desired,
the shock formation distance can then be computed from
M. W. Thompson and W. J. Strong: Modeling of wave steepening
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~18!. The maximum value of the time derivative in this equ
tion is best obtained by evaluating the analytical time deri
tive of the Fourier synthesis equation using a large num
of samples per period and taking the maximum sam
value. The outgoing mouthpiece pressure coefficients
modified by Eqs.~19! and ~20!, which models the wave
steepening that would result from a propagation dista
equal to the length of the cylinder. In this calculation, t
algorithm is allowed to take a maximum spatial step of 5
of the shock formation distance in order to prevent la
numerical error. Equation~7! is then computed to accoun
for phase change, losses at the wall, and filtering at the
inder junction. The process is repeated for each cylinde
the model. After wave steepening has been calculated fo
final cylinder at the bell, the pressures at the bell and in
far field are computed from Eqs.~8! and ~9!.

Although the superposition of outgoing and incomi
waves is not strictly valid for a nonlinear system, Msalla
et al. ~1997! concluded that errors due to this oversig
would be less than 5% for harmonics below the 30th. Th
also reported that steepening the incoming wave did not
nificantly affect their results. This supports the suggestion
Hirschberget al. ~1996!, that the gain in high-frequency en
ergy due to wave steepening is mostly radiated at the b
implying that steepening need be calculated for only the o
going wave.

D. Testing the model

Several tests were performed to determine the reliab
of the model; each test confirmed that the model was pr
erly implemented. Errors on the order of a few dB are tol
able since the phenomenon of interest—the gain in hi
frequency energy due to wave steepening—is on the orde
tens of dB~see Fig. 1!.

The input impedances of three theoretical tu
shapes—a cylindrical pipe, a conical horn, and an expon
tial horn—were calculated based on approximations us
sets of contiguous cylinders. The impedance magnitudes
phases were compared to the analytical results~Fletcher and
Rossing, 1991! with good agreement. The error in the cylin
drical case was negligible. The exponential case had the l
est error—on the order of a few dB for frequencies below
kHz when using 150 cylinders. Admittedly, a more accur
~and mathematically complex! model could be implemente
using cones instead of cylinders.

The input impedance of the trombone at the mouthpi
was calculated and compared to measured and calculate
sults from a different model of the same instrument~Copley,
1995!. The resonance frequencies and corresponding imp
ance magnitudes agreed well.

Wave steepening of a sinusoid was calculated over
shock formation distance using 10 and 20 spatial steps.
differences in harmonic amplitudes between the two ca
were a fraction of a dB. This suggests that allowing a ma
mum spatial step of 5% of the shock formation distan
keeps the numerical error of the Runge–Kutta algorit
within acceptable limits.
J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001 M.
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III. EXPERIMENTAL VERIFICATION

A. Collecting the data

The model was thoroughly tested with experimenta
measured tones from the same trombone that the mod
based on. In an anechoic chamber, the trombone
mounted at a comfortable height for playing, with the b
oriented horizontally. The diaphragm of a PCB 112A23 m
crophone was mounted flush with the inside wall of t
mouthpiece by means of a hole drilled through the wall. T
signal from this microphone was recorded to one channe
a digital audio tape. A 1/29 Larson–Davis 2540 microphon
was mounted on-axis 2.85 m in front of the bell, and t
signal from this microphone was recorded to the seco
channel of the tape. The bandwidth of the Larson–Da
microphone is approximately 20 Hz to 20 kHz, and the u
able bandwidth of the PCB microphone was measured to
approximately 100 Hz to 16 kHz. Both microphones we
calibrated so that accurate pressure values could be obta
from the recorded data. Sustained tones were recorded a
pitches B[2, F3, B[3, and D4 at various dynamics. Th
sample rate was 44.1 kHz.~Details of the experimental ap
paratus, calibration, and procedure can be found in Appen
G of Thompson, 2000.!

B. Preparing and processing the data

Six tones at the lowest pitch and three tones at each
the other pitches were chosen for analysis. These to
ranged from the softest to the loudest that the player co
produce comfortably. Each of the tones was labeled with
pitch name and octave number and with a number repres
ing the dynamic at which it was played. The dynamics we
numbered in increasing order, from soft to loud. For e
ample, the tone D4-1 is the softest tone analyzed at the p
D in the fourth octave.

A steady segment of 10 periods was extracted from e
of the B[2 tones. The numbers of periods extracted from
tones at the other pitches~see Table I! were chosen so that a
segments had approximately the same duration~; 8.5 ms!.
The measured fundamental frequencies~see Table I! of these
tones agreed well with the fundamental frequencies predic
by linear theory~Copley, 1995!, and were therefore used i
the model computations. The complex Fourier coefficients
the mouthpiece and the far-field radiated waves of each
ment were calculated. Because all harmonics above a ce
frequency~see Table I! had amplitudes less than the noi
floor, data above that frequency were discarded. Figur
shows the mouthpiece spectra for the tones D4-1 and D

The Fourier series of each segment of mouthpiece d
was processed by the model to predict the measured pres
at the far-field location. Each tone was processed twic
once neglecting wave steepening and once including w
steepening. The shock formation distances~see Table I!, the
SPLs of all Fourier coefficients~relative to 20mPa!, the er-
rors in SPLs between the measured and predicted far-
coefficients, and the synthesized far-field pressure wa
were calculated for all tones.~Complete experimental an
computational data are given in Appendix H of Thompso
2000.!
559W. Thompson and W. J. Strong: Modeling of wave steepening

content/terms. Download to IP:  128.187.97.22 On: Mon, 17 Mar 2014 22:48:04



th

th

p

a
th
u
u
o

i

l
th
ll.

r-
in-
am-
as

-
on-
e
one
r.

ers
by

els
an

eld

not

the
he
d by

D4
de

d by
-axis
in-

d by
-axis
in-

is
e

l p
o t

 Redistr
C. Selected results

The results from the softest and loudest tones at
pitch D4 ~tones D4-1 and D4-3! typify the results obtained
for all other tones. They will be used as examples in
discussion that follows.

Both the linear and the nonlinear models predict a
proximately the same radiated spectrum for the soft tone~see
Fig. 3!. In the case of the loud tone~see Fig. 4!, however, the
nonlinear model predicts the measured spectrum reason
well, while the linear model severely underestimates
amount of high frequency energy in the measured spectr

A comparison of the measured and predicted press
waves confirms the superiority of the nonlinear model. F
the soft tone@see plots~b! through~d! of Fig. 5#, the waves
predicted by both models have amplitudes and phases sim
to the measured wave. In the case of the loud tone@see plots
~b! through ~d! of Fig. 6#, however, the nonlinear mode
predicts an amplitude that is reasonably correct, while
linear model predicts an amplitude that is much too sma

FIG. 2. Measured mouthpiece pressure spectra for the tones D4-1 and
Only values above the noise floor and at harmonic frequencies are inclu
Mouthpiece wave forms are shown in plots~a! of Figs. 5 and 6.

TABLE I. Tone parameters. The shock formation distances@see Eq.~18!#
were computed from the outgoing mouthpiece pressures. For compar
the length of the trombone is 2.72 m. The mouthpiece signal cutoff frequ
cies were the frequencies above which noise in the mouthpiece signa
vented accurate estimation of the harmonic amplitudes. They are als
maximum frequencies used in computing the errors in Fig. 7.

Tone

Fundamental
frequency

~Hz!

Number of
periods

analyzed

Shock
formation
distance

~m!

Mouthpiece
signal cutoff

frequency
~kHz!

B[2-1 116.9860.04 10 44 0.936
B[2-2 117.0760.04 10 11 1.874
B[2-3 118.9060.04 10 4.5 2.735
B[2-4 119.5860.04 10 3.0 2.990
B[2-5 118.6860.04 10 2.0 4.154
B[2-6 117.0460.04 10 0.90 4.916
F3-1 177.6860.05 15 34 1.422
F3-2 177.1660.05 15 3.3 2.658
F3-3 176.7860.05 15 1.5 3.182
B[3-1 238.8360.07 20 20 1.672
B[3-2 237.0360.07 20 4.7 2.134
B[3-3 235.5160.07 20 1.5 3.298
D4-1 300.8260.09 25 16 2.106
D4-2 297.6560.09 25 3.4 2.679
D4-3 296.1360.09 25 1.6 3.850
560 J. Acoust. Soc. Am., Vol. 110, No. 1, July 2001
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At extremely loud dynamics corresponding to shock fo
mation distances significantly less than the length of the
strument, the nonlinear model tends to overestimate the
plitudes of the high-frequency harmonics. This problem h
been reported previously for a similar computation~Ander-
son and Vaidya, 1991!. This error is mostly due to the trun
cation of the Fourier series at 200 harmonics. Another c
tributing factor may be that the calculation of wav
steepening and the calculation of wall losses are not d
simultaneously for the outgoing wave in a given cylinde
This factor may be lessened by dividing the longest cylind
in the approximation into several shorter cylinders, there
distributing the wall losses more uniformly.

Figure 7 compares the errors in SPLs from both mod
for all 15 tones. The nonlinear model clearly does better th
the linear model at predicting the pressure at the far-fi
location. The anomalies in the data~i.e., B[ 2-4 and F3-3!
can be attributed to noise in the mouthpiece data that was
completely removed before processing.

In informal listening tests, the tones generated by
nonlinear model were found to be similar in timbre to t
experimentally measured tones, but the tones generate
the linear model were found to be lacking in brightness.

-3.
d.

FIG. 3. Radiated pressure spectra for the tone D4-1. The SPLs predicte
the nonlinear and linear models are compared to the SPLs measured on
2.85 m in front of the bell. Only values at harmonic frequencies are
cluded. Radiated wave forms are shown in plots~b!–~d! of Fig. 5.

FIG. 4. Radiated pressure spectra for the tone D4-3. The SPLs predicte
the nonlinear and linear models are compared to the SPLs measured on
2.85 m in front of the bell. Only values at harmonic frequencies are
cluded. Radiated wave forms are shown in plots~b!–~d! of Fig. 6.
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IV. CONCLUSIONS

The results are indeed encouraging. For small-amplit
tones, both the linear and the nonlinear models predict w
the measured data. At large amplitudes, the nonlinear m
is reasonably accurate in its predictions, while the lin
model severely underestimates the amplitudes of the h
frequency harmonics. However, at shock formation distan
significantly less than the length of the instrument, the n
linear model tends to overestimate the amplitudes of
high-frequency harmonics.

The model may be improved upon by using a grea
number of cylinders in the approximation, which would e
fectively distribute the losses at the walls of the cylinde
more uniformly. Including more harmonics in the compu
tion would help to reduce numerical error in the wave ste
ening calculation. Using mouthpiece data with a lower no
floor would permit evaluation of the model at higher fr
quencies. A more accurate model could be formulated us
a set of contiguous cones instead of cylinders.

Although direct comparisons between the present
search and the work of Msallamet al. ~1997!, cannot be
made conclusively, this research builds upon their work
providing an alternate method for including wave steepen
in a computational model of trombone sound producti
Thermoviscous wall losses are handled in a more real
manner, wave steepening is applied systematically to the
tire instrument, and the accuracy of the model is analy

FIG. 5. Acoustic pressure wave forms for the tone D4-1.~a! Measured wave
in the mouthpiece.~b! Measured wave on-axis 2.85 m in front of the bell.~c!
Radiated wave computed from the nonlinear model.~d! Radiated wave com-
puted from the linear model. DC offset has been neglected. The mouthp
spectrum is shown in Fig. 2. The radiated spectra are shown in Fig. 3.
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FIG. 6. Acoustic pressure wave forms for the tone D4-3.~a! Measured wave
in the mouthpiece.~b! Measured wave on-axis 2.85 m in front of the bell.~c!
Radiated wave computed from the nonlinear model.~d! Radiated wave com-
puted from the linear model. DC offset and frequencies above 20 kHz h
been neglected. The mouthpiece spectrum is shown in Fig. 2. The rad
spectra are shown in Fig. 4.

FIG. 7. Comparison of the average errors between measured and com
harmonic SPLs from both models. Each line ranges from the mean err
SPLs minus the standard deviation of the error to the mean plus the stan
deviation. Only frequencies below the mouthpiece signal cutoff frequen
~see Table I! were included. The different dynamics at each pitch are nu
bered in increasing order, from soft to loud.
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quantitatively through comparison of its output to expe
mentally measured tones.
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APPENDIX A: VALUES OF PHYSICAL CONSTANTS

The following values were used for the physical co
stants that appear in the equations of the model. Approxi
tions were made where precise values could not be de
mined. Although the values chosen may not perfectly refl
the conditions under which the experiment was conducte
small change in any of the values does not significantly a
the computational results:

c05350
m

s
, ~A1!

CP5957.6
J

kg K
, ~A2!

CV5
CP

g
5683.0

J

kg K
, ~A3!

b51.201 @see Eq.~16!#, ~A4!

g51.402, ~A5!

d53.8031025
m2

s
@see Eq.~15!#, ~A6!

h51.8131025 Pa s, ~A7!
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h
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a-
r-

ct
a
r

hB50.6h51.0931025 Pa s, ~A8!

heff53.9031025 Pa s @see Eq.~13!#, ~A9!

k50.0234
W

m K
, ~A10!

r051.18
kg

m3. ~A11!
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