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A frequency-domain model of trombone sound production that includes the effects of wave
steepening is proposed. This model builds upon the work of Msadiaal. [Proceedings of the
Institute of Acousticsl9(5), 419-424(1997)] by including thermoviscous wall losses in a more
realistic manner, by applying wave steepening systematically to the entire instrument, and by
making quantitative comparisons to the experimentally measured output of the same trombone that
the model is based on. The trombone is approximated as a set of contiguous cylindrical tubes with
superposition of incoming and outgoing waves in each cylinder and with continuity of pressure and
flow at each cylinder junction. The far-field radiated pressure spectrum is calculated on the basis of
the spectrum of a measured pressure wave in the mouthpiece. This calculation includes the effects
of wave steepening for the outgoing wave in each cylinder. The equations describing the model are
given. Mouthpiece spectra are processed both with and without the effects of wave steepening. The
predicted far-field spectra are compared to the corresponding measured far-field spectra. In all cases
analyzed, the inclusion of wave steepening greatly reduces the error between predicted and
measured spectra. @001 Acoustical Society of AmericdDOI: 10.1121/1.1371799

PACS numbers: 43.75.H@RDA]

I. INTRODUCTION computationally and experimentally. Thermoviscous losses

For several years, wave steepening has been known fﬁe more easily handled_in the frequency domain, allqwing
be partially responsible for the typically bright timbre of the slide to be broken up into many smaller elements without

loudly blown trombone tones. Beauchar(980 observed incurring excessive computational load. Also, wave steepen-

that differences in sound pressure levels between radiategd 'S more systematically applied throughout the entire

harmonics and corresponding harmonics in the mou'[hpiec'éﬂs‘trumem_nOt just in the slide. A model has been devel-

are not constant for all dynamics, as a linear model wouloOped that predicts well the radiated spectrum of the trombone

predict. An example of such a nonlinear response is shown iﬁ: several combinations of dynamic and pitch. The output of

Fig. 1, where the divergence of the two curves is the result o¥ e model is compared to experlmentally_ measured tones
amplitude-dependent behavior, rom the same trombone that the model is based on, with

Hirschberget al. (1996, documented shock waves at good success.
the bell of the trombone using a flow visualization technique.
They also suggested thgt the change in timbre due to t.hiﬁ. THE FREQUENCY-DOMAIN MODEL
observed wave steepening could be modeled by calculating
the outgoing pressure wave in the mouthpiece based on lin- The instrument being modeled was a King Cleveland
ear theory, steepening the outgoing wave appropriately, an@05 tenor trombone with a Vincent Bach 12C mouthpiece.
filtering the wave with a linear model of the horn to obtain The shape of the instrument was approximated with a set of
the radiated pressure. 152 cylindrical tubes; the lengths and radii of the cylinders
Msallamet al. (1997, developed a simple time-domain were varied to provide a match to the trombone H&ié@nik
model that includes wave steepening in the slide of the tromand Strong, 1979 All dimensions except those of the
bone. The slide was treated as a sin§lm long cylindrical mouthpiece were taken from Copley’s previous w(tR95
tube, and thermoviscous losses at the walls of the slide weren the same trombonéetailed dimensions are available in
applied prior to the wave steepening calculation. This simAppendix | of Thompson, 200p.
plified method of handling wall losses may have been A frequency-domain model of sound production was de-
adopted in order to avoid the numerous convolution sumsived by considering lossy wave propagation in the cylinders
encountered if the slide had been treated instead as a setafid pressure reflection at the cylinder junctions. Since only
many shorter elements. To obtain the radiated sound, thgteady, periodic waves were considered, the waves were rep-
steepened wave was processed by a linear filter representingsented as sums of harmonic components. Various param-
the bell. Although their results were encouraging, Msallameters, including reflection coefficients and impedances, were
et al, did not quantitatively compare the output of their specified only at harmonic frequencid€# detailed deriva-
model to that of a real instrument. tion of the model is given in Appendices C and D of Thomp-
The present research attempts to build on the work ofon, 2000.
Msallamet al,, by exploring the effect of wave steepening on Throughout this paper, the model is called linear when
sustained trombone tones in the frequency domain, bottwave steepening is ignored and nonlinear when wave steep-
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8 a0t where Z,., is the acoustic radiation impedance of an un-
§ wl baffled, plane circular piston in the end of a long cylindrical
o 50t tube (Beranek, 1996 The reflection coefficients of all cyl-
? el inders can be obtained by starting with E8). at the bell and
£ 0 alternately calculating Eq$3) and (4) back to the mouth-
o -0+ .
7 el —e— D43 —&— D41 piece. . _
An experimentally measured pressure wave in the
'9°0 ‘ 1’ ’ ‘ ‘ ‘ J mouthpiece serves as the input to the model. Let the sub-

2 3 H g " 1 1
frequency (kHz) script “mouth” represent the index of the cylinder whose
) ) ] input end is nearest to the position where the mouthpiece
FIG. 1. Difference between measured radiated SBke Figs. 3 and)&and

measured mouthpiece SP(see Fig. 2 at the pitch D4. D4-3 is a loud tone prgs.sure is known, and 1€, be a Complex, Fou“e,r co-
and D4-1 is a soft tone. The divergence of the two curves is evidence offficient of the measured pressure wave. This Fourier coef-
amplitude-dependent behavior. Only values at harmonic frequencies are ifficient can be separated into outgoing and incoming parts

cluded. using linear theory. The outgoing pressure in the mouthpiece
is

ening is included. Also, a time dependenceebf' is as- P mouth

sumed throughout and has been omitted in order to simplify Pf;outfﬁ, (6)

the notation. mouth

and the outgoing pressure at each of the subsequent cylinder
inputs is

A. The linear model

Pri1= PrTeijknLn

Y

1+ R,eknbn
The equations for the linear model are given for a single 1+Rpi1

frequency to simplify the notation. The subscriptefers to Equation(7) is calculated repeatedly to model the filtering

cylinder number, where £n<N andN=152. that occurs as the outgoing wave propagates through each
The trombone can be characterized acoustically in terms going propag 9

of the complex pressure reflection coefficients at the inpu{cyllnder in the model. The total pressure at the bell is

ends(the ends nearest to the mouthpiecgthe cylinders. At . 27y 41
i i i i 101 i Pbe||:P+eijkNLN e (8)
the input of a given cylinder, the reflection coefficient is N Zl .+ 1
R Py (1) At a sufficiently large distance from the bell, the on-axis
n

:P_,T’ pressure is approximately equal to the pressure that would be
radiated by a simple source having the same source strength.

+ - - - .
whereP,, and I.D” are the_ outgoing and incoming complex The radiated pressure can be expressed in terms of the total
pressure amplitudes, which can be treated as complex Fou-

. . ) . . inpupressure at the bell and the radiation impedance as
rier coefficients. Let us also define a dimensionless inpu

impedance :Pbe” jpow exp( e ©
Ak 2 Z el 47X ag : co "
7/ = n—-1 n—lZ (2)
: pPow n wherex,qis the distance from the plane of the bell, ands

the sound speed in air. From these predicted Fourier coeffi-

whereZ,, is the acoustic input impedano®,_; andk,,_; are . . .
n . P P n-1 n-1 cients, the far-field radiated pressure wave can be synthe-
the cross-sectional area and complex wave number of theZe d

adjacent cylinder nearest to the mouthpigsegjs the ambi-
ent density of air, andv is the angular frequency. At the
junction of two cylinders, pressure and flow are continuous ,

which implies that acoustic impedance is also continuousB: nclusion of wall losses

From these condition&nd after some algebrathe follow- Thermoviscous losses at the walls of the cylinders can
ing equations can be obtained: be included if we allow the wave number to be complex
711 valued(Kinsler et al,, 1982:
_ a—2jkplpy| Znt+1
R,=e < ”(m 3 ®
n+1 knzc——jan7 (10)
and .
where

,_Anlknl(1+Rn

Zn_ Ankn 1—Rn ' (4) .= 1 [77effw (11)
" rCo 2pg

whereL,, is the cylinder length. The dimensionless radiation
impedance at the bell is and
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. . . Bma{& p:rrwoutl{t)
are the attenuation coefficient and sound speed associated
with these losses. In these expressionsis the cylinder  The shock formation distance is inversely related to fre-
radius; and quency and to acoustic pressure amplitude through the maxi-
< 2 mum value of the time derivative of the outgoing mouthpiece
1+(y—1) \/C— (13 pressure wave in the denominator. This frequency depen-
P dence appears in the second term on the right-hand side of
is an effective viscosity, wherg is the shear viscosity of air, EQ.(14) aswy,, and the amplitude dependence appears in the
v is the adiabatic constant of ai,is the thermal conductiv- Sums as pressure squared. The nonlinearities described by
ity of air, andCp is the specific heat of air at constant pres-this equation are maximal at large pressure amplitudes and at
sure. high frequencies, or equivalently, at small shock formation
distances.
It should be noted that Eq14) accounts for changes in
The discussion of wave steepening that follows applieshe outgoing Fourier coefficients due only to wave steepen-
to the case of an outgoing wave in a single cylinder; theing and thermoviscous losses in the bulk of the fluid; phase
cylinder number indexy, is omitted and a harmonic number change due to propagation and losses at the wall of the cyl-
index, h, is used instead to handle the nonlinear interactiorinder were already included in E¢7). Wall and bulk losses
of harmonics, where £h<H and H=200. The choice of are handled asymmetrically because wall losses are best ap-
200 harmonics was somewhat arbitrary and limited by theplied to both the outgoing and the incoming waves via the
available computational resources. A much greater numbegomplex wave number, while bulk losses are needed in the
of harmonics would be required in order to accurately modebteepening of the outgoing wave in order to control the am-
shock formation. plitude of the high-frequency harmonics during shock forma-
The Burgers equation predicts the wave steepening thdion.
occurs as an outgoing pressure wave propagates through A good numerical method for solving EQL4) is fourth
each cylinder in the linear model. In the frequency domainorder Runge—Kutta. Since this method requires real equa-
this equation igGinsberg and Hamilton, 1998; Appendix D tions of real variables, this equation must be separated into

Neft= 7

C. The nonlinear model

of Thompson, 2000 real and imaginary components:
d Swi, By kl d iy
&P:: 2 ~ .3 Ph pOCO 4 hzl (Ph’Ph h’) d—XXh=—0hXh—q’>h 2 (Xh’Yh—h’+Yh’Xh—h’)
7 h'=1
+2 > [Pﬁ,(P,f,h)*]], (14) +2 > (Yh/Xh,h—Xh,Yh,h)] (19
h'=h+1 h'=h+1

wherex is the distance from the input end of the cylindey; and
is the angular frequency of harmortic

h—-1
d
1 4 K 1 1 —Yh=—0th+¢h 2 (Xh,Xh,h,—Yh,Yh,hr)
5= —| = p+ S 15 dx T
o<3” ”B) Po(cv cp) 19 =
H
is the diffusivity of sound(Hamilton and Morfey, 1998
where 73 is the bulk viscosity of air, an€,, is the specific +2h,§+1 (XnrXnr—n+ Y Ynr—n) (20
heat of air at constant volume;
where the substitutions
oyt 1 16
=72 (16) Xn+[Yn=Py (21)
is the coefficient of nonlinearity; antl represents the com- and
plex conjugate. The first term on the right-hand side of Eq.
(14) is proportional to the attenuation in the bulk of the fluid b= Pon 1 (22)
) ) =32
(Ginsberg and Hamilton, 1998 pPoCo
5wﬁ have been made to simplify the notation, and the Fourier
9h=zg. (17)  series has been truncatedHaharmonics.

Wave steepening can be included in the linear algorithm
which reduces the amplitudes of the high-frequency harmonas follows: At the input of the cylinder in the mouthpiece
ics as they increase due to wave steepening. The second temere the measured pressure wave is known, the outgoing
on the right-hand side of E¢14) is inversely related to the pressure coefficients are computed from E). If desired,
shock formation distancéBlackstocket al, 1998 the shock formation distance can then be computed from Eg.
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(18). The maximum value of the time derivative in this equa-1ll. EXPERIMENTAL VERIFICATION
t?on is best obta_ined by evgluating t_he anqutical time derivaA_ Collecting the data
tive of the Fourier synthesis equation using a large number
of samples per period and taking the maximum sample The model was thoroughly tested with experimentally
value. The outgoing mouthpiece pressure coefficients arBeasured tones from the same trombone that the model is
modified by Egs.(19) and (20), which models the wave based on. In an anechoic chamber, the trombone was
steepening that would result from a propagation distancé&ounted at a comfortable height for playing, with the bell
equal to the length of the cylinder. In this calculation, theoriented horizontally. The diaphragm of a PCB 112A23 mi-
algorithm is allowed to take a maximum spatial step of 5%crophone was mounted flush with the inside wall of the
of the shock formation distance in order to prevent largemouthpiece by means of a hole drilled through the wall. The
numerical error. Equatioli7) is then computed to account Signal from this microphone was recorded to one channel of
for phase change, losses at the wall, and filtering at the cyl digital audio tape. A 1/2Larson—Davis 2540 microphone
inder junction. The process is repeated for each cylinder ifvas mounted on-axis 2.85 m in front of the bell, and the
the model. After wave steepening has been calculated for thgignal from this microphone was recorded to the second
final cylinder at the bell, the pressures at the bell and in th&hannel of the tape. The bandwidth of the Larson—Davis
far field are computed from Eqé8) and (9). microphone is approximately 20 Hz to 20 kHz, and the us-
Although the superposition of outgoing and incoming able bandwidth of the PCB microphone was measured to be
waves is not strictly valid for a nonlinear system, Msallamapproximately 100 Hz to 16 kHz. Both microphones were
etal. (1997 concluded that errors due to this oversightcalibrated so that accurate pressure values could be obtained
would be less than 5% for harmonics below the 30th. Theyrom the recorded data. Sustained tones were recorded at the

also reported that steepening the incoming wave did not sigPitches B2, F3,B>3, and D4 at various dynamics. The
nificantly affect their results. This supports the suggestion ofample rate was 44.1 kHgDetails of the experimental ap-
Hirschberget al. (1996, that the gain in high-frequency en- paratus, calibration, and procedure can be found in Appendix
ergy due to wave steepening is mostly radiated at the belG of Thompson, 2000.

implying that steepening need be calculated for only the out-

going wave. B. Preparing and processing the data

Six tones at the lowest pitch and three tones at each of
the other pitches were chosen for analysis. These tones
ranged from the softest to the loudest that the player could
produce comfortably. Each of the tones was labeled with its

Several tests were performed to determine the reliabilitypitch name and octave number and with a number represent-
of the model; each test confirmed that the model was proping the dynamic at which it was played. The dynamics were
erly implemented. Errors on the order of a few dB are toler-numbered in increasing order, from soft to loud. For ex-
able since the phenomenon of interest—the gain in highample, the tone D4-1 is the softest tone analyzed at the pitch
frequency energy due to wave steepening—is on the order d@ in the fourth octave.
tens of dB(see Fig. 1 A steady segment of 10 periods was extracted from each

The input impedances of three theoretical tubeofthe Bb2 tones. The numbers of periods extracted from the
shapes—a cylindrical pipe, a conical horn, and an exponertones at the other pitchésee Table)lwere chosen so that all
tial horn—were calculated based on approximations usingegments had approximately the same duratierB.5 ms.
sets of contiguous cylinders. The impedance magnitudes anthe measured fundamental frequendisse Table)l of these
phases were compared to the analytical regHlistcher and  tones agreed well with the fundamental frequencies predicted
Rossing, 1991 with good agreement. The error in the cylin- by linear theory(Copley, 1995, and were therefore used in
drical case was negligible. The exponential case had the larghe model computations. The complex Fourier coefficients of
est error—on the order of a few dB for frequencies below 20the mouthpiece and the far-field radiated waves of each seg-
kHz when using 150 cylinders. Admittedly, a more accuratement were calculated. Because all harmonics above a certain
(and mathematically complgéxodel could be implemented frequency(see Table )l had amplitudes less than the noise
using cones instead of cylinders. floor, data above that frequency were discarded. Figure 2

The input impedance of the trombone at the mouthpiecshows the mouthpiece spectra for the tones D4-1 and D4-3.
was calculated and compared to measured and calculated re- The Fourier series of each segment of mouthpiece data
sults from a different model of the same instrum@Dopley, was processed by the model to predict the measured pressure
1995. The resonance frequencies and corresponding impeat the far-field location. Each tone was processed twice—
ance magnitudes agreed well. once neglecting wave steepening and once including wave

Wave steepening of a sinusoid was calculated over onsteepening. The shock formation distante=e Table)| the
shock formation distance using 10 and 20 spatial steps. Th8PLs of all Fourier coefficientgelative to 20uP3, the er-
differences in harmonic amplitudes between the two casesrs in SPLs between the measured and predicted far-field
were a fraction of a dB. This suggests that allowing a maxi-coefficients, and the synthesized far-field pressure waves
mum spatial step of 5% of the shock formation distancewere calculated for all tonegComplete experimental and
keeps the numerical error of the Runge—Kutta algorithmcomputational data are given in Appendix H of Thompson,
within acceptable limits. 2000)

D. Testing the model
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TABLE I. Tone parameters. The shock formation distanses Eq.(18)]

were computed from the outgoing mouthpiece pressures. For comparison, 80
the length of the trombone is 2.72 m. The mouthpiece signal cutoff frequen- +
cies were the frequencies above which noise in the mouthpiece signal pre- 707
vented accurate estimation of the harmonic amplitudes. They are also the T

maximum frequencies used in computing the errors in Fig. 7.

Radiated pressure, D4-1

60+

~O~ measured —@— nonlinear —A— linear

a +
Shock Mouthpiece 2 o7
Fundamental Number of formation  signal cutoff @ 40_"_
frequency periods distance frequency 1
Tone (Hz) analyzed (m) (kHz) 30
Bb2-1 116.98-0.04 10 44 0.936 20 T R ) ) | )
Bb2-2 117.0720.04 10 11 1.874 00 05 10 15 20 25
Bb2-3 118.96-0.04 10 45 2.735 frequency (kH2)
Bb2-4 119.58-0.04 10 3.0 2.990
Bb2-5 118.68-0.04 10 2.0 4.154 FIG. 3. Radiated pressure spectra for the tone D4-1. The SPLs predicted by
Bb2-6 117.04-0.04 10 0.90 4916 the nonlinear and linear models are compared to the SPLs measured on-axis
F3-1 177.680.05 15 34 1.422 2.85 m in front of the bell. Only values at harmonic frequencies are in-
F3-2 177.16:0.05 15 3.3 2.658 cluded. Radiated wave forms are shown in pldts-(d) of Fig. 5.
F3-3 176.7&0.05 15 1.5 3.182
Bb3-1 238.830.07 20 20 1.672
Bb3-2 237.03:0.07 20 4.7 2.134 . .
Bb3-3 235,51 0.07 20 15 3908 .At ex.tremely ond ijnamlcs corresponding to shock fo'r—
D4-1 300.82-0.09 25 16 2106 mation distances significantly less than the length of the in-
D4-2 297.65-0.09 25 3.4 2.679 strument, the nonlinear model tends to overestimate the am-
D4-3 296.13-0.09 25 16 3.850 plitudes of the high-frequency harmonics. This problem has

been reported previously for a similar computati@mder-
son and Vaidya, 1991 This error is mostly due to the trun-

cation of the Fourier series at 200 harmonics. Another con-

The resuls from the softest and loudest tones at tnd oot MO0 T O O 1S I8EL S ot done
pitch D4 (tones D4-1 and D49y3typify the results obtained . b 9 ; . . .

. : simultaneously for the outgoing wave in a given cylinder.
for all other tones. They will be used as examples in th

discussion that follows. ®rhis factor may be lessened by dividing the longest cylinders

Both the linear and the nonlinear models predict ap—m the approximation into several shorter cylinders, thereby

proximately the same radiated spectrum for the soft {see distributing the wall losses more uniformly.

Fig. 3. In the case of the loud tor(see Fig. 4, however, the Figure 7 compares the errors in SPLSs from both models
; . for all 15 tones. The nonlinear model clearly does better than
nonlinear model predicts the measured spectrum reasonably . - .
the linear model at predicting the pressure at the far-field

well, while j[he linear model sev_erely underestimates thqocatlon. The anomalies in the dafie., Bb 2-4 and F3-3
amount of high frequency energy in the measured spectrum, . o .
. . can be attributed to noise in the mouthpiece data that was not

A comparison of the measured and predicted pressure .
completely removed before processing.

waves confirms the superiority of the nonlinear model. For In informal listening tests, the tones generated by the

the soft tong/see plots(b) through(d) of Fig. 5], the waves nonlinear model were found to be similar in timbre to the

predicted by both models have amplitudes and phases similar . I h
to the measured wave. In the case of the loud {see plots experimentally measured tones, but the tones generated by

(b) through (d) of Fig. 6], however, the nonlinear model the linear model were found to be lacking in brightness.
predicts an amplitude that is reasonably correct, while the
linear model predicts an amplitude that is much too small.

C. Selected results

Radiated pressure, D4-3

100
Measured mouthpiece pressure T -O— measured —— nonlinear —&— linear
180
1604 -8~ D43 —a— D4-1
o
z
=
g 140+ %
" 1
@ 120+
100+
T 404+——+————+—+—+—+—+——t+—t——F———
80 t t t t f f + [¢} 5 10 15 20
0 1 2 3 4 frequency (kHz)

frequency (kHz)
FIG. 4. Radiated pressure spectra for the tone D4-3. The SPLs predicted by
FIG. 2. Measured mouthpiece pressure spectra for the tones D4-1 and D4-the nonlinear and linear models are compared to the SPLs measured on-axis
Only values above the noise floor and at harmonic frequencies are include@.85 m in front of the bell. Only values at harmonic frequencies are in-
Mouthpiece wave forms are shown in plgg of Figs. 5 and 6. cluded. Radiated wave forms are shown in pid®s-(d) of Fig. 6.
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Mouthpiece pressure, D4-1 Mouthpiece pressure, D4-3

10
= ® 54
g %
=3 = _
S e 0
i i o
5 (a) measured 5 -10-+ (a) measured
-3 t i t } t } + } t } + } + -15 + } t + t } t } t } + 4 +
0 1 2 3 4 5 6 0 1 2 3 4 5 6
time (ms) time (ms)
Radiated pressure, D4-1 Radiated pressure, D4-3
15
g (b) measured E 10+ (b) measured
o
5 2 s+
3 3
g $ o
o o
: + + t t } + t t t t + t
Q-ﬁ, E 10—+ (c) nontinear
o o
2 5 5+
3 3
5 2 O0¢
—t—t—t—t—t——t— —
F 027 (d)linear & 101 (d)linear
o 014 <
g o+ s 5t
95’_ 014 g 0o+ T~ ]
-0.2 + + + + t t t 4 } } t } t 5 ; I ' " ' ' ; } ; i + + ;
0 1 2 3 4 5 6 0 1 2 3 4 5 6

time (ms) time (ms)

FIG. 5. Acoustic pressure wave forms for the tone D4alMeasured wave  FIG. 6. Acoustic pressure wave forms for the tone D4aBMeasured wave

in the mouthpieceb) Measured wave on-axis 2.85 m in front of the béd). in the mouthpiece(b) Measured wave on-axis 2.85 m in front of the béd).

Radiated wave computed from the nonlinear mot§lRadiated wave com-  Radiated wave computed from the nonlinear mogIRadiated wave com-

puted from the linear model. DC offset has been neglected. The mouthpiegeuted from the linear model. DC offset and frequencies above 20 kHz have

spectrum is shown in Fig. 2. The radiated spectra are shown in Fig. 3.  been neglected. The mouthpiece spectrum is shown in Fig. 2. The radiated
spectra are shown in Fig. 4.

IV. CONCLUSIONS
The results are indeed encouraging. For small-amplitude

tones, both the linear and the nonlinear models predict well ,
the measured data. At large amplitudes, the nonlinear model Error comparison

is reasonably accurate in its predictions, while the linear 10 ; ; :
model severely underestimates the amplitudes of the high- | E | -
frequency harmonics. However, at shock formation distances g ] |1 IT] I I T T I
significantly less than the length of the instrument, the non- 'g 10T ; ; ;
linear model tends to overestimate the amplitudes of the 3 1 i i i
high-frequency harmonics. 5 ¢
The model may be improved upon by using a greater 0T (@) nonlinear 3 5 5
number of cylinders in the approximation, which would ef- | S ST SR S
fectively distribute the losses at the walls of the cylinders + :
more uniformly. Including more harmonics in the computa- °"1 ; |
tion would help to reduce numerical error in the wave steep- § ] ] i J : I 1
ening calculation. Using mouthpiece data with a lower noise g + {
floor would permit evaluation of the model at higher fre- 5 ‘20‘; : i
guencies. A more accurate model could be formulated using 4| (5 linear |
a set of contiguous cones instead of cylinders. T ; } ‘:
Although direct comparisons between the present re- 0+ —F—+—+—+—+—+—"+—F—"+——
search and the work of Msallamt al. (1997, cannot be TR A R S S N S A
O o o o a o O m m

made conclusively, this research builds upon their work by
providing an alternate method for including wave steepeningic. 7. Comparison of the average errors between measured and computed
in a computational model of trombone sound production;harmonic SPLs from both models. Each line ranges from the mean error in
Thermoviscous wall losses are handled in a more realisti PLs minus the standard deviation of the error to the mean plus the standard

. . . . eviation. Only frequencies below the mouthpiece signal cutoff frequencies
manner, wave steepening is applied systematically to the e

Het ) Nsee Table) were included. The different dynamics at each pitch are num-
tire instrument, and the accuracy of the model is analyze@ered in increasing order, from soft to loud.
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guantitatively through comparison of its output to experi- 75=0.67=1.09x10"° Pas, (A8)
mentally measured tones.

7er=3.90x 10" ° Pas [see Eq.(13)], (A9)
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