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Summary
A method of automatic speech recognition has been programmed on a small computer. The

system accepts syntactic units of carefully spoken continuous speech from a single co-operative
male speaker. The recognition parameters are low order cepstrum coefficients, zero crossing rate,
slope change rate, cepstrum peak height and apparent place of articulation. The segmentation is
performed using a "segmentation by recognition" method. Two phoneme choices are assigned
to each segment. The utterance is identified by generating successive phoneme strings until one
is found which satisfies the lexical and syntactic constraints. The lexical constraint requires the
word string to consist only of phonemicon (phonemic dictionary) entries. The syntactic constraint
requires the word string to satisfy a simplified English syntax. The phonemicon was built to
contain about a thousand entries. Twenty utterances containing an average of 3.4 words were
used to evaluate the system. Of these, 35 percent were correctly recognized without application
of the syntactic constraint. Imposition of the syntactic constraint improved the recognition rate
to 65 percent.

Computererkennung kontinuierlicher Sprache

Zusammenfassung
Auf einem Kleinrechner wurde eine Methode der automatischen Spracherkennung program-

miert. Das System verarbeitet syntaktische Einheiten sorgfaltig gesprochener kontinuierlicher
Sprache eines gutwilligen mannlichen Sprechers. Erkennungsparameter sind Cepstrumkoeffizien-
ten niedriger Ordnung, Nulldurchgangsrate, Anderungsrate der Kurvensteigung, Hohe der Spitze
und Lage gemaB der Artikulation im Cepstrum. Die Segmentierung wird mittels einer Methode
der ,,Segmentierung durch Erkennung" durchgefuhrt. Jedem Segment sind zwei Phonemmoglich-
keiten zugeordnet. Die Sprechweise wird identifiziert durch Erzeugung aufeinanderfolgender
Phonemketten, bis eine gefunden wird, welche die lexikalischen und syntaktischen Beschran-
kungen erfiillt. Die lexikale Einschrankung erfordert, da6 die Wortkette nur aus Eintragen in
einem Phonemicon (phonemisches Worterbuch) besteht. Die syntaktische Einschrankung erfor-
dert, daB die Wortkette einer vereinfachten englischen Syntax geniigt. Das Phonemicon war so
aufgebaut, daB es etwa tausend Eintrage aufwies. Es wurden zwanzig Sprechweisen aus im
Mittel 3,4 Worten verwendet, um das System zu beurteilen. Ohne Anwend»«g der syntaktischen
Einschrankung wurden davon 35 Prozent richtig erkannt. Durch Hinzunahme der syntaktischen
Einschrankung wurde die Erkennungsrate auf 65 Prozent erhoht.

L'identification de la parole continue a Vordinateur

Sommaire
On a programme sur un petit ordinateur une methode pour 1'identincation automatique de la

parole. Le systeme admet a l'entree des unites syntaxiques de discours continu soigneusement
prononce par un seul locuteur masculin collaborant a l'experience. Les parametres d'identification
sont les coefficients d'ordre peu eleve du spectre, le taux de passages par zero, les amplitudes de
pointe du spectre et 1'endroit apparent d'articulation; pour effectuer la segmentation, on a re-
cours a une methode de «segmentation par identification*. A chaque segment correspond un
choix possible entre deux phonemes. On identifie remission en produisant des suites successives
de phonemes, jusqu'a ce qu'on en trouve une qui satisfasse aux conditions lexicales et syn-
taxiques. La condition lexicale est que la suite ne contienne que des phonemes figurant au dic-
tionnaire de phonemes ou «phonemicon»; la condition syntaxique est que la suite de mots satis-
fasse a une syntaxe simplified de l'anglais. On a etabli le phonemicon de maniere qu'il contienne
mille entrees. Pour apprecier le systeme, on a utilise vingt phrases contenant en moyenne 3,4 mots:
35% d'entre elles furent reconnues correctement sans recourir a la condition syntaxique; a Faide
de celle-ci, le resultat etait ameliore et atteignait 65%.

1. Introduction computer. The primary aim of the study was to
„ , , . , , , ,. . , , design a system which would accept the carefully
This study represents a preliminary attempt to , , r . , , , , ,

, . , f . ,. ., , spoken speech of a single speaker and respond by
simulate a mechanical speech recognizer on a digital ,, , . ,, ° m , tr ° ° correctly typing the utterance. The secondary aim

* Present address: The Boeing Company, Seattle, Wash- was to examine the value of lexical and syntactic
ington. constraints in automatic speech recognition.
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Some (James [4], Pierce [7]) have argued that
general speech recognition is feasible only if non-
acoustic constraints are utilized. A possible classifi-
cation of these constraints would be: (1) lexical,
(2) syntactic, (3) semantic, and (4) statistical.

Once the language (or subset of a language) has
been chosen, an automatic upper bound on the size
and content of the vocabulary is implied. A lexical
constraint will require that all identified words be-
long to this limited although perhaps large set. The
possibility of recognizing nonsense words is natu-
rally eliminated.

Only relatively few randomly generated word
strings can be considered as structurally correct.
This constraint is due to the grammar of the lan-
guage. A general recognition system must require
that any input word string satisfy the syntactic
constraints on the language.

The semantic constraint requires not only that
the word string make sense, but it must also impose
a continuity of meaning. In a special purpose sys-
tem, for example, a system designed to play chess
from verbal instructions, the semantic constraint
would require that the instructions correspond only
to realizable moves (Reddy et al. [13]).

When one phoneme has been identified, the choice
of the phoneme to follow is no longer arbitrary, but
follows the statistics of phoneme sequence proba-
bilities for the language (Fry and Denes [2]).

This machine recognition study was limited to the
application of lexical and syntactic constraints and
no attempt was made to apply semantic or statisti-
cal constraints.

2. A basis for speech recognition

One of the problems in designing a speech re-
cognition system is in deciding on the fundamental
unit to process (Hill [3]). If sentence identification
is attempted, a comprehensive dictionary would
need to contain about 1020 entries. If the word is
chosen, 20000 entries might be adequate. I t is im-
portant to note however, that in principle all of
these words and sentences may be constructed from
about forty perceptually identifiable speech sounds
called phonemes. This economy of representation is
one of the main reasons for the attractiveness of a
speech recognition system based on identification
of phonemes.

The above illustration was based on figures ap-
propriate to a complete language; however, for a
word recognizer of limited vocabulary, it may be
more convenient to recognize the word directly.
Typically, word recognizers have not relied upon
phoneme recognition, but have generally used a

matching of time-frequency patterns (or some other
function in place of the frequency) for each word as
a whole. This method has been used with some suc-
cess (Denes and Mathews [1]), but for the reason
mentioned above is not feasible for continuous
speech or speech with a large vocabulary.

A phoneme recognition system faces the problem
of segmenting the speech into phonemes. Some suc-
cess in one method in which segmentation precedes
identification has been demonstrated by Reddy [11],
[12]. His method used the variation or stability of
sound intensity levels to perform a primary segmen-
tation with zero crossing rates as an aid in resolving
ambiguities. Each segment was then classified as
being either sustained or transitional. In a second
method a sequence of phoneme estimates was made
(e.g., Purves and Strong [10]) and the segment
boundaries were set when the transition took place
from one phoneme to another. This method is
termed "segmentation by recognition".

Whatever the basic unit chosen, speech recogni-
tion eventually reduces to a problem in pattern
matching. One must decide on a parameter set
which adequately contains the required information
of the speech signal. This basis set should be chosen
so that perceptually similar speech sounds are rep-
resented by similar values of the parameters, and
perceptually different speech sounds are represented
by different values. From the point of view of prac-
ticality the parameter set should be of the smallest
possible size.

It seems that a reasonable test on a parameter set
would be the possibility of synthesis of intelligible
speech from it. This criterion is neither necessary
nor sufficient, although if the recognition parame-
ters may be successfully used as control parameters
for a speech synthesizer we are assured that all of
the necessary information is included. The informa-
tion may not, however, be in a useful form. For
example, speech may be synthesized from a spe-
cification of the waveform, but this is not a useful
representation for direct recognition. A parameter
set should probably not be sensitive to phase.

Having chosen a parameter set, there remains the
problem of what constitutes a "best fit". One much
used method is to consider each entry of the set as
a rectangular co-ordinate in a Euclidean space. In
this case, each pattern corresponds to a point in the
space and the "distance" between points can be
used as a measure of closeness. This concept is use-
ful because, by means of it, an utterance can be
visualized as the trajectory of a particle in the space.
A more complete view of closeness would use a
metric for the space by appropriately weighting
the most significant dimensions.



ACUSTICA
Vol. 35 (1976) R. B. PURVES et al.: COMPUTER RECOGNITION OF SPEECH 113

Another method of determing closeness uses a
binary decision tree (e.g., Wiren and Stubbs [15]).
This method has been applied in a vowel recognizer.
The distinctive feature view of vowels was used and
a decision made by sequential sub-classification.
There is the danger in a system of this kind that
one wrong decision will make the final decision in-
correct.

A large number of feasible representations are
available for the speech signal. A choice between
them should be based on the criteria of efficiency of
computation and efficiency and completeness of the
representation.

The individual sounds of spoken English may be
categorized in several different ways, but the most
convenient primary classification for our purposes
is a separation according to the parameters needed
for identification. When considered in this way three
main classes may be established: voiced continuants,
fricative continuants and stop consonants. If sepa-
ration into these broad subsets can be made without
error then the intra-class identification becomes
more efficient because of the smaller number of
class members.

In this system, the voiced continuants were rep-
resented by the low order cepstrum coefficients. The
fricatives were represented by slope change rate,
zero crossing rate and cepstrum peak height. The
stop consonants were represented by the apparent
place of articulation, rise time and the presence or
absence of frication immediately following the rise
above silence. The choice of these parameter sets
was largely a matter of convenience. In particular,
use of the cepstral coefficients avoided the problems
associated with formant tracking.

3. The recognition strategy

The utterances to be processed were first recorded
in an anechoic chamber. The recording was then
played through an amplifier, low pass filtered at
4.5 kHz, digitized at 10 kHz, and the digitized
waveform written on the computer disc for further
processing.

3.1. Acoustic analysis and parameter extraction

The object of the acoustic analysis was to extract
a convenient parameter set to adequately represent
the phonetic features of the acoustic signal.

The first part of the analysis program extracted
information directly from the speech waveform: the
slope change rate (SCR) defined as the number of
slope changes per 100 samples of the digitized sig-
nal, the zero crossing rate (ZCR) defined as the
number of zero crossings per 100 points, and the

short time intensity level (STI) defined as the sum
of the absolute values of 100 consecutive sample
points.

A preliminary excitation decision was based on
slope change rate and zero crossing rate.

In an attempt to reconcile the apparently con-
flicting criteria of good time and good frequency
resolution, two different time windows were used
in the program: for normal processing a 40 ms-
window was used, but whenever the short time
intensity rose above an arbitrary silence threshold
a 10 ms-window was used. The purpose of the shor-
ter window was to achieve better time resolution in
the vicinity of stop consonants.

The cepstrum (Noll [5], [6]) was calculated in the
usual way using a 512 point fast Fourier transform.
The Hamming windowed speech was centred in the
512 point array and the remaining points set to
zero. Using the thirty lowest frequency coefficients
of the cepstrum, a smoothed logarithmic spectrum
was calculated by means of an inverse DFT. The
apparent place of articulation was then calculated
by using a method outlined by Purves [8].

Almost all of the computation was performed in
fixed point arithmetic and consequently a scaling
factor was used throughout.

3.2. The phoneme set
The human vocal mechanism is capable of pro-

ducing a very large number of distinguishable speech
sounds. If we label each of these sounds and then
describe an utterance in terms of them, the amount
of information transmitted is overwhelming. A con-
venient concept in describing speech sounds is the
phoneme. A phoneme is a distinguishable sound of
speech and is the basic unit of which larger speech
units are constructed. Spoken English recognizes
about forty such phonemes.

The use of the word "phoneme" in the present
context requires some liberalization. In the recogni-
tion system each voiced continuant phoneme was
represented by a parameter set which, in turn, was
considered as a vector in a multidimensional space.
Thus, each speech sound was assigned a point in the
space. The utterance (except for the complication
of stop consonants and fricatives) corresponded to
the trajectory of the "speech particle" through the
space.

A phonetic description of the utterance could be
considered as a gross representation of this trajec-
tory in terms of a sequence of general regions through
which the particle passed. When the problem is con-
sidered in these terms, there is no longer any need
to express the phonemic spelling by means of a
string of phonemes defined in the conventional way.
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But rather, we may choose a "cloud" of points,
which provides a satisfactory spread over the prob-
able range of speech sounds, and describe the ut-
terance as a sequence of nearest neighbors. Such a
set of points could correspond to average values for
the conventional phonemes, but this restriction is
not necessary. This "cloud" may have a larger or
smaller number of entries than the conventional set.
In this system a set of 22 phonemes was used.

No attempt was made to separately accommodate
diphthongs; in the present system these appeared as
a sequence of the sounds through which the particle
passed. The breakdown of phonemes by class is
summarized in Table I. Internally in the system
the phonemes were referred to by means of a pho-
neme index. The numerical sequence has not been
completely followed because of a reduction in the
number of phonemes from that used in the original
version of the recognizer.

Table I.
Summary of the system phonemes.

Class Number
of members

Phoneme indices

Vowel
Nasal
Liquid
Nasal-fricative
Fricative
Stop

7
3
2
1
4
5

1 - 7
8-10

11, 12
13
14, 15, 18, 19
21-24, 26

3.3. Identification of continuants

The continuants are characterized by having a
sustained quality. They may be subclassified as
voiced or unvoiced. The identification of continuants
proceeds on the assumption that these two sub-
classes may be distinguished from each other vir-
tually without error.

The fricatives generally have a high slope change
rate (greater than 60). The only non-fricative to
possesss this property is /i/. Confusion between this
phoneme and the fricatives may usually be eliminat-
ed by an examination of the 0.3 ms-coefficient of the
cepstrum. In the case of fricatives, this coefficient
does not often exceed a measured threshold, and
in the case of /i/, it rarely falls below the threshold.
Once the continuant class has been decided, further
identification continues in each group independently.

Cepstrum matching was chosen as the recognition
condition for quasi-periodic speech waveforms. This
method had previously been used by Strasbourger
[14] for speech recognition by using the low order
coefficients.

In this work coefficients 1 through 10 were uti-
lized. This corresponds approximately to the fre-

quency range 0.1 to 1.0 ms. If these coefficients are
considered as co-ordinates of a 10-dimensional
hyper-space, the notion of closeness acquires a
physical meaning. If we further allow that some
of the components are more significant in the re-
cognition process than others, a metric tensor of
some kind may be used to reflect this relative im-
portance. A very simple view is that those com-
ponents which show the greatest intra-phoneme
variation are less useful than the more stable ones.

For each non-fricative parameter set, two best
fit phonemes were chosen. The best fit criterion
actually used was minimization of the Euclidean
distance. Provision was made in the program to use
a non-unit metric tensor, but machine size limita-
tions prevented its implementation.

Although it is difficult to visualize a 10-dimen-
sional hyper-space, a projection of this space onto
a 2-dimensional surface is easily obtained. Fig. 1

Fig. 1. Motion of the speech particle during the utterance
of the word "man", shown as a projection onto the C4-C5
plane. The circled numbers show the projections of the
voiced continuants onto the C4-C5 plane.

shows a projection of the space onto the C4-C5
plane. The numbers indicate the location of the cor-
responding standard phonemes. Also shown on the
same figure is the trajectory of the speech particle,
during utterance of the word "man". Table II lists
the values of the standard voiced continuants and
the approximate phonetic equivalents. It should be
understood that the table values have not been
chosen to correspond to the phonetic values indi-
cated, but rather, each phonetic symbol has been
chosen to give an approximate phonetic meaning
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Table II.
Standard cepstral parameter phoneme values for continuants (phoneme number 13 has no single perceptual equivalent).

Suggest.
equival.

/a/

N
N
IN
IV
M
M
H
H
hi
N
M
IV

Phoneme
number

1
2
3
4
5
6
7
8
9
10
11
12
13

Cx

6800
3000
9000
9000
8000
7500
8000
8000
7500
7000
9500
10000
7000

1000
-3000
3000

-1000
2800

-3000
-4000
- 500
-1500

250
4000
3000
1500

Cz

4000
3800
3200
3500
3800
3500
3000
2000
2200
1300
3500
2200
3000

-1200
2800
2400

- 400
1500

-1000
- 500

500
2000
2000
1000
200
500

c5

0
1500
500
500
900
1000
2500
3000
1500
2500

0
200
1500

- 800
500
1000
500
200

-1000
200
1000
500
400

-1000
600
1000

-1100
1000

- 500
500

-1000
500

-1500
0

1500
- 600
- 500

800
2000

c8

-800
-700
300
1000
- 50
1200
500
900

-200
1000
400
1000
500

200
1500
500

-500
-900
-900
-600
500

-700
-300
-500
800
1000

Cio

- 500
500
500

-1000
- 100

0
-1800
- 500
- 400
- 400
- 500

0
0

to the particular parameter set. Phoneme 13 had
no perceptual equivalent since several widely dif-
ferent sounds were sometimes represented by it.
For example, the voiced fricative /9/ is usually
identified as phoneme 13; however, in some environ-
ments the nasals receive this identification. Because
of this dual role, it has been classified as a nasal-
fricative.

The parameters used for fricative identification
were: the slope change rate (SCR), the slope change
rate minus the zero crossing rate (SCR-ZCR), and
the cepstrum peak height (CPH). The voiced frica-
tives differ from the unvoiced ones in that the super-
imposed periodicity lowers the ZCR and raises the
CPH. The cepstrum of a pure fricative has no ge-
nuine peak and in this case the CPH refers to the
maximum value encountered in the region of search.
Table III summarizes the standard parameter values
for the fricatives.

Table III.
Standard parameter values for the fricatives.

Suggested
equivalent

M
III
N
III

Phoneme
index

14
15
18
19

SCR

75
70
78
65

SCR-

35
45
6
13

ZCR CPH

300
700
250
700

A non-unit metric tensor was used in calculating
distances in the fricative space. If we let u and v
be two points in the fricative space, then the dis-
tance between them is defined by

where g^ = 0 for i 4= j , and gn = 1, gii = 1,
gr33 = 1/15. Summation is implied over repeated in-
dices. Presumably a detailed study would provide
a more satisfactory g.

3.4. Identification of stop consonants

The stop consonants may be conveniently clas-
sified in terms of the place of articulation and the
manner of excitation. An additonal identification
cue may be obtained from the characteristic rise-
time.

Each time the zeroth cepstral coefficient Co rose
above the silence threshold the corresponding seg-
ment was labelled as a stop consonant. Frequently
such a condition did not correspond to a stop at all,
but merely the onset of speech. Consequently, the
possibility of a "non-stop" was allowed in the iden-
tification routine. The minimization of the Eucli-
dean distance was used as the best fit criterion. The
following were the recognition parameters for the
stop consonants:
1. the number of time frames in the following twelve

judged as fricatives,
2. apparent place of articulation (on a scale of 1

to 11),
3. the number of time frames from the rise above

the silence threshold to the first maximum of the
zeroth cepstral coefficient Co.

The five stops used in the system may be charac-
terized as: (1) voiced front, (2) voiced back, (3) un-
voiced front, (4) unvoiced back, (5) non-stop. Ta-
ble IV lists the standard parameter values for the
stop consonants.

Table IV.
Standard parameter values for the stop consonants.

Suggested
equivalent

/b,d/
/d,g/
/P,V
/t,k/
non-stop
non-stop

Phoneme
index

21
22
23
24
26
26

Param-
eter 1

0
0
5
5
12
3

Param-
eter 2

2
5
2
5
5
10

Param-
eter 3

0
3
0
3
9
0
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3.5. Segmentation

The segmentation operation had as its input a set
of parameters for each time frame; these were:
1. Best fit standard phoneme index,
2. second best fit standard phoneme index,
3. distance from the best fit standard phoneme to

the current time frame.

If the frame had been judged as silence its best fit
phoneme number was zero.

Each of the time frames was given a numerical
label according to the rules of Table V. This labelling

Table V.
Segmentation labels and conditions.

Condition Label

Nasal preceding non-nasal — 1
Nasal following non-nasal -f-1
Non-nasal following nasal + 1
Non-nasal preceding nasal — 1
Fricative preceding non-fricative — 1
Fricative following non-fricative + 1
Non-fricative preceding fricative — 1
Non-fricative following fricative + 1
4 frames before fall into silence + 1
5 frames before fall into silence — 1
1 frame after fall into silence — 1
2 frames after fall into silence + 1
Silence preceding non-silence — 1

1 frame later + 1
3 frames earlier — 1
2 frames earlier + 1
1 frame earlier + 3

Distance from best fit phoneme is smaller than
that of previous frame + 2

Distance from best fit phoneme is a maximum — 2

system placed a "— 1" at the end of each segment
and a "-f-1" at the beginning. Any segment con-
taining a " -+- 3" was identified by the stop identifica-
tion routine. The frames labelled with " + 2 " were
the only frames used in the identification of the
continuant segments. The frames labelled with
"—2" were the only frames considered for segment
boundaries in the subsegmentation routine. All fra-
mes which satisfied none of the labelling conditions
were assigned a zero.

Application of these rules provided a gross first
attempt at segmentation. Improvement was made
by elimination of intersecting segments, conca-
tenation of short segments and subdivision of long
ones. An example of the preliminary segmentation
results are given in Table VI, with the approximate
final segment boundaries shown by the horizontal
lines.

The identification of each continuant segment re-
quired an averaging of the separate identifications

Table VI.
Illustration of the segmentation process. The utterance
segment shown ("is in") is from "The shoe is in the room".
The final segmentation boundaries are shown by the hori-
zontal lines. The entries in the table are spaced at 10 ms

intervals.

First Second First
choice choice choice
phoneme phoneme distance
index index function

10
13
15
2
2

15
15
15
15
15

9
9
9
9

13
4
4

Segmen- Phoneme
tation recog-
label nized

9
13
10
14
13
13
14
14
14
14
14

5
5
8
10
10
5
10
5
5
5
5
5
13
4

13

3295
4111
4584
4510
4119
4469
4845
4551

5041
4728
4378
4758
5474
4980
6708
6759
4242
7406
4889
5176
4516

5033
4264
4266
4595
4280
4260
4126
3811
3206

2960
2992
3665
2813
2706
2733
1294
1710
2244
1971
2602
2049
2472
3690
3877
4691
5420

IV

IV

N

of the individual frames. In this averaging process,
only those frames were used which had the label
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3.6. The phonemicon

For the purposes of this study, a dictionary which
contains words according to their phonemic rather
than their orthographic spellings is called a "pho-
nemicon". The phoneme recognition process con-
verted the input utterance into a string of phone-
mes. The system then attempted to interpret the
phoneme string as a word string by matching pho-
neme sequences with the entries of the phonemicon.

Often, a single word appeared as several slightly
different phoneme strings on different occasions. As
a result of this, it was useful to include these several
versions of the word in the phonemicon. Each entry
of the phonemicon contained the orthographic rep-
resentation and some grammatical information.
Homonyms were listed separately for each distinct
meaning. The phonemic spellings were entered onto
the system as they were estimated or computed
from the calibration utterances.

3.7. Utterance extraction

Human recognition of speech is not based solely
upon acoustic information; a listener must generally
use both his knowledge of the language and of the
topic of speech as aids in understanding. Sometimes
allowance must even be made for the idiosyncracies
of the speaker. A mechanical speech recognizer
should also be able to gain in proficiency by uti-
lizing extra-acoustic information.

Application of a general semantic constraint
would require a considerable amount of stored in-
formation and complicated logic. A very severe
semantic constraint, corresponding to a task-
oriented recognition system, is much more realistic.
A general syntactic analysis would be prohibitive,
but it is possible to construct a syntax checking
algorithm for a fairly general subset of English from
a relatively small set of syntax rules.

The recognition system described in this study
incorporated a specially developed syntax checking
algorithm (Purves [8]). Although it would be very
useful to have a syntax checking algorithm which
operates infallibly with normal English, it is un-
likely that such an algorithm will be constructed
with only a small number of simple rules. A short
list of grammatical rules always seems to have a
long list of exceptions. The grammatical analysis
scheme used in this system is not universally ap-
plicable to normal English. I t rejects some gram-
matical utterances and accepts some ungrammatical
ones. It does, however, serve the useful purpose of
severely limiting the number of allowed word
strings, thus substituting for a more general testing
algorithm. Its most significant asset is that it is

easily implemented as a FORTRAN subroutine con-
taining about 300 statements (Purves [8], [9]).

The utterance extraction program attempted to
convert the input phoneme string into a syntacti-
cally acceptable word string. If this could not bo
achieved with the original phonemes, the string was
modified by replacement of phonemes from the re-
serve choices. Successive phonemes strings were
generated from the original by substitution of re-
serve choice phonemes until a string was found
which satisfied the lexical and syntactic constraints.
The trial phoneme strings were generated by first
replacing one phoneme at a time by its reserve
choice, then two at a time, and so on. For example,
if the original phoneme string had been (24, 4, 6, 9)
and the backup set (26, 5, 3, 8), then the sequence
of phoneme strings to be tested would have been
(24, 4, 6, 9), (26, 4, 6, 9), (24, 5, 6, 9), (24, 4, 3, 9),
(24, 4, 6, 8), (26, 5, 6, 9), (26, 4, 3, 9), (26, 4, 6, 8),
and so on.

3.8. Practical considerations

The recognition system was implemented on a
PDP-15 computer. The computer had a word length
of 18 bits, but lacked a hardware floating-point
arithmetic capability. The small core memory size
(16K) gave rise to some special problems, making
it necessary to write the recognizer as a sequence
of programs. In some sense this was a natural ar-
rangement, since some operations were prerequisites
for others. In the case of the acoustic analysis and
utterance extraction programs the machine size was
scarcely adequate. These programs were so large
that some CRT display handling programs could
not be properly loaded simultaneously. Another
problem in machine size arose in matching the test
phoneme string with the phonemicon entries. Only
a small part of the dictionary could be brought into
core memory at a time (64 entries), making neces-
sary a very large amount of disc manipulation.

The recognition system used three dictionaries:
the spelling list, the grammatical features list and
the phonemicon. The dictionaries were stored on
disc and sections brought into core as needed. The
sequence of entries provided a means of referring to
entries. A mapping table used in conjunction with
the phonemicon contained the location of the cor-
responding entries of the spelling list and the fea-
tures list. Since a single word was allowed to have
several entries in the phonemicon, it was necessary
to allow all of these entries to point to the same
spelling and the same features set.

In the phonemicon, three phonemes were stored
in one computer word allowing 6 bits per phoneme.
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The maximum allowed number of phonemes in a
single word was 12, so that 4 computer words were
required to store each phonemic spelling.

4. System evaluation

It is difficult to evaluate a speech recognition sys-
tem and assign to it a single number indicating its
proficiency. The fraction of correct identifications
from a test set of utterances is certainly useful in-
formation, but hardly sufficient. Factors which
would seriously influence such a single number rat-
ing include vocabulary size, the amount of effort
expended in calibrating the system (its experience)
and the number of word variants permitted. Con-
straints which limit the possible utterances also
play a significant role. In this system a syntactic
constraint was able to accept or reject postulated
word strings. A contextual constraint could serve
the purpose of further reducing the possible ut-
terances. If the recognition system is explicitly task
oriented with a reasonable number of different tasks,
and no one will be injured by a wrong decision, the
machine could be allowed to guess from the set of
possible responses. A more responsible system would
be unable to respond unless the decision were made
with a high degree of confidence. It is apparent
that an irresponsible system would have a better
result rating than a responsible system.

The recognition system of this work had the
choice of a very large possible number of utterances.
The phonemicon contained phonemic spellings for
about 800 different words. The syntax severely
limited the number of acceptable utterances; nev-
ertheless, this number was very large. For example,
with an 800 word vocabulary and a string of three
words, there would be of the order of 108 strings
possible without the constraint and an estimated
107 strings allowed with the constraint.

4.1. Method of calibration

In the early stages of the system, words and word
strings were processed and the computed phonemic
spellings entered onto the phonemicon. In this way
an early corpus of data was obtained. During this
early stage the recognition logic and standard pa-
rameters were continually being changed so that a
few of the phonemic spellings were rendered ob-
solete. When the system had reached a sufficiently
advanced stage for evaluation, a large number
(about 700) of estimated phonemic spellings were
entered onto the phonemicon. These estimations
were based on experience of how the system had
behaved. The next stage was to calibrate the words

to be used in the evaluation. This was accomplished
by processing each word several times to compute
the phonemic spellings.

Most words show some variation from one ut-
terance to the next, so it was necessary to also
estimate the probable variants from a consideration
of the reserve choice phonemes. It may be argued
that the inclusion of a large number of variants in
the phonemicon makes the search time excessive.
However, it is much faster to search in the pho-
nemicon for a common variant than it is to generate
that variant from the original phoneme string. In
any case, a phonemo-numeric sequencing of pho-
nemicon entries would have substantially reduced
the search time.

The large number of estimated phonemic spell-
ings were intended merely to act as decoys. The
time required to calibrate such a large number of
words would have been prohibitive. In attempting
to match a phoneme string with phonemicon en-
tries the program had no way of knowing which
entries were genuinely calibrated and which merely
guessed. In this way it was possible to estimate the
effects of having a large vocabulary without paying
the full cost. Since the estimated phonemic spellings
occurred earlier in the phonemicon than the cali-
brated ones, their ability to act as decoys was in-
creased.

4.2. A test on the system

A set of twenty short utterances was chosen to
make an estimate of the proficiency of the recogni-
tion system. These utterances, together with a large
part of the calibration materials were recorded at
the same session. No special effort was made to
pronounce the test utterances in exactly the same
way as the calibration materials. The recordings
were made using carefully spoken continuous speech
from a single speaker. The words of the test strings
were allowed to run together when it seemed na-
tural to do so. Short pauses between words were
permitted when the last phoneme of a word was the
same as the first phoneme of the following word or
when co-articulation effects seemed likely to seri-
ously affect phoneme integrity. The system was in-
vited to recognize the test set.

Of the twenty utterances used in the test, in
fifteen cases recognition judgments were made. Of
these, two were slightly incorrect. Table VII shows
the phonemic spellings generated for the fourth test
utterance, "man and machine". A general summary
of the results obtained is given in Table VIII.

Of the fifteen utterances recognized, nine were
recognized without the syntactic constraint, while
six required application of the syntactic constraint.
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Table VII.
Phoneme index string generated for the utterance "man
and machine". The starred second choice phonemes were
required for recognition. When two adjacent phoneme in-
dices were the same they were concatenated. The first vowel

sound of "machine" typically did not appear.

First choice index Second choice index Word

22

6
9
9

27

24
6
9

26
13
19
2

13

26*
10
5
4

13
13

27

26*
7

13

22
8

18
6
9*

(pause)

and (an')

machine

Two of the five unrecognized utterances would prob-
ably have been recognized by letting the system run
longer. Two utterances were not recognized because
of inserted phonemes and one because of a missing
phoneme.

5. Discussion and conclusions

This work represents an attempt to simulate an
automatic speech recognizer for syntactic units of
continuous speech. The following restrictions were
made on the problem in order to keep it within
acceptable size limits:

1. only one male talker was used,
2. the speech was carefully spoken,
3. the phonemicon contained a large number of

dummy entries to act as decoys,
4. the calibration materials and test utterances were

recorded in a quiet environment on relatively
few occasions,

5. only about 50 of the 800 words on the system
were used in the test utterances,

6. only lexical and syntactic constraints were used.

Although these simplifying qualifications were made,
there is nothing fundamental in the system which
prevents its extension to multiple speaker use and/or
a larger vocabulary.

The choice of recognition parameters for this sys-
tem was largely a matter of convenience. The prin-
cipal advantage of using the cepstral coefficients
was the avoidance of formant tracking. The ceps-
trum is a strictly formal representation and not
subject to some of the vaguaries of a formant pick-

Table VIII.
Results of the recognition test.

Input utterance No. of
phonemes
in string

No. of
reserves
used

Comment Syntactic
constraint
applied

1.
2.
3.
4.
5.
6.

7.
8.
9.

10.
11.
12.
13.
14.

15.
16.
17.
18.

19.
20.

Sea smell
Peace and rest
She sees me
Man and machine
The shoe is in the room
I shall make some room

Nine machines
A smooth shoe
I see the sea
The ill man is at rest
A small mass
On some animal
Send a mass to me
Some men send peace

Free money
Some loose money
Free machines
Does the short person see

the smooth ice
Still
Roads

8
10
11
15
19
20

11
10
10
20
11
12
17
20

8
11

9

29
5
5

Recognized
Recognized
Recognized
Recognized
Recognized
Recognition prevented by

inserted phoneme
Recognized
Identified as "smooth shoe"
Recognized
Recognized
Identified as "the small mass"
Recognized
Unreas. amount of time needed
Recognition prevented by

inserted phoneme
Recognized
Recognized
Recognized

Unreas. amount of time needed
Recognized
Recognition prevented by

omitted stop consonant

Yes
No
Yes
Yes
No
—

No
No
Yes
No
No
No
Yes
—

Yes
No
Yes

Yes
No
—
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ing algorithm. However, some of the recent formant
estimating algorithms may tip the balance in favor
of formants as parameters in future systems.

Perhaps the most intuitive description of speech
is the articulatory one. In this system recourse was
made to the articulatory domain for identification
of the stop consonants. The method allows only a
single constriction in a uniform tube. If the place
of articulation so calculated is used only in the
vicinity of stop consonants, the constriction will
dominate over any area expansion in the tract.

A question arises about whether a second genera-
tion version of this system should have a greater or
smaller number of phonemes. The answer is not im-
mediately obvious. If too few phonemes are used then
different words may appear with the same pho-
nemic spelling. If too many are used then the same
word may have a large number of phonemic variants.
The latter seems to be the preferable condition. In
the second case the phonemicon size is large, but
the information is available for correct identifica-
tion. In the first case, if the confused words have
the same grammatical features, no distinction be-
tween them is possible. The decision on the number
of phonemes to use must be based on the particular
vocabulary of the system and the confusions likely
to arise.

A problem closely related to the number of sys-
tem phonemes is whether the recognition procedure
should be more or less sensitive. The acoustic analy-
sis is capable of detecting very subtle and even im-
perceptible speech events. It is not always obvious
which events should be taken seriously and which
should be ignored. Some ignorable events last longer
than significant ones. It leaves things in the quan-
dary then, that sometimes more sensitivity is needed
and sometimes less.

A logical extension to the present system would
be a self calibrating facility. In its easiest form this
would be applied directly to the phonemicon. When-
ever a word is correctly recognized by the system,
and reserve choice phonemes are necessary, the first
choice phonemic spelling would be added to the
phonemicon. Another self adjusting method would
allow the standard phoneme parameters to be ad-
justed by a correct identification. In this way, the
standard parameters might converge to an optimum
set.

One of the more serious problems in speech re-
cognition is that of omission and insertion of pho-
nemes. The use of reserve choice phonemes goes part
of the way toward solving this problem. For ex-
ample, consider the word "meany." Suppose that
the phonemicon entry is /m/i/n/i/. A possible pho-
nemic spelling of the spoken word would be /m/i/i/i/,

with reserve set / ?/I/n/I/. Because of the repeated
phoneme the original phonemic spelling will reduce
to /m/i/. However, by substitution of a reserve
choice phoneme the string /m/i/n/i/ may be gen-
erated. We have, in effect, been able to insert a
phoneme into the original string. In a similar way,
by considering the process in reverse, a spurious
phoneme may be removed.

Word occurrences with missing phonemes may
be considered as genuine variants if the system gen-
erates that phonemic spelling often. For example,
in the case of the word "machine", /m/J/i/n/ could
be considered a genuine variant.

Insertion of phonemes poses a more serious prob-
lem, particularly if it takes place between words.
As a partial solution the phoneme string variation
could sequentially delete phonemes with large dis-
tance functions.

The sequence of variations used in the recognition
system was obtained by starting the substitutions
at the beginning of the utterance. The correct ut-
terance could be found more rapidly, and perhaps
more accurately, by beginning the substitution with
those phonemes whose first choice distance func-
tions are about the same as the corresponding re-
serve choice distance functions.

This system has no ability to recognize long sec-
tions of continuous speech. If the utterance to be
recognized contains a large number of phonemes,
the time taken to make even a few substitutions
becomes prohibitive. Implementation of this sys-
tem to long sections of continuous speech would re-
quire the use of prosodic features in some syntactic
preprocessing. Presumably one could, in this way,
segment the utterance into relatively short word
groups whose syntactic function could be determin-
ed by pitch level and explicit recognition.

A further way of using prosodic features would
be in the phonemicon search. Six bits were allowed
for each phoneme in the phonemic spellings, but
only five of these were actually used. An on-off
stress marker could use this sixth bit. The extra
information could be helpful in eliminating some
confusions, especially with a large phonemicon. For
example, the stress and pitch patterns make pos-
sible a distinction between "light-house keeper"
and "light housekeeper".

The purpose of the syntactic constraint is to limit
the choice of possible utterances, and so reduce the
likelihood of an incorrect decision. The more severe
the constraint the more liberties may be taken in
computing phoneme string variations and in mak-
ing deletions. The present syntax checking algorithm
is unsatisfactory in the sense that some grammati-
cally correct utterances are rejected by it.
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The computer configuration used in this work was
inadequate for the task. An additional 8K of core
memory would have made a considerable reduction
in the amount of data manipulation. Real time
Fourier transform hardware would have reduced
the real time ratio of approximately 300 to one very
substantially. There is no doubt that parallel pro-
cessing could be used to great advantage in further
reducing the real-time ratio.

A system has been developed which attempts to
recognize syntactic units of continuous speech when
carefully spoken by a single male talker. This sys-
tem, although not satisfactory for practical applica-
tion, represents progress in the field of automatic
speech recognition. The lexical constraint alone was
adequate to allow correct recognition of 35 percent
of the set of 20 test utterances. Imposition of the
syntactic constraint raised the recognition rate to
65 percent. These results demonstrate that, with
the phoneme recognition method used, non-acoustic
information is essential to the design of a speech
recognizer.

(Received June 12th, 1975.)
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