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The purpose of this study was to investigate a numerical method for obtaining input impedances of double- 
reed instruments--the oboe in particular. To this end, the physical dimensions of an oboe were used to 
compute its input impedance as a function of frequency for several different fingerings. The numerically 
computed input impendances of the oboe were compared to experimentally measured curves with good 
agreement resulting in most cases. The reasons for the observed discrepancies are discussed and 
suggestions for improving the ageement between the predicted and experimental frequencies are given. 

PACS numbers: 43.75.Ef 

INTRODUCTION 

A knowledge of the acoustic input impedance of wood- 
wind instrument bores may be of considerable advan- 
tage in understanding their intonation, tonal quality, 
and the interaction of the reed with the bore. Further- 

more, by determining the input impedance of actual 
instruments, intonation and tonal deficiencies could 
presumably be correlated with features of the input im- 
pedance. With an accurate method to calculate the in- 
put impedance of woodwind bores, a designer may, by 
calculating the effect of small changes in the bore taper 
and in the position or nature of tone holes, be able to 
predict how to improve the tone or intonation of an 
existing instrument. 

Some general calculations have been made of the 
characteristic impedance of wind instrument bores. 
Using impedance methods, Morse x computed the reso- 
nance frequencies for a truncated cone representative 
of the double-reed bores. Because of assuming a con- 
stant end correction, his results predicted that the 
higher-mode frequencies are integral multiples of the 
fundamental frequency. However, experiments made by 
Bate and Wilson •' have shown that the end correction for 
truncated cones is actually strongly frequency depen- 
dent, a fact which greatly complicates any computation 
of normal modes. Benade s extended the calculations of 

Morse to incorporate the frequency-dependent end cor- 
rections. He predicted that conical-bore instruments 
will have their normal modes spaced more widely than 
the harmonic series obtained by Morse. The original 
calculations show frequency shifts for the normal modes 
that are several orders of magnitude too small, but a 
recent erralum 4 provides results that are quantitatively 
correct. Experimental results of Backus s verify the 
direction and amount of frequency shift predicted. 

Benade 6 also applied transmission line theory to bores 
having finger holes, but because of the tedious nature 
of the calculations for conical bores, he obtained only 
an approximate expression for the impedance of a 
clarinet (a cylindrical-bore instrument). Nederveen 
and de Bruijn 7'8 attempted to modify calculations for 

simple conical tubes to calculate the acoustical imped- 
ance of instruments with finger holes. Nederveen 8 also 
attempted to include the effect of viscous and thermal 
losses at the walls. However, the approximations that 
were made and the fact that the positions and details 
of the finger holes were not accounted for quantitatively, 
makes his results of doubtful value for any but the sim- 
plest oboelike structure. Young • used the digital com- 
puter for calculating the input impedance of smooth 
horns with no side holes or losses. However, it ap- 
pears that Young's method does not easily lend itself 
to the inclusion of tone holes and losses due to the. 
walls and is thus of limited value for woodwinds. 

The current work represents an effort to apply nu- 
merical methods to the calculation of input impedances 
for woodwind bores with both losses and arbitrary 
placement of finger holes. Only conical-bore wood- 
wind instruments are treated, but the method is basi- 
cally applicable to cylindrical bores or to any combina- 
tion of cylindrical- and conical-bore sections. 

I. RATIONALE FOR THE IMPEDANCE 

CALCULATIONS 

This section develops the procedure involved in cal- 
culating the bore impedance of woodwind instruments, 
from which normal mode frequencies can be determined. 
The theory of pressure disturbances in conical tubes is 
reviewed and used to derive the input impedance of 
simple lossless conical sections in terms of the im- 
pedance at the large end. Then, recent attempts that 
extend the theory of the bore impedance to take into ac- 
count the reed impedance are reviewed. Finally, a 
numerical approach to the calculation of the input im- 
pedance of double-reed instruments with losses and 
finger holes is describedø 

A. Normal modes for lossless conical sections 

In the double-reed instruments, air contained within 
a rigid conical tube is set into vibration by a pair of 
beating reeds whose frequency is determined by the in- 
teraction of the reeds with the normal modes of the air 
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column, To obtain a reasonably simple equation for the 
pressure disturbances within a tube of varying cross- 
sectional area S, the following assumptions are made •0: 
(1) The fundamental acoustic equations for small dis- 
placements and small particle velocities are applicable; 
(2) the particle displacement and pressure are every- 
where analytic functions of time and space; (3) the walls 
of the tube are rigid so that there is no transverse 
particle displacement at the walls; (4) the diameter is 
small compared to the wavelength of sound to be prop- 
agated, which implies that the phase remains approxi- 
mately constant over every surface perpendicular to 
the axis of the tube; (5) the pressure varies sinusoidally 
with a frequency co/2•r; and (6) the cross-sectional area 
S is proportional to x z, where x is the distance along the 
axiS, 

With these assumptions, the funadmental lossless 
horn equation (in terms of the excess pressure) can be 
derived • as 

dzp 2 dp 

The solutions are 

where p now represents only the x-dependent part of the 
excess pressure, k = o•/c, and A and B are complex 
constants. 

The concept of acoustic impedance has proven useful 
in treating aeousUcal transmission systems. The input 
impedance of a conical section (i.e., the impedance at 
the throat or small end) can be derived in terms of the 
output impedance of the section (i.e., the impedance at 
the mouth or large end) and the length and flare of the 
section. The normal mode frequencies can then be com- 
puted by determining at what frequencies the input im- 
pedance achieves relative maxima for instruments in the 
double-reed class. The acoustic impedance at a point 
x can be written 

z (x) = p(x)/s(x) u(x) 

_ jpo• [C exp(- jkx) + exp(jkx)] 
- x [C(1 + jkx) exp(-jkx) + (1-jkx)exp(jkx)]'(3) 

where C is a complex constant and where the particle 
velocity u(x) has been defined as 

The double-reed bores can be approximated as trun- 
cated conical sections where the diameter of the throat 

(small end) is much smaller than the diameter of the 
mouth (large end), as illustrated in Fig. 1. We can use 
Eq. (3) to define the impedance at the throat Z o =Z(x=x o) 
and the mouth Z • = Z (x = x 0 + l) of our truncated conical 
section. Then by eliminating the constant C between Z 0 
and Z• the input impedance Z 0 is obtained after numer- 
ous manipulations as t•' 

X • - -- 

where kOt =tan'•(kx0) and kO•. =tan'•(kx0 +kl). To find the 
resonance frequencies of the cone, let Z • = R • + jXt 
{where R• and X• are the acoustic resistance and teac- 
rance at the mouth due to the radiation loading) and 
assume that R• <<. X•. A real denominator is obtained 
by multiplying the numerator and denominator by the 
complex conjugate of the denominator. Dropping terms 
in R[, assuming that k :xo(S• + 1) >> 1 and ka<< 1, and 
representing •a X• as 0. 6133(pco/•ra), we set the denom- 
inator equal to zero to find where the impedance is a 
maximum. Tfiis leads to the transcendental equation 

tan(k/) = - kxø(1 + 0.6133 a/x o) 
1 - 0.6133 k: ax o 

(s) 

In Sec, IIB a numerical example is used to Compare 
the frequencies predicted by Eq, (5) with those predicted 
by the more exact Eq, (4) and the resonance frequencies 
calculated numerically, 

B.. Effect of reed impedance 

The pressure driving the reeds, supplied by the play- 
er, is common to the bore and the reeds, The incom- 
ing flow of air divides into two parts, One goes into the 
bore while the other fills the space left when the reed 
deflects, The reed impedance is then related to the air- 
flow resulting from the reed deflection, From the 
above considerations, it is obvious that the reed acous- 
tic impedance Z r and the bore acoustic impedance Z b 
should be added in parallel to give the input impedance 
to an actual instrument as Z•= Z•,Zr/(Z•,+Zr), 

The simplest representation of the reed is to simu- 
late the reed cavity and low-frequency reed compliance 
by a cavity of small volume, Since the cavity is located 
essentially at a velocity antinode and the frequencies of 
interest are fairly low, the reed can be approximately 
represented as a compliance, The acoustic impedance 
of the cavity can then be written as 

z =- (6) 

The source impedance, equal primarily to the resis- 
tance of the small rectangular reed aperture, can be 
compared with typical values of the input impedance of 
the bore to determine whether the source acts more 

nearly as a constant-current generator or a constant- 
voltage source. Sivian •4 and Ingard and Ising xs obtained 
expressions for the resistance of rectangular orifices 
in which the static volume flow of air is proportional to 
the pressure difference, which implies that the resis- 
tance is a constant. Measurements by Nederveen ø veri- 
fied that the preceding assumption is essentially correct 
for double reeds. Thus, the slit resistance can be writ- 
ten as Rs = P/U. Nederveen has provided a graph of the 
volume flow U as a function of stationary slit height for 

I 

FIG. 1. Truncated conical section. 
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FIG. 2. Approximation of conical bore with contiguous 
cylindrical sections. Note finger hole between sections m and 

oboe and bassoon reeds with various blowing pressures. 
From his data, the resistance is estimated to be in the 

neighborhood of 3000 •acou.t (cgs). The input impedance 
to the bore (in the region of maxima) is generally less 
than 1000 •acou. t (cgs). Thus, the volume flow (current) 
is essentially controlled by the slit impedance, making 
the reed a constant current generator. The maximum 
power output is obtained when the input impedance is 
maximum. The resonance frequencies occur when the 
magnitude of the input acoustic impedance is greatest, 
i.e., when the reactive component vanishes. At any 
resonance frequency, maximum power can be trans- 
mitted to the surrounding medium by the instrument. 
The effect of the reeds on the bore resonances can be 

gauged by adding the total reed impedance, given by the 
equations derived by Nederveen, 8 to the input impedance 
of the bore. 

C. Numerical method for impedance calculation 

None of the foregoing methods for determining the 
impedance of a truncated cone are easily applicable to 
the more general case where the cone does not involve 
the same flare parameter over its whole length, where 
losses must be included to achieve reasonable band- 

widths, and where the placement and nature of the fin- 
ger holes must be accounted for quantitatively. How- 
ever, considerable success in calculating normal mode 
frequencies for vocal tracts with arbitrary shapes, 
losses, and side branches has been achieved by repre- 
senting the tract with a series of short circular lossy 
cylinders. •6 This latter approach was adapted here to 
calculate the input impedances of double-reed instru- 
ment bores with a minimal number of approximations. 

The conical bore is represented by a series of short 
circular cylinders as shown in Fig. 2. As the imped- 
ance at one end of a circular cylinder can readily be 
written in terms of the impedance at the opposite end 
and the dimensions of the cylinder, a straightforward 
method of obtaining the input impedance to the bore now 
presents itself. Let the impedance at the large end of 
the bore be the radiation impedance at a particular fre- 
quency f. This becomes the output impedance from 
which the input impedance (at the same frequency) is 
calculated for the first cylinder along the bore. The 
input impedance for the first cylinder then becomes the 
output impedance for the second cylinder, and the pro- 
cess is continued until the last cylinder is reached at 
the reed end of the bore. Whenever a tone hole is en- 

countered, the appropriate impedance (which depends 
on whether the hole is opened or closed) is added in 
parallel to the net bore impedance at the center of the 

tone hole. When the input impedance of the final cylin- 
der is computed, the input impedance of the entire bore 
is known at one frequency f. By repeating the above 
process at many different frequencies, a plot of im- 
pedance versus frequency may be constructed that 
represents the frequency dependence of the input im- 
pedance function. The cross-sectional areas of the 
bore and the position, size, and nature of the tone holes 
are determined by direct measurement and are input 
as data to a computer program. 

At the large end of the tube, the radiation impedance 
was determined as a function of frequency, using the 
reaction on a rigid circular piston mounted in an un- 
flanged cylindrical pipe of radius a obtained from ex- 
pressions for the radiation resistance and reactance 
given by Beranek. •s Beranek's expressions converted 
to the resistive and reactive components of the acoustic 
impedance of an unflanged cylindrical pipe of radius a 
are 

R r =0.25wUp/7rc, X r =0.6133 pw/7ra . (7) 

For an oboe, the requirement that ka< 1 insures ac- 
curate results for frequencies less than about 3000 Hz. 
Valid solutions are assured because 2a/h does not ex- 
ceed 1.2 for the frequencies of interest in double-reed 
instruments. 

The conical bore of the oboe was approximated by a 
series of short circular cylinders. In order that the 
bandwidths as well as the resonance frequencies be ac- 
curately determined, the heat conduction and viscous 
losses were taken into account. This was accomplished 
by considering each cylinder as a section of lossy trans- 
mission line, where the input impedance Z 0 is given by 

Z0= Zc[Z,+ Zc tanh(yl)]/[Z•+Z, tanh(yl)] , (8) 

at each frequency, and where Z½ is the characteristic 
impedance, • is the propagation constant, and l is the 
length of the section. These parameters are given as 

= +jo.,z,)/(c+ jooc)] , 

and V=[(R +jwL)(G+ jwC)] •/u , (9) 

with L representing inertance, C representing compli- 
ance, R representing viscous losses, and G repre- 
senting heat conduction losses; they are given by •6 

c=s/pc , 
R = 2•r(pp.f/SS) zlu and G = [2•'(r/ 1)/pcU](hfS/ph) TM 

where •t is viscosity of air, • is the ratio of specific 
heats, • is the coefficient of heat conduction, p is air 
density, c is sound speed in air, h is specific heat at 
constant pressure, and S is cross-sectional area. For 
the option of a lossless case, the above equations would 
be considerably simplified. 

The impedance of the finger holes are added in paral- 
lel at the appropriate points as in Fig. 2. For an open 
finger hole the resistive part of the radiation impedance 
is approximated by the impedance function for a rigid 
circular piston mounted in an infinite baffle. If a is the 
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(b) 

•o,_-I (,) 
FIG. 3. Tone hole terminations- (a) flanged end; (b) disk in 
front of open end; (c) outer surface of instrument serves as 
flange. (After Benade and Murday, see Ref. 18. ) 

radius of the piston and y =4rra/X, then when y< 0.85 the 
resistive impedance function TM R•(y) can be represented 
to an accuracy of at least 0.1% by the truncated series 

_ • o , = c/rra a) R•(y) (11) R•(y)= •ya I•Y 4+ 92'•i-gY , andRr (p . 

The reactive part of the tone hole impedance is given by 

X r = (2of/a•')zXl, (12) 

where zXl is a length correction for an open tone hole 
which is given by one of the expressions in Eq. {13) •ø 
depending on the manner in which the hole is terminated 
as illustrated in Fig. 3' 

al =b[0. 821 - 0.13(w/b + O. 42) 'ø'54] , 

zXl =b[0.61(r/b)ø'•8(b/h)ø's9], 

•l=b xO. 6411+O. Z21n(O. ZOR/b)] . 

(13a) 

(13b) 

(13c) 

There is some question •ø about the need for an addi- 
tional end correction to account for the inside end of the 

hole when Eq. {13e) is used. Only the expression showt 
in Eq. {13e) was used in this study, which may be a 
source of error. Also, Eqs. (11)-(13) do not take into 
account interactions with neighboring open holes and 
this may be a source of error. However, the good 
agreement between theory and experiment shown later 
in See. II D indicates that the effects are small. For a 

closed finger hole, it is assumed that Z• is infinitely 
large. It can then be shown from Eq. (8) that 
Z = Zc/tanh(Xl) is the input impedance for a lossy closed 
finger hole of length l. 

The input impedance of the (m + 1)st section with a 
, 

finger hole at its output {as in Fig. 2) is given by 

Z,+• = Zc[Z' = + Z c tanh(•,l)]/[Z, + Z'= tanh{•,/)], {14) 
where 

z; = z. z,/(z. + z,) , (15) 

in which Z. is the input impedance of section m and Z t 
is the input impedance of the finger hole. 

II. RESULTS OF THE IMPEDANCE CALCULATIONS 

This section presents the results of utilizing the im- 
pedance method, described in See. I C, to compute nu- 
merically the input impedance of oboe bores. A de-- 
scription of the computer program on which all the 

computations were performed is given first. Then, 
the validity of the method described in See. IC is shown 
for simple truncated cones and compared with results 
predicted by the "exact" equations. Next, the effects 
of gradually modifying the complexity of the cone {until 
it became a reasonable facsimile of an actual oboe 

bore) were determined. Finally, the computed im- 
pedance characteristics for various fingerings on an 
actual oboe are compared with the corresponding ex- 
perimental data. 

A. Description of the computer program 

The computer program IMPED was written in FORTRAN 
and used to compute and plot the magnitude of the input 
impedance of woodwind bores as a function of frequency. 
{As woodwind instruments are composed of several in- 
dividual pieces which join together, the word "joint" 
was used in this program to represent each of these in- 
dividual pieces.) The control variables for the com- 
puter program were as follows: loss/no-loss option, 
number of joints in the tube, number of side holes in 
the tube, the frequency increments in the calculations, 
the diameter of the mouth of the tube, the maximum 
length of each cylindrical section, the volume of the 
mouthpiece cavity, the air temperature, the difference 
of end diameters for each joint in the tube, and the 
length of each joint. The diameter and length of the 
side holes and the distance of the center of the side hole 

from the bell were also included when present, along 
with a specification of which tone holes were open. The 
distance of the small end of each joint from the end of 
the bell was also given. 

Starting with the first frequency given in the input 
data, the program computed the input impedance at fre- 
quencies spaced five Hz apart. The air constants for 
use in the cylindrical section calculations were com- 
puted for the temperature assumed. For each frequen- 
cy the program began at the bell with the radiation im- 
pedance and proceeded to calculate the input impedance 
for each cylindrical section using Eq. {8). When tone 
holes were included, the calculations were identical, 
except that when a hole was encountered the section 
length l' for this cylinder was chosen such that the see- 
tion terminated at the center of the side branch, under 
the restriction that 1 ' -<l. When the tone hole was open, 
its radiation impedance was included and the input im- 
pedance of the side branch was calculated. If the tone 
hole was closed, the radiation impedance was taken to 
be infinite. In either ease, the total impedance at the 
side branch was then computed by adding in parallel the 
bore impedance at that point and the impedance of,the 
tone hole. 

When the input impedance to the entire bore had been 
calculated at a particular frequency, it was added in 
parallel to the reed cavity impedance, which was com- 
puted from Eq. {6). The log magnitude of the impedance 
is here called the relative impedance level in decibels; 
it is "relative" because the reference impedance is 
arbitrary. It is computed at each desired frequency by 
10 log(R •' + X•'), where R and X are respectively the real 
and imaginary parts of the complex impedance. The 
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TABLE I. The effect on frequency (in 
hertz) of varying the section length in the 
impedance program. 

L=I.O cm L-0.5 cm L-0.25 cm 

256.0 256.0 256.0 

512.0 513.0 513.0 

770.0 772.0 772.0 

1030.0 1033.0 1033.0 

1290.5 1296.0 1296.5 

1553.0 1561.0 1561.5 

1817.5 1827.5 1827.5 

2082.0 2095.0 2095.5 

2347.5 2364.0 2364.0 

2614.5 2633.0 2633.5 

2881.5 2903.0 2903.5 

impedance level and the frequency at which it was com- 
puted were then stored until sufficient data had been 
accumulated to plot impedance level versus frequency. 

B. Validity of the numerical computation of impedance 

The method of computing the input impedance of a 
woodwind bore, developed in Sec. IC assumed that the 
bore may be approximated by a series of short cylindri- 
cal sections. To check the validity of this assumption, 
a simple truncated cone with no losses and no finger 
holes was modeled on the computer. As a first approxi- 
mation to an oboe, the length l was chosen equal to the 
length of a Strasser oboe with a reed staple in place but 
without the reed. Also, the diameter of the small end 
of the cone 2a0 and the diameter of the large end 2a were 
made equal to the respective end diameters of the oboe. 
The dimensions of the cone were then l =62.53 cm, 2a 
=3.64 cm, 2a 0 =0.23 cm, and x 0 =4.22 cm. 

To determine the optimum length of the cylindrical 
sections to be used in the representation of the cone, 
three runs were made with the maximum section lengths 
lbeingl. 0, 0.5, and0.25 cm. Theresuits (from0to 
3000 Hz) are tabulated in Table I, where f is the fre- 
quency in hertz at which the peaks occurred in the im- 
pedance function. The frequency data are accurate to 
+ 0.5 Hz because increments of 1 Hz were used in the 

program. Consideration of Table I shows that l =0.5 cm 

TABLE II. Normal-mode frequencies, 
in hertz, of the simple truncated cone. 

Harmonic IMPED Eq. (4) Eq. (5) 

256.0 256.0 256.0 256.0 

512.0 513.0 513.0 513.2 

768.0 772.0 772.0 772.2 

1024.0 1033.0 1033.0 1033.4 

1280.0 1296.0 1296.0 1296.6 

1536.0 1561.0 1561.0 1561.7 

1792.0 1827.5 1827.5 1828.4 

2048.0 2095.0 2095.0 2096.3 

2304.0 2364.0 2363.0 2365.3 

2560.0 2633.0 2632.5 2635.3 

2816.0 2903.0 2903.5 2905.8 

TABLE III. Dimensions of oboe joints. 

Joint 

Diameter Diameter 

Length large end small end 
(cm) (cm) (cm) 

Distance from 

bell to small 

end (cm) 

Bell 7.32 3, 64 1.90 7.32 

Bell 7.53 1.90 1.50 10.85 

Lower 23.83 1.50 1.02 34.68 

Upper 23.17 1.02 0.40 57.85 
Staple 4.68 0.47 0.23 62.53 

is the optimum section length for the oboe, since use 
of shorter section gives almost the same results but 
requires more computation time. 

Having determined the optimum section length for the 
calculations, the simple truncated cone dimensions 
given in the preceding paragraph were then used to com- 
pare the resonance frequencies predicted by IMPED with 
those predicted by Eqs. (4) and (5). The frequencies 
(to + 0o 5 Hz) at which the impedance maxima occurred 
for IMPED and Eq. (4) are listed in the second and third 
columns of Table IIo In column 4 the roots of tran- 

scendental Eqo (5), which predicts the resonance fre- 
quencies of a truncated cone (to ñ 0.2 Hz) under the 
limitations discussed in Sec. I A, are tabulated. The 
first column, labeled "Harmonic," lists the integral 
multiples of the fundamental frequency for comparison. 

Inspection of the table yields the following pertinent 
information: (1) the agreement between IMPED and Eqo 
(4) is excellent; (2) the agreement between these "exact" 
solutions and Eq. (5) is very good, Eq. (5) giving fre- 
quencies about 0.1% too high for the upper harmonics; 
(3) the resonance frequencies are stretched from inte- 
gral multiples of the fundamental as predicted earlier. 

From this information it can be seen that the approxi- 
mations made in Sec. I A to obtain Eq. (5) are not un- 
reasonable and the computer program IMPED can be used 
validly to predict the normal modes of truncated cones. 
Based on the second conclusion, the underlying assump- 
tion of this work is that woodwind bores of any degree 
of complexity (with losses and tone holes) can be repre- 
sented accurately by the computer program IMPED. 

C. Impedance calculation for a modified simple cone 

Modifications to the simple truncated cone were based 
on measurements of a Strasser oboe. The dimensions 

of the three oboe joints and the reed staple are given in 
Table III. The measurements were made with a vernier 

caliper, a micrometer, and a meter stick. Dimensions 
and other details of the finger holes are given in Table IV. 

The first modification to the simple truncated cone 
was to represent the bore (with staple) as five conical 
joints. As can be seen in Table III, the oboe bore con- 
sisted of a conical reed staple, two conical joints, and 
a bell. Since the bell flares somewhat at the end, it 
was represented as two conical joints. This then gave 
a total of five joints. The end diameters and the length 
of each joint were input parameters to the computer 
program. The diameter at any distance from the bell 
was then computed by linear interpolation, under the 
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TABLE IV. Description and dimensions of oboe finger holes. 

Bell-to- 

hole center Hole Hole 

Hole Location distance diameter length 
no. Type (joint) (cm) (cm) (cm) 

Cap 
diameter 

(cm) 

Flange 
length 
(cm) 

open 

cap 

Hole in 

cap, 

diameter 

(cm) 

1 cap bell 9.72 1.1 0.6 
2 cap lower 13.72 1.0 0.6 
3 cap lower 17.11 0.70 0.6 
4 cap lower 20.57 0.90 0.6 
5 cap lower 23.60 0.72 0.6 
6 hole lower 27.59 0.60 0.85 

7 cap lower 29.24 0.66 0.6 
8 cap-hole lower 30.49 0.82 0.6 
9 cap lower 32.06 0.52 0.60 

10 hole lower 34.03 0.60 0.85 

11 cap upper 36.97 0.45 0.65 
12 hole upper 40.04 0.42 0.95 
13 cap upper 41.60 0.50 0.6 
14 hole upper 43.35 0.39 0.95 
15 cap upper 44.42 0.32 0.6 
16 cap-hole upper 46.23 0.22 0.6 
17 cap upper 47.42 0.36 0.6 
18 cap upper 48.45 0.36 0.65 
19 cap upper 51.41 0.26 0.70 
20 cap upper 57.02 0.26 0.70 
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assumption that each joint was a simple truncated cone. 
This assumption was generally valid for all joints ex- 
cept the terminating section of the bell joint, which is 
flared somewhat. (A closer approximation to this 
flared section was obtained by representing the oboe 
bell by four conical joints rather than two. This was 
done and comparison of frequency data for complete 
bores of five and seven conical joints showed them to 
be identical within 0.2%.) For each case it was assumed 
that there were no discontinuities in diameter where 

two joints meet. In actuality, there was a prominent 
discontinuity at the junction of the staple and the bore. 
This effect is examined later, Meanwhile, the end 
diameter of the staple (0.47 cm) was used as the diam- 
eter of the .small end of the upper joint, so that the bore 
was continuous. An examination of Table V shows that 

there is considerable difference in the results between 

the cones of one and five joints. 

Representing the bore with five joints, the following 
changes to the smooth bore were introduced sequen- 
tially: (1) The discontinuity between the bore and the 
staple was included, (2) closed tone holes were included, 
(3) the reed cavity was added, and (4) the losses were 
taken into account. The effects of each of these changes 
can be gauged by considering Table V, where each 
modification includes all of the previous ones. The dis- 
continuity between the bore and the staple, as discussed 
earlier, had the effect of raising the normal mode fre- 
quencies. This was because the cross-sectional area 

in the upper part of the top joint had been decreased. 
Adding the closed tone holes (see Table IV for data), 
which had the effect of increasing the effective cross- 
sectional area of the bore, lowered the normal mode 
frequencies. The reed cavity volume and low-frequency 
reed compliance had the effect of lowering the resonance 
frequencies of the high-frequency modes. Finally, the 

incorporation of losses did not significantly affect the 
normal mode frequencies, even though there was a 
profound effect upon the amplitudes and bandwidths of 
the peaks. 

D. Comparison with experimental data 

Experimental curves were made on the same Strasser 
oboe by A. H. Benade in July 1970 using an impedance 
measuring apparatus equipped with a Coltman-type im- 
pedance head as described in the literature. •9 Figures 
4-12 present a comparison of relative input impedance 
levels for nine different notes in the low register of the 
oboe. The upper curve in each figure is experimental; 
the lower curve is calculated. The experimental and 
calculated impedance levels are based on different 
arbitrary reference impedances, so their absolute 
values may not be compared directly. However, rather 

TABLE V. Normal-mode frequencies, in hertz, for modifica- 
tions to the simple cone. 

Five Discon- 

One joints tinuity at Closed Reed 
joint (continuous) staple holes cavity Losses 

256.0 241.0 246.5 234.0 230.0 

513.0 517.0 523.0 504.0 481.0 

772.0 793.0 788.0 762.0 708.0 

1033.0 1058.5 1049.0 1003.0 938.0 

1296.0 1302.0 1289.0 1244.0 1174.5 

1561.0 1557.0 1543.0 1496.0 1388.5 

1827.5 1827.5 1814.5 1750.5 1620.5 

2095.0 2102.0 2093.0 2018.0 1860.0 

2364.0 2372.5 2369.5 2281.0 2123.5 

2633.0 2638.0 2640.5 2535.0 2384.0 2397.0 
2903.0 2906.0 2915.0 2800.0 2631.0 2645.0 

230.0 

480.5 

707.5 

938.0 

1175.5 

1391.5 

1626.5 

1868.0 

2134.5 
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FIG. 4. Experimental (upper) and calculated (lower) relative 
input impedance levels for oboe note B3. 
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FIG. 5. Experimental (upper) and calculated (lower) relative 
input impedance levels for oboe note C4. 
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FIG. 7. Experimental (upper) and calculated (lower) relative 
input impedance levels for oboe note E4. (From Strong and 
Plitnik. •o) 
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FIG. 8. Experimental (upper) and calculated (lower) relative 
input impedance for oboe note F4. 
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FIG. 9. Experimental (upper) and calctxlated (lower) relative 
input impedance levels for oboe note G4. (From Strong and 
Plitnik. 2o) 
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FIG. 10. Experimental •pper) •d calculated (lower) relative 
input impeduce levels for oboe note A4. 
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FIG. 11. Experimental (upper) and calculated (lower) relative 
input impedance levels for oboe note B4. (From Strong and 
Plitnik 2ø. ) 
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FIG. 12. Experimental (upper) and calculated (lower) relative 
input impedance levels for oboe note C5. 

meaningful comparisons can be made in terms of rela- 
tive positions, heights, and details of corresponding 
peaks. Note the close similarity in the curves; the 
major difference is that the peak-to-dip changes in im- 
pedance levels are systematically larger for the cal- 
culated than for the measured impedance levels; this 
indicates that there are energy losses present in the 
real oboe which we did not incorporate into the com- 
puter program. Three such mechanisms may possibly 
explain this discrepancy. First, we assumed (incor- 
rectly) that the pads or fingers covering a closed tone 
hold form an infinite impedance termination. In fact, 
the pads are somewhat porous and both pads and fingers 
are somewhat flexible, thus consuming some acoustic 
energy. Second, the socket and tenon junctions also 
consume energy since they provide large areas of air 
surface that have a (0.1 mm thick) boundary layer sur- 
face constrained on both sides of fairly closely fitting 
pieces of wood and cork. These joints can account for 
several percent of the total wall loss. Finally, an 
additional energy sink in a woodwind comes from the 
presence of many corners and edges where tone holes 
intersect the bore, as well as in the socket and tenon 
junctions of the various pieces. It is known •a that the 
dissipation per unit area of these strongly curved sur- 
faces is considerably more than that of a flat surface. 

The input impedance curve of an oboe has several 
characteristic features which help determine the tone 
and playing behavior of the instrument. There are 

usually two or more "normal-appearing' resonance 
peaks at low frequencies. At higher frequencies, be- 
yond the open-hole cutoff frequency, the added length 
of air column leads to a considerable irregularity in 
the spacing, shape and height of peaks. The cutoff fre- 
quency can be observed by inspection of Figs. 5-11, 
which show cutoff frequencies in the range of about 
1300-1700 Hz. In Fig. 12 the cutoff frequency ap- 
parently lies above 2000 Hzo For the lower notes of 
the oboe's range, such as in Figsø 5 and 6, there are 
fewer holes open and the transition is less readily ob- 
served. Figure 4 indicates that for this low note the 
impedance curve looks remarkably similar to that of a 
brass instrument. 

For an oboist to achieve a good, clear tone in the low 
register, it is crucial that the frequencies of two or 
three impedance peaks lie very near to integral multi- 
ples of the played pitch frequency. When a reed is 
placed on the oboe, the frequencies of peaks beyond 
the first are lowered slightly. Therefore, on a well- 
designed instrument the impedance peaks measured in 
the above manner should be just the right amount sharp 
to offset the effect of the reed. By inspecting the im- 
pedance curves, we discover that among the top five 
notes, all are fairly good (having three well-tuned 
peaks), except that shown in Fig. 11. This figure shows 
shows an impedance curve for a relatively bad note (B4) 
in which the third peak is missingø Figure 7 shows the 
impedance curve for a particularly bad note (E4) on this 
oboe; even though the third peak is present, it is, in 
fact, somewhat flat. Figure 6 gives the plot of a very 
good note (D4) in which a well-tuned fourth peak makes 
it louder and brighter than its neighbors. 

Figure 13 shows the calculated result of opening one 
additional hole (Noø 9) which is below the highest open 
hole for the note C5 as in Fig. 12. Observe that opening 
the extra hole splits the important third peak into sev- 
eral peaks of reduced amplitudeø A comparison of 
Figs. 12 and 13 indicates that the third peak is a nearly 
degenerate superposition of peaks which is resolved 
when hole No. 9 is opened. Even though hole No. 9 is 
open for several notes below C5, it is important for the 

8O 

7O 

Z50 

30 
500 1000 1500 2000 2500 3000 

FREQUENCY(HZ) 

FIG. 1, ø Calculated relative input impedance level for oboe 
note C5, with modified fingering. 
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production of a good clear tone that it be closed when 
C5 is played. 

E. Summary and projections 

We have shown that the computer program IMPED ac- 
curately predicts salient features of the impedance 
curves of an actual oboe. It may be that the program 
can be utilized to predict the resulting change to the in- 
put impedance when modifications are made to the bore 
of an oboe with poorly placed resonance peaks. By use 
of this method, nondestructive experiments could be 
conducted on an oboe to determine if the peak placement 
(and consequently the sound) of certain notes could be 
improved by modifications to selected parts of the bore. 

A logical extension of this work would be to attempt 
to achieve optimum placement and size of the finger 
holes and optimum variation of internal bore diameter. 
The optimization of these parameters could be accom- 
plished by using a multivariable search technique pro- 
gram, such as those often used in industrial research. 
Such parameter optimization, when applied to double- 
reed instruments, might enable one to construct instru- 
ments with more uniform and improved tone quality 
over the entire playing range. 
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