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The purpose of this study was to investigate a numerical method for calculating impedances and 
standing wave patterns of flute structures. To this end, the physical dimensions of flute joints and 
tone holes were used to compute impedance and standing waves as a function of frequency for 
several different fingerings. Numerically computed resonance frequencies for head joint, middle 
and foot joints, and complete flute are compared to experimentally measured values. Computed 
pressure standing wave patterns for two fingerings of A 6 are compared to experimental values. 
Reasons for the observed discrepancies between the predicted and experimental frequencies are 
discussed. 

PACS numbers: 43.75.Ef, 43.20.Mv 

INTRODUCTION 

A knowledge of the acoustic impedance of flute struc- 
tures may be of assistance in understanding their intonation, 
tonal quality, and interaction of the excitation with the bore. 
A method for numerically calculating impedances may be a 
useful supplement to other experimental and theoretical 
methods such as impedance measurements and perturbation 
techniques. Sufficient experimental data for musical instru- 
ment structures of interest must be available if a reasonable 

determination of the accuracy of a numerical method is to be 
made. 

A successive impedance procedure was derived by Ri- 
chardson {1929)for calculating resonance frequencies of 
bores with tone holes. Benade {1960) applied transmission 
line theory to bores having uniformly spaced tone holes and 
described a method for obtaining the positions of the tone 
holes of a cylindrical woodwind. Nederveen { 1964) derived a 
method to calculate positions and diameters of tone holes for 
a clarinet. Nederveen and de Bruijn {1967) modified Neder- 
veen's {1964) cylindrical-tube clarinet calculations to calcu- 
late the hole positions of the conical oboe. Nederveen and de 
Bruijn { 1967) also included the effects of viscous and thermal 
losses at the walls. Nederveen {1969) compiled all these 
methods. Nederveen {1973)used his successive impedance 
approach to calculate flute passive resonance frequencies in- 
cluding the wall loss effects, which were compared with 
measured values. Coltman {1979)applied similar techniques 
to calculations of flute resonance length and distribution of 
acoustic pressure. Plitnik and Strong {1979) studied input 
impedances for the oboe and obtained curves in qualitative 
agreement with experimental curves. Lyons {1981)com- 
bined wave equation, lumped-line, and perturbation meth- 
ods to obtain resonance frequencies of a recorder. 

In order to apply successive impedance methods for cal- 
culating the input impedance of bores with tone holes it is 
necessary to have appropriate tone hole impedance data. 
Benade and Murday {1967) made measurements leading to 
empirical expressions for tone hole end corrections in terms 

of tone hole parameters. Nederveen (1973) used the Benade 
and Murday { 1967) expressions for effective tone hole length 
in terms of tone hole parameters. Coltman {1979) measured 
reactances for various open tone hole and key combinations; 
Coltman also measured the cavity effects of closed holes. 
Keefe {1982a)carded out an extensive theoretical investiga- 
tion of tone holes, the results of which were compared with 
his own experimental measurements (Keefe, 1982b) and 
those of Coltman {1979) and Benade and Murday {1967). 

The current work employs a refined version of the Plit- 
nik and Strong {1979) method to numerically calculate reso- 
nance frequencies and pressure distributions for a flute. The 
numerical results are compared to experimental results to 
check the validity of the approach. The paper consists of six 
sections: numerical method, resonance frequencies of the 
complete flute, resonance frequencies of the middle and foot 
joints, resonance frequencies of the head joint, pressure and 
power distributions, and a discussion. 

I. NUMERICAL METHOD 

The flute bore is represented by a series of short cylin- 
drical sections, as shown in Fig. 1. The impedance at one end 
of a section can readily be written in terms of the impedance 
at the opposite end and the dimensions of the section. The 
impedance at the far end of the bore is taken to be the radi- 
ation impedance at a particular frequency f. This becomes 
the load impedance from which the input impedance {at the 
same frequency) is calculated for the first section along the 
bore. The input impedance for the first section then becomes 
the load impedance for the second section, and the process is 
continued until the last section is reached at the embouchure 
end of the bore. Whenever a tone hole is encountered, the 

appropriate impedance {which depends on whether the hole 
is opened or closed) is added to the net bore impedance at the 
center of the tone hole. When the input impedance of the 
final section is computed, the input impedance of the entire 
bore is known at one frequency f. By repeating the above 
process at many different frequencies, a plot of impedance 
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FIG. 1. Approximation of flute bore with contiguous cylindrical sections. 
Maximum section length is l; a shortened section length l' precedes the 
closed tone hole. The section on either side of the tone hole center has a 

length equal to the hole radius a. The bore is enlarged and a small volume is 
placed in parallel with the bore to represent the effects of a closed tone hole. 

versus frequency can be constructed. The cross-sectional 
areas of the bore and the position, size, and nature of the tone 
holes are determined by direct measurement and are input as 
data to a computer program. The method is basically that of 
Plitnik and Strong (1979), and further details can be obtained 
there. [This is an analysis program, in contrast to the synthe- 
sis procedures discussed by Benade (1960) and Nederveen 
(1964).1 

Viscous and heat conduction losses at the bore walls 

were incorporated by Plitnik and Strong (1979), but no cor- 
rection was made for the decrease in wave speed at low fre- 
quencies caused by these losses. The decrease in wave speed 
due to losses is incorporated here and has the primary effect 
of lowering the fundamental mode frequency by a greater 
fractional amount than it does the higher modes. Losses at 
the bore walls are arbitrarily chosen to be 1.3 times those for 
the hard wall case and those at tone hole walls are arbitrarily 
chosen to be 2.6 times the hard wall case, to account for 
increased losses in a bore with tone holes. 

Plitnik and Strong (1979) expressed the inertante of 
open tone holes in terms of length correction formulas from 
Benade and Murday (1967). The measured length correc- 
tions of Coltman (1979) are used here. Plitnik and Strong 
(1979) represented a closed tone hole as a shunt compliance 
having a volume equal to that of the physical volume of the 
hole. The compliance was positioned on a smooth continu- 
ation of the bore at the center of the tone hole, where it was 
sensitive to pressure antinodes. At pressure antinodes, such 
a compliance produces an effective lengthening of the bore, 
which lowers the modal frequencies. Nederveen and van 
Wulfften Palthe (1963) have pointed out that flow stream- 
lines penetrate to some extent into the enlargement of the 
bore at a closed tone hole. This tone hole enlargement of the 
bore, which results in a lowered bore inertante, can be repre- 
sented with a negative series inertante in addition to the 
shunt compliance. At flow antinodes, such an inertante pro- 
duces an effective shortening of the bore, which raises the 
modal frequencies. A closed tone hole for these calculations 
is represented in Fig. 1. Two sections of the bore on either 
side of the tone hole center are enlarged slightly to represent 
series inertance sensitive to volume flow and shunt com- 

pliance sensitive to pressure. An additional volume at the 
hole center represents an additional compliance sensitive to 
pressure and is necessary because the inertance and com- 
pliance "volumes" are different. Experimental parameters 
of Coltman (1979) for closed tone holes are used to obtain the 

FIG. 2. Schematic ofembouchure hole region of flute showing embouchure 
hole impedance Ze, cork cavity impedance Zc, and tube impedance, Zr. Zi 
is the impedance seen at the inside "end" of the embouchure hole. 

series and shunt volumes for the calculations. Reactance ef- 

fects of the tone hole pads are incorporated to the extent that 
they are incorporated in the Coltman (1979) parameters. 

The manner in which normal mode frequencies were 
calculated can be seen by referring to Fig. 2. The impedance 
at the inside "end" of the embouchure hole is given by the 
parallel combination of the embouchure hole impedance Ze, 
the cork cavity impedance Zc, and the flute tube impedance 
ZT as 

Z, = (ZcZrZ•)/(Z•Zc + Z•Zr + ZcZr). (1) 

A normal mode for a parallel combination such as this may 
be defined as that condition in which the sum of the flows at 

the junction is zero. This condition requires that the input 
admittance at the junction be zero or that Z i be infinite. As is 
conventionally done for the case in which losses are present, 
a normal mode was defined as that condition in which the 

reactive part of the impedance vanishes near an impedance 
maximum. However, the normal mode frequencies so ob- 
tained are equal within less that O. 1% to those obtained from 
taking Z i maximum. 

II. FLUTE RESONANCE FREQUENCIES 

Dimensions for the body and tone holes of a Powell 
flute # 1578 were used in the calculations so the results 
could be directly compared with the experimental data of 
Coltman ( 1966} for the same instrument. The dimensions of 
the embouchure hole were those of a round-cornered rectan- 

gle 12.5 X 10.8 mm. In the experiments (Coltman, 1966), the 
embouchure hole was covered to an extent of 5.8 mm, leav- 
ing an uncovered gap of 5.0 mm width. For the calculations 
an open embouchure area of 55.6 mm 2 was used; this was 
obtained by subtracting 3.45 mm 2 for each of the two round- 
ed corners from the rectangular area of 12.5X 5 = 62.5 
mm 2. It was assumed that the open area was circular, with an 
equivalent diameter of 8.42 mm; this places the "computa- 
tional" embouchure hole edge 4.21 mm from its center, as 
compared with the 6.25 mm in the actual instrument. The 
effective length of the embouchure hole was adjusted (to 7.1 
mm) until the calculated frequency was equal to the mea- 
sured frequency for the note C4. This should be a reasonable 
place to match frequencies because all tone holes are closed 
for C4 and any discrepancies in the experimental excitation 
method should be minimal. 

Calculated frequencies for the first and second mode of 
notes in the first octave are shown in Table I. Deviations 

from an equal tempered A440 scale of calculated and mea- 
sured frequencies also appear in Table I. Octave stretching 
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TABLE I. Calculated first- and second-mode resonance frequencies (in Hz) for first octave of the flute. Deviations (in cents) from equal tempered A440 scale 
for calculated and measured values are shown. Octave stretching (in cents) between first and second modes for calculated and measured values is shown. 
Measured deviations and octave stretchings are from Coltman (1966). 

First Second Calculated Measured Calculated Measured 

Note mode mode deviation deviation stretching stretching 

Cn 255.6 520.0 -- 40 -- 40 29 30 
Dn 287.8 582.5 - 34 - 30 20 19 
E 4 324.1 652.6 -- 29 -- 20 11 15 
F 4 344.6 693.8 -- 23 -- 15 11 12 
G 4 390.8 789.6 -- 5 -- 3 17 17 
A 4 440.4 893.6 2 1 24 22 
B4 496.6 1009.8 9 11 28 22 
C5 529.0 1075.0 18 24 27 22 

between first and second modes also are shown for calculat- 

ed and measured frequencies. 
The fundamental frequency components of notes D5 

through Ca are fed primarily by the interaction of the air jet 
and the second mode of the air column. For notes D6 
through G6 the fundamental frequency is similarly fed by 
higher modes of the air column. Calculated "feeding" mode 
frequencies for notes D5 through Ga on the flute appear in 
Table II, along with deviations from an equal tempered 
A440 scale for calculated and measured frequencies. Tone 
holes 1-7 and 14 were open for Da, 1-4 and 10 were open for 
Ea, 1-5 and 11 were open for Fa, and 1-7 and 13 were open 
for G6. (This description is in terms of tone holes numbered 
from 1 at the bottom of the foot joint to 16 at the top of the 
middle joint. The G# holes are numbered 8 and 9 in this 
description.} 

III. MIDDLE AND FOOT JOINT RESONANCES 

Calculations were made for the cylindrical portion of 
the flute, consisting of the middle and foot joints and stopped 
at the tuning slide. The length of the tuning slide used in the 
calculation was adjusted (to a final value of 30.3 mm) until 
the calculated first-mode frequency agreed with the mea- 
sured value for the all-holes-closed configuration normally 
used to play C4. Calculated and measured deviations from 
odd integral multiples of the first-mode frequency are shown 

TABLE II. Calculated resonance frequencies (in Hz) for the second and 
part of the third octave of the flute. Deviations (in cents) from equal tem- 
pered A440 scale for calculated and measured values (Coltman, 1966) are 
shown. 

Calculated Measured 

Note "Feeding" mode deviation deviation 

D5 588.0 2 1 
E• 652.6 -- 17 -- 5 
F5 693.8 -- 11 -- 3 
G• 789.4 12 18 
A5 894.0 27 22 
B5 1010.3 38 33 
C6 1075.0 46 48 
D 6 1196.0 30 38 
E6 1346.0 35 .-. 
F 6 1429.0 39 41 
G6 1609.0 44 47 

for note fingerings C4, E4, G4:•: , and C5 in Table III. No 
discrepancies are shown for the first mode of each note since 
it serves as a reference for the higher modes. The calculated 
first-mode frequencies for E4, G4:•:, and C• differ from the 
measured values by - 13, 1, and 7 cents, respectively. 

IV. HEAD JOINT RESONANCE FREQUENCIES 

Fletcher et al. (1982) have described a method for char- 
acterizing the acoustic properties of flute head joints by mea- 
suring the quantity F n -- fn/(2n -- 1). In this expression,fn is 
the frequency of the nth impedance maximum as seen from 
the end of the short (301.5 mm} cylindrical tube attached to 
the head joint. The pattern of Fn is quite sensitive to the head 
joint geometry and so provides a further means of checking 
computational accuracy. 

A calculated Fn curve for an Armstrong head joint with 
a completely open embouchure hole is shown in Fig. 3, along 
with the corresponding measured Fn curve. The effective 
area of this embouchure hole was taken to be 111.2 mm 2 and 

the embouchure hole effective length was adjusted {to 9.7 
mm} in the calculations so the second impedance frequency 
matched that of experiment. 

TABLE III. Deviation (in cents} of higher mode frequencies from odd inte- 
gral multiples of first-mode frequency for flute stopped at the tuning slide. 
Measured data are from Coltman ( 1966}. 

Fingering 
and Calculated Measured 

first mode (Hz) Mode deviation deviation 

172.7 2 --2 -- 1 

3 --4 --6 

4 7 11 

5 7 7 

E 4 1 ...... 
238.6 2 -- 26 -- 20 

3 --13 --8 

4 -- 29 -- 22 

G4# 1 ...... 
343.5 2 -- 24 -- 9(?) 

3 --44 -- 28 

C5 1 ...... 
531.0 2 -- 16 -- 9 
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FIG. 3. Experimental and numerical signatures for an Armstrong head 
joint. 

V. PRESSURE AND POWER DISTRIBUTIONS 

The pressure distribution in a tube with a series of open 
and closed tone holes may be quite sensitive in some in- 
stances to a particular fingering. Two alternate A 6 fingerings 
for a flute are known to produce rather different playing 
characteristics; with the D# key closed A 6 is more difficult 
to sound than with the D# key open. Numerical calcula- 
tions of pressure distributions at resonance frequencies were 
made for the two alternate A 6 fingerings (tone holes 1-5, 8- 
10, and 14 were open for one fingering; the D # key closed 
tone hole number 3 for the other fingering). Experimental 
probe tube measurements were made on a flute excited sinu- 
soid•lly by a small loudspeaker in the vicinity of the embou- 
chure hole, which was covered to an extent similar to that of 
a player's lip when sounding t 6 (the outside diameter of the 
probe was 2.5 mm}. The probe was moved in and out of the 
flute to obtain rough measures of pressure maxima and mini- 
ma and their positions relative to the cork position. 

Relative pressure was calculated at successive points 
along the bore of the flute. Pressure was calculated at reso- 
nance frequencies and at neighboring frequencies of interest. 
The embouchure hole was taken to have an area of 38 mm 2 

and a length of 7.8 mm for the calculations to be consistent 
with the experimental setup. This gave resonances at 1780 
Hz for the open D # fingering of A 6 and at 1800 Hz for the 
closed D# fingering. Figure 4 shows a calculated standing 
wave for pressure at a frequency of 1780 Hz for A6, with the 
D # key open. There is some penetration of the wave beyond 
the first open tone hole and into the open tone hole region. 
The pressure wave is quite consistent with Fig. 6 from Colt- 
man (1979)and is in reasonable agreement with the probe 
tube data when considering the 'roughness of these data. 
(Crosses in Fig. 4 show the probe tube data and circles at the 
bottom show positions of open holes.) 

Power at each point in the bore was calculated as 

Power = pressure X flow = (p2/2)(Re Z)/IZ I •. (2) 
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FIG. 4. Calculated pressure and power distributions in flute bore when fin- 
gered for A 6 with open D# key. Resonance frequency was 1780 Hz. Circles 
mark positions of open holes. Experimental values are shown by crosses. 

The power is the rate at which the acoustical wave supplies 
energy to some point in the bore. Relative power is the frac- 
tional part of the power at the input impedance transmitted 
to some point in the bore. Relative power curves are calculat- 
ed as a percentage of the power at the embouchure hole, 
where the relative power is set equal to 100%. (If the input 
impedance were defined at some other place in the bore the 
relative power would be maximum at that point and falling 
off in either direction.) A relative power curve at a frequency 
of 1780 Hz is shown in Fig. 4. 

Plots of pressure and power at frequencies of 1750 and 
1810 Hz produced patterns very similar to those in Fig. 4 
and are not shown here. The standing wave is not very sensi- 
tive to frequency because the impedance looking into the 
open tone hole portion of the bore at the C# tone hole (num- 
ber 14) mismatches the characteristic impedance of the tube 
at all the frequencies. The sound power reflection coefficient 
looking into the lower portion of the bore at the C# tone 
hole is defined as 

RC = [(Z• -- Zc)/(Z• + Zc)[ •, (3) 
where Z• is the impedance looking into the lower part of the 
bore and Zc is the characteristic impedance of the cylindri- 
cal portion of the flute. The power reflection coefficient so 
defined is shown in Fig. 5 and indicates that over 80% of the 
power is reflected at frequencies of 1750-1810 Hz, which 
accounts for the similar standing wave patterns. 

Figure 6 shows a calculated standing wave for pressure 
at the resonance frequency of 1800 Hz for A6 with the D # 
key closed. Clearly, more of the wave has propagated into 
the lower portions of the bore due to a better impedance 

100 

"" 80 
z 

•- 60 

FREQUENCY (HZ> 

FIG. 5. Calculated power reflection coefficient looking into open hole por- 
tion of bore at C# hole for open D# key fingering of A6. 
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FIG. 6. Calculated pressure and power distributions in flute bore when fin- 
gered for A 6 with closed D# key. Resonance frequency was 1800 Hz. 

match. Figure 7 shows the power reflection coefficient at the 
C# tone hole for the closed D# key fingering. It might be 
anticipated that even more penetration would result at a low- 
er frequency, where the power reflection coefficient is least. 
Figure 8 shows a standing wave at a frequency of 1740 Hz, at 
which power reflection is least. Figure 8 is consistent with 
Fig. 7 from Coltman (1979). More power penetrates into and 
is lost from the lower portion of the bore in the latter case. 
The standing wave at the embouchure hole is too low to be 
useful for sustaining oscillation in this "worst" case, as noted 
by Coltman (1979), and A 6 with this fingering is nearly im- 
possible to sound. 

VI. DISCUSSION 

We now consider discrepancies between the experimen- 
tal data and the numerical calculation, and some factors that 
may have contributed to them. Backus {1974) has pointed 
out that the external excitation method has some limitations 
when used to excite woodwinds. Backus was able to obtain 

good frequency data for the normal modes of a clarinet, but 
the method does not provide quantitative impedance ampli- 
tude data. However, Coltman's flute data {19661, with which 
the numerical data are compared, involve only normal mode 
frequencies and so the external excitation data Coltman ob- 
tained should be adequate for the comparisons made here. 

For the complete flute, calculated frequency deviations 
were all within 12 cents of the measured deviations. {Fre- 
quency deviations for both calculated and measured cases 
are with reference to an equal tempered A440 scale. Fre- 
quencies were calculated to within a tenth of a percent, 
which means that deviations must be 2 cents or larger to be 

FREQUENCY (HI) 

FIG. 7. Calculated power reflection coefficient for closed D# key fingering 
of A6. 
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FIG. 8. Calculated pressure and power distributions in flute bore when fin- 
gered for A6 with closed D# key. Calculation was for a frequency of 1740 
Hz near a minimum in the power reflection curve. 

significant.) The largest discrepancies between experimental 
and numerical results were for E4 and Es, where the calculat- 
ed values were 9 and 12 cents lower, respectively, than the 
measured values. This is consistent with the first-mode fre- 

quency for the flute stopped at the tuning slide, where the 
calculated value is 13 cents lower than the measured value. 

One way to explain the lower calculated values would be in 
terms of a key rise that is too small. The C:• and D keys were 
calculated with 2.5 mm rises and the D# and E keys were 
calculated with 2.0 mm rises, which are thought to be consis- 
tent with the experimental setup. At most, key rise discre- 
pancies of a few tenths of a millimeter could account for 
about half of the normal mode frequency discrepancies. An- 
other possible explanation might be that the measured E 
tone hole position used in the calculations was incorrect. 
Similar arguments might be tried for some of the other notes, 
but an explanation of the discrepancies would be even less 
convincing because the deviations are smaller than for E4 
and Es. 

In the note G4:• for the flute stopped at the tuning 
slide, the calculated third-mode deviation was 16 cents lower 
than the measured value. No obvious explanation is avail- 
able. It might generally be expected that the stopped flute 
calculations should be more accurate than the full flute cal- 

culations because imprecision in specifying and modeling 
the embouchure hole is not present. However, the full flute 
and stopped flute calculations seem to show similar discre- 
pancies relative to their measured counterparts. 

The calculated octave stretching clearly shows the same 
trends as the measured octave stretching. However, the dif- 
ferences tend to be smaller for the low notes than for the high 
notes. 

Imprecision in specification of the embouchure hole 
may have been a major contributing factor to discrepancies 
between experimental and numerical values for several dif- 
ferent comparisons. The "length" of the embouchure hole is 
difficult to specify via measurements because it is tapered on 
the underside and because the "length" of any cover {plastic 
plate for example) over the hole is poorly defined. A further 
complication is that the "rectangular" embouchure hole is 
represented as a circular hole of equal area and centered at 
the embouchure hole center. Experimental methods are 
available for characterizing the embouchure hole {Benade 
and French, 1965; Coltman, 1966; Fletcher et al., 1982). 
However, for the calculations, a measurement was made of 
the embouchure area in each case and the embouchure 
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length was adjusted to provide a single calculated frequency 
coinciding with a corresponding experimental value. This 
procedure resulted in effective embouchure lengths smaller 
than would be anticipated from the experimental results just 
cited. We have no good explanation for these results, but 
remark that Nederveen {1973} found a similar effect in which 
the measured "embouchure correction" had to be reduced 

signficantly to bring measured and calculated frequencies 
into agreement. 

In the numerical method used here each tone hole was 

treated as if it were an isolated tone hole and no interaction 

among tone holes was taken into account. Keefe (1983} has 
pointed out that both internal and external interaction may 
occur for toneholes. Keefe noted that coupling is most pro- 
nounced between adjacent tone holes when the spacing 
between hole edges is small compared to the main bore diam- 
eter. Keefe measured a significant increase in effective tone 
hole length in a two-hole experiment, but found no signifi- 
cant increase in effective tone hole length for tone holes in a 
lattice. Keefe noted that the most important consequence of 
tone hole interactions is an increase in viscous and thermal 

losses. We conjecture that the increase in effective tone hole 
length due to interactions is probably of the order of errors in 
specifying key height. 

One might have expected to find good agreement 
between calculation and experiment for the head joint plus 
cylindrical tube. The trends in the two sets of values are 
clearly similar. In fact, the major discrepancy seems to be in 
the frequency differences between normalized first and sec- 
ond modes. Experimentally the difference is about 4 Hz, but 
numerically it is only about 2.5 Hz. Three major factors 
might influence the normalized first- and second-mode dif- 
ference. The combined cork distance and embouchure hole 

effective length should change very little in the frequency 
range of 100-500 Hz. It should tend to increase the differ- 
ence but play a negligible role in this case. Viscous and ther- 
mal effects on sound speed might be expected to contribute a 
difference of about 1 Hz, as deduced from Fig. 2 in Fletcher 
et al. (1982}. The head joint taper is the major factor and 
lowers the first mode relative to the second mode. From Fig. 
10 in Benade and French {1965} we deduce that the tapered 
head joint appears about 5 mm longer at 170 Hz than at 500 
Hz, which is about 1% .of the nominal 500-mm cylindrical 
tube used in the calculations. This should contribute a differ- 
ence of less than 2 Hz. The total difference between the nor- 

malized first and second modes by this analysis should be 
less than 3 Hz; the experimental value is about 4 Hz and the 
numerical is about 2.5 Hz. 

In the standing wave patterns for pressure the positions 
of experimental and numerical maxima and minima agree 
within about twice the iraprecision factor of the measure- 
ments. The heights of the pressure maxima follow the same 
trends for experiment and calculation, with the final two 
peaks in Fig. 6 as possible exceptions. One would not. expect 
complete agreement because it is difficult to model losses 
well in the calculation. 

The numerical method employed here produced fre- 
quencies good to about the nearest 2 cents. However, tone 
hole and embouchure hole representations used probably 

make the calculations good to no more than about the near- 
est 5 cents. Discrepancies between numerical and experi- 
mental values were as much as 16 cents, which may have 
been due in part to improper key rise and tone hole position 
specifications. The trends in the numerical data generally 
followed those in the experimental data. Coltman { 1976} has 
noted that flufists can repeat a pitch with a standard devi- 
ation of 6 cents. Hence, if the numerical method is good to 5 
cents accuracy it is probably a useful tool for exploring flute 
{and other woodwind} structures. 

The current results, when comparing measured and cal- 
culated frequencies for the passively excited Powell flute, are 
generally a bit tighter (- 5 to + 12 cents} than similar re- 
sults for a Reiner flute ( + 35 to + 75 cents} reported by 
Nederveen (1973}. Comparisons between measured and cal- 
culated frequencies for a passively excited Bressan alto re- 
corder (--2 to + 20 cents) have been reported by Lyons 
(1981). 

Whether the numerical method is useful as an analyti- 
cal tool for studying woodwind structures may depend on 
how well the passive resonances relate to the "blown" reson- 
ances for such structures. In particular for the flute, the use- 
fulness of the method may depend on the extent to which the 
excitation mechanism is a perturber of the system. Neder- 
veen (1973) holds the view that the contracting head joint is 
necessary to counteract frequency shifts due to the blowing 
mechanism. Coltman (1966) holds the view that the con- 
tracting head joint is necessary to counteract frequency 
shifts due to increasing lip coverage. If the former view is 
predominantly correct, then the numerical method sketched 
herein has some basic deficiencies. However, if the latter 
view if predominantly correct, then the numerical method 
may have some value as an analytical tool. 
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