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A functional model of a simplified clarinet has been developed and implemented on a digital computer. The 
simplified clarinet consists of a standard clarinet mouthpiece and reed attached to a straight cylindrical tube. 
In the model, the tube and mouthpiece are represented by a lumped element approximation to a transmission 
line and the reed is represented as a nonuniform bar, clamped at one end. Differential equations for the system 
are solved numerically on a digital computer to obtain pressures and volume velocities of the air in the tube 
and mouthpiece, and positions of the reed at successive time increments. The model exhibits self-sustained 
oscillations, threshold blowing pressures, frequency shifts, and spectra of mouthpiece and radiated pressures 
which are similar to those of an actual simplified clarinet. A previously unreported dependence of volume 
velocity in the reed aperture on the initial or rest opening of the aperture was also found. 

PACS numbers: 43.75.Ef, 43.85.Ta 

INTRODUCTION 

Some of the earliest studies on the physics of vibra- 
tions and wave motion were precipitated by an interest 
in understanding musical instruments and musical 
tones. Yet, science has been able to offer little sup- 
port to the design and fabrication of musical instru- 
ments. This has not been entirely the fault of the mus- 
ical instrument craftsmen who tend to view their work 

as an art form. It is largely because the physics of 
musical instruments and their tone production has not 
been sufficiently understood for it to be much help in 
designing or building instruments. There is gathering 
evidence that this picture is beginning to change. 

Research has been done on many different musical in- 
struments including the mechanical reed woodwinds 
(e.g., clarinet, oboe, and bassoon) which form an inter- 
esting class of instruments to study. For historical (to 
about 1960)examples of the research on mechanical 
reed woodwinds the reader is referred to the work of 

Helmholtz, • Miller, 2 Bouasse, s Aschoff, 4 McGinnis and 
Gallager, s and Morse. 6 More recently Benade has pro- 
vided an overview of the physics of woodwinds, ? consid- 
erations of woodwind bores, 6 and woodwind tone hole 
theory.9 

The first really successful mathematical theory for 
small oscillations in a clarinet is due to Backus. In a 

paper •ø published in 1963 he treated the clarinet reed as 
a damped, simple harmonic oscillator driven by sinu- 
soidal oscillations of the air column. He was able to 

derive expressions for threshold blowing pressure and 
frequency shift in the tone due to a damping-induced 
phase shift in the reed vibrations relative to the mouth- 
piece pressure. The excellent agreement of his theory 
with experiment clearly established the importance of 
reed damping in clarinet tone production, and many of 
his measurements, particularly those for volume vel- 
ocity in the reed aperture as a function of pressure dif- 
ference and reed opening, have had a basic role in 
nearly all of the work done orl the clarinet since. In a 
book on woodwind instruments published in 1969, 
Nederveen n elaborated on Backus' work, but his main 

emphasis was on instrument bores and tone holes. 

In 1968, Benade and Gans/•' inspired by Bouasse's 
work, outlined a qualitative, nonlinear theory for oscil- 
lations in wind instruments. Then, in 1971, Worman •s 
filled out the theory with mathematical details for clar- 
inet-like systems. Worman followed Backus in consid- 
ering the clarinet reed as a damped, simple harmonic 
oscillator, but he considered nonlinear air flow through 
the reed aperture and was able to calculate spectra for 
the clarinet which agree well with measured spectra. 
However, because of the complexity of the mathematics 
involved, Worman chose to work with a model of a tube 
that had only a single resonance and a single antireso- 
nance. In 1978, Schumacher TM applied an integral equa- 
tion approach to Worman's equation and, with the help 
of some powerful computer programs, was able to work 
out solutions for a tube with three resonances and two 

antiresonances. Recently, Schumacher •s indicated that 
he had pushed the solutions even further and was able to 
do calculations for fairly realistic clarinet tubes. In 
two papers published in 1978 and 1979, Fletcher •'•? dis- 
cusses nonlinearities in some musical instruments. In 

the first, he describes mode locking, where instru- 
ments with slightly inharmonic resonances generate 
strictly harmonically rela•ed partials. In the second, 
he gives a qualitative discussion of harmonic generation 
in wind instruments. 

The work done during the last two decades represents 
significant advances in understanding the physics of tone 
production, but it is clear that there is more work that 
needs to be done. A general restriction observed in al- 
most all research on the clarinet to date has been to 

treat only small- and medium-amplitude reed vibrations 
in which the reed does not beat against the mouthpiece. 
Schumacher did try to incorporate the beating reed in 
his calculations, but he did it in a nonphysical way. The 
research has also been restricted primarily to steady- 
state oscillations. One would ultimately like to study 
the details of loud tone production in the clarinet where 
the reed does beat and also to consider transient behav- 

ior. It has also been a consistent practice to treat the 
reed as merely a damped simple harmonic oscillator, 
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a single mass on a spring. One might ask, however, 
what the effect is of different placements of the player's 
lip along the reed and what is the detailed way in which 
necessary damping is supplied to the entire reed by the 
player's lip? Also, what is the instantaneous shape of 
the reed aperture and how are the aperture resistance 
and inductance affected by the shape? 

It is with the aim of shedding some light on these and 
other questions that we have created a functional model, 
on a digital computer, of a simplified clarinet. A func- 
tional model should duplicate as closely as possible the 
functioning of the physical system it represents. Every 
physical quantity in the real system should have its 
counterpart in the model. This essential nature of func- 
tional modeling makes it quite useful in investigating 
systems with complicated interactions such as found in 
the clarinet. It is very unlikely that a functional model 
will behave like the real system unless it includes all of 
the important features of the real system. Thus one is 
often led to uncover subtle but important features of the 
system which may have previously been overlooked. 
And usually, the precise way in which the behavior of 
the model differs from that of the real system is a 
strong clue as to what may not have been correctly in- 
corporated in the model. Once the model has been cor- 
rectly created, it provides a means to more easily de- 
termine the effect of variations in the system since the 
software of the model is generally much easier to mod- 
ify than the hardware of the system. And finally, there 
are often quantities which are very difficult to measure 
in the real system which are readily accessible in the 
model. 

Our model is not the first attempt at creating a func- 
tional model of a clarinet. Higbee and Turley •s created 
a functional model in which they approximated the reed 
as a simple mass on a spring and the cylindrical tube as 
a 1ossy delay line. The 1ossy delay line representation 
treats each section of tube in terms of reflection coef- 

ficients at its ends with propagation delay and loss in- 
cluded explicitly. In spite of the rather gross approxi- 
mations involved in their model, they were able to dem- 
onstrate self-sustained oscillations, a threshold blow- 
ing pressure in the neighborhood of that found by 
Backus, •ø and a mouthpiece waveform roughly like those 
of real clarinets. There may have been other attempts 
at functional clarinet modeling, but nothing more could 
be found in the literature on the subject. 

We must emphasize that our model is not of a real 
clarinet. We have tried to include all of the important 
features of the reed and mouthpiece of the clarinet, but 
we have greatly simplified the rest of the model by con- 
sidering the mouthpiece to be attached to a simple cyl- 
indrical tube without tone holes or flare. The inclusion 

of tone holes and flare in the tube represents an addi- 
tional task, probably of equal magnitude with that of the 
original modeling of the reed, mouthpiece, and simple 
tube, and must remain for later work. The current 
model is applicable to clarinet research because of the 
clarinet-like features of the reed and mottthpiece, but it 
must be considerably extended and refined before it can 
be considered as a model of a real clarinet. 

This paper consists of two main sections. In the first, 
the model is described and the step-by-step develop- 
ment and implementation of the model on a digital com- 
puter is outlined. The second section details the results 
obtained with the model and how they relate to experi- 
mental and theoretical work previously done by others. 
Finally, a short summary indicates what might be done 
next in investigating tone production in mechanical reed 
woodwinds. 

I. DESCRIPTION OF THE FUNCTIONAL MODEL 

In this section we describe the specific representa- 
tions used for the tube and reed in the model. We ex- 

plain why the particular representations were chosen 
and briefly how they were incorporated into the com- 
puter simulation. We also describe the coupling be- 
tween the air column vibrations and the reed motion. 

A. Representation of the tube 

Figure ! shows a schematic representation of a simp- 
lified clarinet which is the object of the functional mod- 
eling. The simplified clarinet consists of a cylindrical 
tube (inside diameter of 1.50 cm and length of 43.5 cm) 
to which is attached a clarinet mouthpiece (length of 
3.5 cm and variable cross-sectional area). The cross- 
sectional area in the mouthpiece varies from 0.064 to 
1.762 cm 2 over its length when the reed is closed. The 
mouthpiece has a volume of 2.965 cm s and an "equival- 
ent cylindrical length" of 1.68 cm. 

Considerable direction for the initial formulation of 
the current model of the clarinet bore came from Flan- 

agan's vocal tract model? '•'ø In that model the vocal 
tract is represented as a lumped element approximation 
to a transmission line. The transmission line approach 
for the clarinet tube seemed more desirable than the 

1ossy delay line because it could accommodate tone 
holes and flare in the tube more easily, although these 
complications have been left out of the current model. 

Flanagan •'• gives an analogous electrical circuit for a 
section of hard-walled cylindrical tube as shown in the 
center of the circuit at the bottom of Fig. 1. He gives 
derivations for the analogous inductance and capacitance 
in the circuit representing the per unit length inertia L 
and compliance C of the air in the tube and also for the 
analogous resistance R and conductance G in the circuit 
representing the viscous and heat conduction losses in 
the tube. The expressions for these quantities (shown 

mouthpiece 

bpl•)e••"•;• ....................................................................................... 
mouth 

Ra La Y2Rn Y, Ln Y2Rn«Ln Y2R 1 «L 1 '/•Ri«L 1 

FIG. 1. Schematic representation of a simplified Clarinet 
(top) and an equivalent circuit for it (bottom). 
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with subscripts in Fig. 1) are 

= 0/.4, c = .4 / o c ' , = ( s /.4 ' ) ½o o / 2 
and (1) 

= - '/" , 
where o is the density of air, A is the cross-sectional 
area of the tube, c is the speed of sound in air, S is the 
circumference of the tube, /z is the coefficient of vis- 
cosity of air, X is the coefficient of heat conduction, •/ 
is the adiabatic constant, and c• is the specific heat of 
air at constant pressure. The radiation load in Flana- 
gan's model is that for a piston in an infinite baffle 
which is adequate for sound radiating from the mouth, 
but for the clarinet the load on a piston in the end of a 
long tube is more appropriate. Beranek"" gives values 
for an equivalent parallel combination of resistance R R 
and inductance L R for this radiation load as 

RR=O.479pc/a" and L•=O.1952p/a, (2) 

where a is the radius of the tube. The above expres- 
sions are only valid when ka < 0.5 which is not true for 
the higher harmonics in the clarinet, but is adequate for 
the purpose at hand. 

The pressure fluctuations in the mouthpiece end of the 
tube act on the reed to drive it. The motion of the reed 

changes the size of the reed aperture which opens to al- 
low more volume flow into the tube or closes to shut off 

the flow. In the analogous electrical circuit, the ap- 
proximately constant blowing pressure p provided by 
the player's lungs is provided by a battery which acts 
through the variable resistance R a and inductance L• of 
the reed aperture to give the volume velocity U a into the 
tube as shown in the circuit at the bottom of Fig. 1. Ap- 
plication of Kirchoff's circuit laws gives the integro- 
differential equations which relate the volume velocities 
(current) U and V in each section of the circuit. These 
equations are 

p-RaU.- L• dt - •-R•Ua--•-L• dt - ½• 

t x v,)at=o, 

- ) at- - ) = o 

1 

G. 

G• -•-R gUg --•- L • dt - dt 

( dU• dU• ) L• dt- dt -R•UR=O' (3) 

This set of simultaneous equations is approximated by 
finite difference equations and solved numerically by 
E uler's method to get the volume velocity in each sec- 
tion of tube. The pressure in the nth section is given by 
p.= (V,-U.)/G. and the radiated pressure is p• =R•U•. 
It was found that the numerical solution to the set of dif- 

ference equations remained stable for larger step sizes 
if the pressure across the capacitor is left as an inte- 
gral rather than substituting in the pressure and its de- 
rivative in the equations and solving for the volume vel- 
ocities and pressures simultaneously. Also, more so- 
phistieated numerical methods, such as the Range-Kurta 
methods, proved to be not as stable as Euler's method. 

Since the tube is represented by a ladder network, it 
exhibits a cutoff frequency and the filtering of higher 
frequencies that occurs makes each section appear to 
ring after abrupt changes of the volume velocity. The 
"ringing" is due to the lumped element approximation 
and can be made negligibly small by decreasing the 
length of each section while increasing the number of 
sections to keep the total length of the tube constant. 
The effect of decreasing the section length is to de- 
crease the size of the lumped elements, thereby more 
closely approximating the continuous case. A standard 
criterion for the length of individual sections is de- 
rived TM as I<< X/2•r, where X is the wavelength of the 
highest frequency expected in the tube. The current 
model incorporates 0.25-em sections in the straight 
portion of the tube where the eross-seetiona! area is 
constant and 0.1-em sections in the tapered mouthpiece. 

Initially the tube was programmed with values for the 
resistive elements that represented an average over the 
frequencies e•pected in the tube, as is commonly done 
in speech simulation, and the frequency dependence of 
the tube losses was not incorporated. The tube had a 
constant loss for all frequencies which was too high for 
the low frequencies and too low for the high frequen- 
cies. As might be expected, this showed up in the spec- 
tra of the mouthpiece and radiated pressure waveforms. 
Apparently, constant average losses are adequate in a 
vocal tract model because the vocal tract resonances 

are not ordina'i'ily harmonically related, the vocal tract 
resonances are more heavily damped than those of a 
clarinet, and the vocal cords vibrate with a fundamental 
lower than resonances of the tract, all of which result 
in weak coupling between the vocal cords and tract. In 
the clarinet, however, the reed is very strongly af- 
fected by the air column vibrations and the high frequen- 
cies also couple to the reed more strongly since the nat- 
ural frequency of the reed is about an order of magni- 
tude higher th•n the fundamental of the clarinet. In or- 
der to incorporate frequency dependent losses in our 
model, different expressions for the viscous and heat 
conduction losses had to be derived. The explicit ap- 
pearance of frequency in the expressions given by Flan- 
agan is incompatible with a time-evolving system. The 
viscous loss represents at least two-thirds of the total 
loss so it was first to be considered. 

. 

The drag fo•e in the kth section of tube at the Nth 
time interval was derived as (see Appendix) 
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N 

n •N-1 - , 

where u• • is the nth sample of the particle velocity of 
the air in the kth section of tube and h is the interval 

size (i.e., time increment for calculations). It is seen 
that a large number of previous samples of velocity 
need to be stored and a convolution sum performed for 
each section of tube. Because of limited core space in 
the computer and considerations of calculation times, it 
was not possible to incorporate this frequency-depen- 
dent loss correctly in each section. As a compromise 
it was decided to concentrate the loss for the entire tube 

in just one section and to use a sum extending to 1000 
terms for that loss. Since truncation of the sum at 1000 

t•rms produces a slight error in the loss, a portion of 
the original average loss was retained to make the Q of 
the tube about right for the fundamental frequency. The 
lumped, frequency-dependent loss was incorporated in 
the model in the form of a variable battery placed in 
series in the last section of tube immediately before the 
radiation load. The "voltage" of the battery is given by 

1000 

LSA'•'(Pt •/;rtz)x/•' E (U.,,- U.•.x)n '•/•', (5) 
rl= 1 

where L is the length of the tube, S is the circumfer- 
ence, A is the cross-sectional area, and U_, is the uth 
previous sample of the volume velocity. 

Because of the huge computational and storage costs 
of the proper inclusion of the frequency-dependent vis- 
cous loss, and because the inclusion of it in the manner 
described above did achieve the desired effect of reduc- 

ing the power in the high frequencies relative to that in 
the low frequencies, it was decided not to attempt any- 
thing similar with the heat conduction losses. The heat 
conduction losses remained as constant average losses 
for all frequencies. For future work with the model it 
might be well to include the heat conduction losses sim- 
ply as a fraction of the viscous losses. 

B. Representation of the reed 

As pointed out earlier, in most of the mathematical 
theories developed for the clarinet to date, the reed has 
been modeled as a simple harmonic oscillator. This 
approximation deserves some discussion. Some inves- 
tigators had previously reported quite complicated mo- 
tions in clarinet reeds, 5 but more careful studies 24 have 
not found such motions. The clarinet reed oscillates at 

a frequency below that of its fundamental mode so that 
all points on the reed move in phase, but with increas- 
ing amplitude toward the tip. Furthermore, the deflec- 
tion of the tip of a free clarinet reed clamped at its base 
is a linear function of applied force. One is naturally 
led to modeling the clarinet reed as a mass on a spring 
with an effective mass, spring constant, and damping to 
give it the same properties of motion as the tip of an 
actual reed. Such a representation certainly simplifies 
the programming and calculations, but it is not adequate 
to capture all of the phenomena relevant to the interac- 
tion of the reed with the mouthpiece and the player's lip. 
As the reed on a clarinet mouthpiece moves toward 
closure of the reed aperture it must bend against the 

curved lay of the mouthpiece. As it does so, the effec- 
tive mass and stiffness of the remaining portion of the 
reed, which is still free to move, changes. This effect 
would have to be added explicitly to a spring-mass mod- 
el, whereas a more realistic model would probably in- 
corporate it automatically. The effect of position of the 
player's lip along the reed also falls in the same cate- 
gory. 

The reed in our model is represented as a damped, 
driven, nonuniform bar clamped at one end. The differ- 
ential equation for transverse vibrations of a bar can be 
found in many acoustics textbooks. 24 With a driving 
force and damping added, and taking into account the 
nonuniform thickness, the equation becomes 

pAa•'y/at •' + Ray/Ot=a•'/ax•'(YAK•'•)•'y/ax •') +F, (6) 

where p is the mass density of the bar, A is its cross- 
sectional area, R is the damping per unit length, Y is 
its Young's modulus, K is its radius of gyration, and F 
is the externally applied force per unit length. For a 
bar of rectangular cross section, •-b/(12) •/•' , where b 
is the thickness of the bar. Both A and • are functions 

of position for a clarinet reed and must be determined 
by measuring the thickness and width of the particular 
reed to be modeled, and Y and p must also be deter- 
mined from the reed. For cane reeds, p is about 0.5 
g/cm s and Y is about 5x 10 xø dynes/cm •' although these 
numbers may vary considerably from reed to reed. In- 
tegration of the bar equation for the static case gives a 
formula for determining Y from measured deflections 
under static loads. We determined the damping R by 
running the functional model of the reed by itself and 
adjusting R until about the same exponential decay was 
observed in the model as for a real reed (held in the 
hand to provide damping) when both were set in motion 
by an impulse. The force F is part of the coupling be- 
tween the reed and the air column and will be dibcussed 

a little later. The boundary conditions to be satisfied by 
the equation at the ligature end which we assume to be 
clamped are y-0 and ay/ax=o and at the free end they 
are a •' y/a x •' = 0 and aSy/a x a = O. 

An implicit numerical method •'• was used to solve the 
reed equation. The differential equation was written as 
a difference equation for each 0.1 cm section of the reed 
where the derivatives with respect to position at the 
current time are written as the average of the deriva- 
tives at the previous time and the next time, i.e., 

' (a4y/Ox 4) The resulting ' (a4y/3 X4)t+ -!- • (a4Y/a x4)t =• At t' 
set of simultaneous equations for the displacements of 
the segments at the next time in terms of their displace- 
ments at the current and previous times was solved us- 
ing a Gauss elimination procedure for five-diagonal sys- 
tems. An explicit numerical method would have been 
more straightforward to use, but it was found to be sta- 
ble only at sampling rates exceeding 5 MHz (5 million 
iterations for one second of real-time solution, i.e., a 
time step of 0.2 l•S). The implicit method, on the other 
hand, proved to be stable (but not too accurate) for 
rates as low as 2 kHz. The stability of the tube equa- 
tions, however, requires that the entire model run at a 
sampling rate of 400 kHz or higher. The implicit meth- 
od for the reed is quite accurate at this rate. 
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The rest position of the reed (the position to which the 
reed is brought when the player first bites down on it) 
could be set in two different ways. The reed could be 
clamped tightly against the lay at a point such as to give 
the desired opening or the position of the player's lip 
could be specified and a force applied at the point such 
as to push the reed up to the desired position. Once the 
reed has come to rest at the position, the force is re- 
placed by a stop or limit so that the reed at that point is 
not allowed to move below the stop. The latter case is 
probably more realistic. In either case, however, 
damping due to the player's lip is added to the damping 
of the sections over a 1-cm length about the point spec- 
ified for the position of the player's lip. The collision 
that occurs when any section of the reed strikes the 
mouthpiece or the lip is made inelastic by setting the 
velocity of that section to zero and holding it there as 
long as it tends to move into the mouthpiece or lip. 
Stroboscopic observations of an actual vibrating clarinet 
reed revealed very little, if any, bouncing of the reed 
on the lay which provides justification for treating col- 
lisions as inelastic. 

C. Coupling between reed and air column 

There is a mutual interaction between the position of 
the reed and the pressure fluctuations in the tube. The 
forces acting on the reed are the force of the blowing 
pressure which always tends to close the reed aperture, 
the force of the oscillating pressure developed in the 
mouthpiece, and the Bernoulli force due to the move- 
ment of air across the inside surface of the reed. The 

blowing pressure, provided by the player's lungs, is 
taken to be constant. This may not be strictly true, but 
the fluctuation is small and we have neglected it in our 
current model. The pressure in the mouthpiece is de- 
veloped as a consequence of the fluctuating volume flow 
of air through the reed aperture and the reflections of 
the resulting pressure waves from the ends o• the tubeø 
The Bernoulli pressure is calculated directly from the 

! , flow by PB-• p(U/A)2 where p is the density of the air, 
U is the volume velocity and A is the cross-sectional 
area through which the air flows. The Bernoulli pres- 
sure acts over the entire reed but it is only significant 
at the tip where A is small. Thus, the forces on the 
reed 'are determined ultimately by the volume flow and, 
for a given pressure difference across the reed, the 
volume flow is determined by the position of the reed. 
The volume flow through the reed aperture is really the 
coupling agent between the reed and the air column. It 
is very important for any model of the clarinet to ac- 
curately capture the dependence of the volume flow on 
the reed opening. 

In our functional model the aperture volume flow for a 
given pressure difference across the reed is controlled 
by the variable aperture resistance and inductance 
which are determined by the position of the reed. First, 
we consider the resistance for steady flow. Backus 
gives an empirically determined expression for the vol- 
ume flow for a clarinet reed aperture as a function of 
reed opening and pressure difference across the reed 
from which the the aperture resistance could be deter- 
mined. However, he did not include measurements for 

very small openings and thus neglected the most signif- 
icant effects of viscosity on the flow for very small 
openings. Van den Berg •? gives the empirically deter- 
mined equation 

R = 121.td/lw 3 + 0.875pU/2(lw )•' (7) 

for the acoustic resistance of a rectangular slit, where 
l, w, and d are the length, height, and depth respec- 
tively of the slit (lw is the area through which the air 
flows) and U is the volume velocity in the slit. The first 
term in Eq. (7) is due to viscosity and the second term 
is due to turbulence effects. However, the reed aper- 
ture is not exactly rectangular, and Backus found ex- 
perimentally that volume flow for a given pressure is 
approximately proportional to the reed opening to the • 
power instead of the first power as normally found for 
medium-height rectangular slits. This proved not to be 
a serious difficulty in the functional model. Since the 
reed was already divided into 0.1-cm sections for the 
purpose of the reed position calculation it was conven- 
ient to divide the aperture up into approximately rec- 
tangular pieces as shown in Fig. 2 and calculate a re- 
sistance in the form of Eq. (7) for each piece. The total 
aperture resistance is just the parallel combination of 
the resistances for the separate pieces. Since the tip of 
a clarinet mouthpiece represents a different geometry 
than that treated by Van den Berg, one might expect fo 
find a different constant in front of the turbulence term 

in Eq. (7) for the case of the reed aperture. In fact, we 
found it necessary to use 

R = 12ftd/lw s + 1.5pU/2(lw) •' (8) 

for the resistance in order to get volume flows in the 
range of those reported by Backus. 

Calculating the inductance of the slit on the same ba- 
sis did not work well. The fact that the wedge-shaped 
portions of the reed aperture are situated at about 90 ø 
to the main rectangular portion apparently has some 
consequence for the effective inertia of the air in the 
opening. For the aperture inductance we determined 
empirically from Backus' data that the inductance is 
given approximately by L a = 2.85 x 10-sw -•/2, where w is 
now the opening at the tip of the reed. We must point 
out that even though the volume flow does not all enter 
the mouthpiece at the tip (i.e., in the first O.l-cm sec- 
tion), our model treats it that way. We do not feel that 

•- reed 

FIG. 2. The tip of a clarinet mouthpiece and reed showing the 
division (dashed lines) of the reed aperture into rectangular 
areas for the aperture resistance calculation. 
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this is a serious difficulty with the model,.since the real- 
ly significant effect of the increased air inertia in the 
aperture has been included in the model by using the 
aperture inductance given above. 

II. RESULTS FROM THE FUNCTIONAL MODEL 

The functional model described in Sec. I was pro- 

grammed to run on a PDP-15 digital computer and runs 
at about 250 000 times real-time on that machine, that 

is, it takes the computer about 250 000 s•"C0nds, or over 
67 hours to compute one second of vibration. The re- 
sults that could be obtained from the model within a 

reasonable length of time have been somewhat limited 
by this poor real-time ratio. However, we have ob- 
tained enough results to be convinced that the model is 
a useful representation of an actual simplified clarinet 
and we have begun to gain some new insight into the 
functioning of a clarinet. In this section we will discuss 
results obtained from our model pertaini•'g. to volume 
flow in the reed aperture, threshold blowing pressure, 
frequency shifts in the tones, spectra of mouthpiece and 
radiated pressures, and attack transients. Because of 
the real-time ratio, curves illustrating many of these 
results had to be drawn from just a few (typically 6 to 8) 
calculated values. 

A. Reed aperature volume flow 

Backus determined that experimental dat• on the vol- 
ume flow through a clarinet reed aperture for low pres- 
sures and medium openings are fit well by the relation •ø 

U=37p2/3w4/3, (9) 

where p is the pressure difference across the reed and 
w is the reed opening at the tip. Volume flows computed 

from our model differ somewhat from this relationship. 
Figure 3 shows our results (solid lines) on volume flow 
as a function of reed opening plotted for three different 
blowing pressures. Equation (9) gives curves (dashed 
lines) with increasing slope everywhere, whereas our 
curves have slightly decreasing slope over part of their 
domain. The curvature is difficult to see in the figures, 
but it is real. The solid curves shown in Fig. 3 were all 
obtained for the same embouchure or rest (initial) open- 
ing of 0.08 cm. To obtain the curves, the vibrating reed 
in the model was simply "frozen" in place at different 
points in its vibratory cycle and, after the oscillations in 
the tube had died out, the reed position and volume vel- 
ocity were printed. This would be virtually impossible 
to do on an actual clarinet. 

Figure 4 shows curves for volume velocity versus 
reed opening which are obtained from the model for sev- 
eral different rest openings. These curves are all for 
the same blowing pressure of 40 mbar. A larger rest 
opening gives longer wedge-shaped openings along the 
sides of the mouthpiece which results in a greater vol- 
ume velocity for a particular instantaneous reed opening 
and pressure. Experimentally, the functional depen- 
dence of volume flow on reed opening at a given pres- 
sure for a nonvibrating reed is obtained by varying the 
embouchure to get different reed openings at the tip. In 
order to compute volume flows from our model in a 
comparable manner we must move to successively low- 
er curves in Fig. 4 to decrease the opening. The result 
for a particular pressure is a curve with increasing 
curvature everywhere as shown in Fig. 5. Here we have 
plotted volume velocity as a function of reed opening for 
pressures of 20, 40, and 60 mbar. Equation (9) is 
shown by dashed lines for the same pressures for com- 
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FIG. 3. Volume velocity in the 
reed aperture as a function of 
opening at the reed tip for three 
different blowing pressures. Re- 
suits from the model for a rest 

opening of 0.08 cm are shown by 
the solid lines; Backus' empiri- 
cally determined equation for reed 
aperture volume velocity [Eq. (9)] 
is shown by the dashed lines. 
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parison. Our curves follow Eq. (9) more closely when 
aperture volume velocities are computed following 
Backus' experimental procedure, particularly for the 
medium-sized openings and lower pressures with which 
he dealt. We believe, however, that the functional re- 
lationship between volume velocity, reed opening, pres- 
sure, and rest opening which is illustrated in Figs. 3 
and 4 is the more realistic for the clarinet under play- 
ing conditions. A clarinet player blows his instrument 

with a set embouchure. And while he may change the 
embouchure, he does so only over a time which is long 
compared to the period of vibration of the reed. 

B. Threshold blowing pressure 

The determination of threshold blowing pressures was 
greatly hindered by the real-time ratio mentioned earl- 
ier. In an effort to find the threshold pressures more 
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tion (9) is shown by dashed lines. 
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quickly, we first computed steady flow (i.e., nonvibrat- 
ing air column) volume velocities in our model as a 
function of initial reed (rest) opening and pressure dif- 
ference across the reed. In this case the reed was al- 

lowed to move under the applied pressure and assume 
a new static equilibrium position. Our results are 
shown in Fig. 6 by the solid curves. Each curve is for 
a different rest (initial) opening of the reed aperture, 
the lower curves corresponding to tighter embouchures. 
As shown by the curves, the volume velocity first in- 
creases as the pressure difference increases, but then 
as the increased pressure pushes the reed closer to the 
lay, the flow begins to decrease. Finally the pressure 
difference becomes large enough to push the reed tight- 
ly against the lay and shut off the flow completely. 

The curves of Fig. 6 exhibit all of the characteristics 
described by Benade •'s such as their asymmetry and 
maxima at larger pressure differences for larger rest 
openings. A curve from Worman TM based on Backus' 
results is shown in Fig. 6 as a broken line. Worman 
does not indicate what the rest opening was in determin- 
ing this curve. He gives the effective stiffness per unit 
area of the reed used as 1.25 x106 dynes/cm s. The ex- 
act values of the volume velocity depend heavily on the 
stiffness of the reed employed. An effective stiffness 
per unit area can be calculated for a reed by dividing 
the pressure difference across the reed by the resulting 
deflection of the tip of the reed. The reed that we used 
for all of the computations described in this paper was 
found to have an effective stiffness of about 1.3 x 106 

dynes/cm s. The stiffness obtained by the method just 
described varies somewhat according to how much of 
the reed is in contact with the lay of the mouthpiece. 

As Benade points out, self-sustained oscillations in 
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the clarinet can occur only when it is operating on the 
downward sloping portion of the curves in Fig. 6 where 
an increase in pressure in the mouthpiece (decrease in 
pressure difference) results in increased flow through 
the reed aperture. Clearly, for a particular rest open- 
ing, the blowing pressure would have to be greater than 
the pressure at the peak of the correspondi•ng curve in 
Fig. 6 for this condition to be met. The peaks are 
joined by a dashed line and it is seen that the threshold 
blowing pressure should increase with increasing rest 
opening. Not only must the blowing pressure be to the 
right of the dashed line in Fig. 6, it must be far enough 
to the right so that the power injected into the tube when 
the reed opens more, due to an increase in mouthpiece 
pressure, is greater than that lost by a pressure wave 
in traveling to the end of the tube and back twice. By 
running our model with blowing pressures lying some- 
what to the right of the dashed line in Fig. 6, we were 
able to determine that the threshold blowing pressure 
must lie within the shaded region shown in Fig. 7. To 
determine the threshold blowing pressure more exactly 
would take considerably more computer time. As a 
further complication, we also found that the threshold 
blowing pressure depends somewhat on the damping of 
the reed. If the reed is heavily damped, the threshold 
blowing pressure is higher by a few millibars. This 
seems to be contrary to the findings of Backus. How- 
ever, we have not yet been able to determine whether 
the large amount of damping needed to change the thres- 
hold pressure significantly is actually physically real- 
izable. It is a little hard to compare our results with 
Backus' data because he gives the pressure as a func- 
tion of average reed opening and ours are as a function 
of rest opening, but the agreement is probably quite 
reasonable. If we consider Backus' average reed open- 

PRESSURE (mbar) 

FIG. 6. Volume velocity in the 
clarinet model as a function of 

pressure difference across the 
reed for five different rest open- 
ings. The dashed line is drawn 
through the maxima of the curves. 
The broken line is from Worman. 
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ing to be about one-half of our rest opening, then 
Backus' data would fall at the crosses joined by the 
dashed line in Fig. 7. Our pressures are somewhat 
higher than his, but that is probably due to a difference 
in reed stiffness or Q of the tube. In reviewing the 
manuscript, Benade suggested that we should check the 
insensitivity of the model to changes in residual reed 
aperture such as might result from slipping the reed 
down the mouthpiece one or two millimeters. We feel 
that the model would exhibit such insensitivity, but it 
was impractical for us to rerun the model to check this 
point. 

Since threshold blowing pressure also depends upon 
the Q of the tube, we felt that it was important that our 
model exhibit the proper Q. Here again we were hind- 
ered by the real-time ratio. Most determinations of the 
Q of the tube involve driving the air in the tube with a 
sinusold over a range of frequencies and measuring 
bandwidths from which Q can be determined. Any meth- 
od which requires steady state oscillations for many dif- 
ferent frequencies would have taken weeks of computer 
time to run on the model. We found, however, that the 
Q of a strictly cylindrical tube could be determined by a 
much faster method. 

The tube is driven at the mouthpiece end by a constant 
amplitude volume velocity sinusoid. If Po is the pres- 
sure amplitude generated by the driver and E is the ra- 
tio of the reflected pressure amplitude to Po, then, after 
one round-trip transit time for the wave we have the 
pressure amplitude in the mouthpiece given by 

=po( + 2E) 

if the driver is at a resonance frequency. At resonance, 
the input pressure and the reflected pressure will be in 
phase and pt will be at a maximum. The resonance fre- 
quency must still be found, but one has the advantage of 
not having to wait for the oscillations to reach steady 
state at each frequency. The amplitudes pz and Po are 
obtained from the model at a resonance frequency and 
F.q. (10) is solved for E. By manipulating several equa- 

tions found in Benade 8 we find that the Q for a cylindri- 
cal tube is given by 

Q = - , 

where to is the angular frequency, c is sound speed, 
and l is the length of the tube. 

Since neither l•q. (10) nor (11) applies to a tapered 
tube we could only determine the Q of our model by re- 
placing the tapered mouthpiece with an equivalent length 
of cylindrical tube. By applying the method described 
above to such a tube with the taper removed, we were 
able to determine that the losses, as included in our 
model, give approximately the right Q at frequencies of 
the first few normal modes. 

C. Frequency shifts 

Of great importance to clarinetists is the slight but 
definite control which they can exercise on the playing 
frequency of their instrument by varying lip pressure 
and position on the reed. This effect was first des- 
cribed mathematically for small vibrations by Backus. TM 
He was able to show that the fractional frequency shift 
in the tone depends on the damping on the reed and the 
Q of the instrument as well as the average reed opening. 
The reed damping induces a phase shift in the reed po- 
sition relative to the mouthpiece pressure which, in 
turn, affects the driving of the oscillations in the air 
column of the tube resulting in a downward shift of the 
frequency from the resonance frequency of the tube. We 
have demonstrated such effects in our functional model 

although we experienced some difficulty in determining 
reed phase shifts accurately. We attempted to deter- 
mine reed phase shifts by correlating the delayed 
mouthpiece pressure waveform with the reed position 
waveform for increasing amounts of delay. If tc is the 
delay time which produces the maximum correlation, 
then the reed phase shift r/ is given by 

•/=tan(2•tcT-•), (12) 

where T is the period of the mouthpiece pressure oscil- 
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lations. We found, however, that the delay time t½ was 
different for different portions of the same signals. We 
do not believe that this is due to any problem with the 
correlation method, but that the reed phase shift in our 
model actually does vary in time. It is not yet clear 
whether this also occurs in an actual clarinet. Although 
we determined the reed phase shifts on what appeared to 
be steady:state signals, it is possible that there were 
still some transient effects present because computa- 
tional times forced us to deal with signals only a few 
tenths of a second after the onset of blowing. 

The frequency shifts which we determined from the 
model did not show any variation after steady-state os- 
cillations had apparently been achieved. They do follow 
the trends indicated by Backus' data. Larger average 
reed phase shifts and larger rest openings each produce 
larger frequency shifts. Computed results obtained 
from the model are shown in Fig. 8 where fractional 
frequency shift Af/f is plotted against average reed 
phase shift • for two different rest openings. The 
crosses joined by dashed lines in Fig. 8 show data from 
Backus under the assumption that double his average 
reed opening is equal to our rest opening. Differences 
between his data and our results may be attributable to 
a difference in the Q of the instruments involved (his 
instrument and our model). 

D. Waveforms and spectra 

A major motivation in the creation of a model of a 
clarinet is the study of tone production. One must then 
ask what kind of tones the model produces. Of course, 
since our model is not of a real clarinet, we cannot ap- 
propriately compare the tones from our model with 
those of a real clarinet. It is of interest, however, to 
see how the spectra of our model generated tones look. 

Figure 9 shows mouthpiece and radiated pressure 
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FIG. 8. Fractional frequency shift in the clarinet model (solid 
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FIG. 9. Waveforms from the clarinet model: (a) mouthpiece 
pressure for a tone produced with "low" blowing pressure and 
nonbeating reed, (b) radiated pressure for the same tone, 
mouthpiece pressure for a tone produced with "high" blowing 
pressure and beating reed, (d) radiated pressure for the same 
tone. 
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FIG. 10. Spectra of mouthpiece pressure (top) and radiated 
pressure (bottom) for the nonbeating reed waveforms of Fig. 
9. 
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waveforms from our model for a "low" blowing pres- 
sure and nonbeating reed and for a "high" blowing pres- 
sure and beating reed. The frequency of the fundament- 
al is about 190 Hz. The relative amplitudes of the 
waves have no meaning since they were all scaled dif- 
ferently in preparing the figure. Spectra for these 
waves are shown in Figs. 10 and 11. Similar spectra 
were observed in the laboratory for the mouthpiece 
spectra of a simplified clarinet. In all of these spectra 
the power level of the fundamental was arbitrarily set 
at 90 dB. The relative increase of level in the higher 
harmonics in the radiated pressure compared to the 
mouthpiece pressure results from a greater radiation 
efficiency as frequency increases. We also see rela- 
tively higher levels in the higher harmonics (including 
the even harmonics) of the beating reed tone spectra due 
to increased nonlinear reed aperture volume flow. 

The functional model will also allow us to look at 

transient behavior in the simplified clarinet. Figure 12 

FIG. 12. Mouthpiece pressure in the clarinet model at the on- 
set of blowing for a beating reed case.. 

shows a mouthpiece pressure waveform from our model 
at the onset of blowing in which a considerable evolution 
in the waveform is apparent. This waveform was pro- 
duced by a blowing pressure that was turned on abruptly 
and so may not be entirely representative of an actual 
clarinet where a player would increase blowing pressure 
more gradually. 

SUMMARY 

We have argued that functional modeling can be a use- 
ful tool for understanding the physical behavior of mus- 
ical systems. The results that we obtained with our 
model of a simplified clarinet show that it is possible to 
capture some rather subtle phenomena with a sufficient- 
ly detailed model. Unfortunately, we also found that 
such functional modeling can consume tremendous 
amounts of effort and computer time. It was the advent 
of the high-speed computer which made functional mod- 
eling possible and we expect that increased computer 
speed and capacity will make it more useful. Already 
there are computers available on which the model would 
run several times faster than on our present machine. 
Even at our present computational speed there seems to 
be much more that can be learned from the model. 

Continued work with the current model should prob- 
ably be done on the damping characteristics of the play- 
er's lip on the reed. We do not yet feel that we have 
handled the reed damping in a realistic manner. Also, 
the effect of the player's lip on the boundary conditions 
for the reed equation should be investigated further. 
Beating reed effects and transient behavior at the onset 
of blowing are other areas where our current model 
could provide more information. Possibilities also 
exist that the current model could be made more com- 

putationally efficient, perhaps by using different nu- 
merical procedures, and these should be considered. 

When the model can be made to run faster, either by 
improved efficiency or by implementation on a faster 
computer, features which we have omitted in order to 
simplify the model could be added. The inclusion of 
frequency dependence in both the viscous and heat con- 
duction losses could be done more correctly. The 
three-dimensional nature of the reed aperture, i.e., the 
fact that not all of the volume flow enters the mouth- 

piece in the first section of the tube, should eventually 
be included in the model. The coupling of the air vibra- 
tions to the blowing pressure is another feature which 
we omitted which may have some effect on tone produc- 
tion. And, of course, tone holes and tube flare will 
eventually need to be included in the model to make it 
more musically interesting. 
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APPENDIX 

To derive the resistence to air flow due to viscous 

drag on the walls of the tube we consider a plane wall 
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moving arbitrarily through air. The drag force per unit 
area on the wall is given by 

F = - iz (Ou/O Y)•=o, (13) 
where • is the coefficient of viscosity of air, u is the 
particle velocity of the air relative to the wall, and y is 
the distance from the wall. The particle velocity is 
given by the diffusion equation 

a•'u/Oy •' = (p/g)au/o t (14) 

subject to the boundary conditions u(oo, t)=0 and u(0, t) 
-g(t). The solution to this equation with the given 
boundary conditions is 

u= g(x) P (t exp[-PY•'/41 z , 

where we have assumed that the wall is initially at rest 
[i.e., g(t)=O for t < 0]. Taking the derivative to get the 
drag force we obtain 

_ F - T \-•--I g (x)(t- x)-S/2 
x [1- Oy"/21z(t- x)] exp[-oy"/41z(t- x)] ax. (16) 

This expression must be evaluated at y =0 to get the 
force on the wall, but y cannot be set to zero before do- 
ing the integration because of the singularity which that 
produces in the integrand. To investigate the properties 
of the integral further, consider what happens when 
g(x) is a step function at t=0 (i.e., at t=0 the wall ac- 
quires a constant velocity V), then 

F=-•- V(•)1/2( fo t (t- x)-S12 
x [1 - Oye2ft(t - x)] exp[-oy•/41•(t - x)]dx) . y=O 

Now performing the integration and letting y go to zero 
we get 

F= V(oix/•rt) •/" . (18) 

Thus, the.drag force on a wall which takes a step func- 
tion change in velocity fails off as the inverse square 
root of the time since the step. Now, the numerical 
calculation of the volume velocities in the tube takes 

place at finite time intervals and the change in the vol- 
ume velocity for any section of tube from one interval 
to the next occurs in the calculation as a step. 

For a succession of step changes in the particle vel- 
ocity u of the air in the tube, we write the drag force at 
the wall after the Nth step as 

F=(pP '/•rh)l/•' E (u•v-.- u#-.', )n-'/2 (19) 
•= 1 • 

where h is the constant time interval between steps. 
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