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The human vocal cord is treated as an elastic material capable of propagating compressional, shear, 
and surface waves. A mathematical formulation for commonly observed vibrational modes is 
developed. This includes horizontal as well as vertical tissue displacements. Current vocal cord 
models are discussed and evaluated in terms of their ability to describe adequately the vibrational 
degrees of freedom of the cords. 
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INTRODUCTION 

The anatomy and physiology of phonation have received 
considerable attention for many years; so has the acous- 
tics of speech production. Unfortunately, the attempts 
to establish rigorous support for glottal behavior in 
terms of the basic vibrational modes of the vocal cord 

tissues have been qualitative and descriptive, to a large 
extent. As a result, the functional models of the larynx, 
and specifically those of the vocal cords, have consisted 
of mechanical oscillators with one, or at best a few, 
degrees of freedom. There are many unanswered fun- 
damental questions, such as: What are the normal 
modes of vibration of the vocal cords? Which modes 

are excited by the glottal air stream ? What is the na- 
ture of the energy-loss mechanism within the vocal cord 
tissues? What is the effective mass of the cords for 

different vocal adjustments? This paper deals only with 
the first of these questions. The others, closely con- 
nected with the first, will be considered in a succeeding 
paper. An attempt is made here to treat the vocal cords 
as an elastic medium capable of absorption, transmis- 
sion, and reflection of acoustic energy. Based on this 
point of view, the energy coupling between the glottal 
air stream and the vocal cord medium is bilateral. The 

vocal cord modulates the glottal air stream, and the air 
stream excites acoustic waves in the tissues. As one 

might expect, the mechanical properties of muscular, 
connective, and membranous tissues of the vocal folds 
play an important part in this analysis. In fact, it is 
the uncertainties of these properties under a variety of 
stresses which account for the most serious limitations 

presently experienced in the quantitative aspects of this 
study. 

I. REVIEW OF TISSUE ANATOMY 

As a viscoelastic medium with well established bound- 

aries, the human vocal cords are capable of natural vi- 
bration and energy dissipation. A variety of soft tissues, 
including muscle fibers, sareolemma (elastic connect- 
ing tissue), ligaments, eollagen, mucus, and mem- 
branes, constitute the medium in which energy can be 
propagated and dissipated. Cartilage, stationary mus- 
cle, and the glottis constitute the boundary, where re- 
fleetion and coupling of energy to surrounding media 

take place. Unfortunately, both the medium and the 
boundary are quite irregular, the former being both non- 
homogeneous and anisotropic, the latter being neither 
rectangular nor cylindrical. Any quantitative mathe- 
matical treatment, therefore, requires some simplify- 
ing assumptions. 

The primary anisotropy results from the muscle fi- 
bers. There is general agreement among anatomist 
(Wustrow, 1952; Behringer, 1955; van den Berg, 1958; 
van denBerg and Moil, 1955; von Leden, 1961) that 
there are two main bundles of fibers, the thyrovocalis 
and the thyromuscularis. These are referred to as sim- 
ply vocalis and muscularis in this paper. Both sets of 
these muscle fibers extend longitudinally from the thy- 
roid cartilage to various portions of the arytenoid car- 
tilage. Their functions, however, are somewhat differ- 
ent (yon Leden, 1961). The vocalis helps to regulate 
the tension of the vocal cord, whereas the muscularis, 
whose fibers are oriented somewhat obliquely to those 
of the vocalis, is primarily responsible for gross ad- 
justments in vocal cord thickness. Both sets of muscle 
fibers play a part in the control of vocal register (van 
den Berg, 1960). 

For the purpose of this treatment, we assume an ide- 
alized rectangular configuration of the vocal cord, as 
shown in the cross section in Fig. 1. Various tissues 
of the vocal cords are indicated in layers, proceeding 
from the glottis toward the thyroid cartilage, which con- 
stitutes the lateral boundary. The glottal edge of the 
vocal cord consists of the vocal ligament, an elastomer 
which is probably the most solid-like member in the 
overall vocal cord structure. It can be strained about 

30% and has been known to support longitudinal tensions 
up to 2.2 kg in cadavers (Sonninen, 1973). 

There has been much dispute about the manner in 
which the ligament and vocalis are connected. Some 
authors (Goertler, 1950; Wustrow, 1952) have claimed 
that muscle fibers extend into the ligament, thus creat- 
ing a very firm coupling, while other authors (Behringer, 
1955; van den Berg and Moll, 1955; von Leden, 1961) 
insist that only connective tissue, primarily in the form 
of collagen, exists between ligament and muscle (see 
Fig. 1). In recent years the latter point of view has be- 
come more acceptable, and we adhere to it here. Since 
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FIG. 1. Simplified sketch representing the internal tissue 
structure of the left vocal cord in coronal cross section. A 

rectangular geometry has been assumed. 

collagen is a gel under normal temperature conditions, 
it would appear that the coupling between ligament and 
vocalis is rather loose. The situation is complicated, 
however, by the fact that elastic strands extend from 
the ligament and conus elasticus deep into the muscular 
tissues, creating, in effect, a "web" or "honey comb" 
structure, i.e., a strong, elastic framework. Both 
collagen and muscle fibers are' therefore partitioned, 
allowing for only moderate amounts of shear in any given 
direction. 

A dividing line between the vocalis and muscularis is 
indicated in Fig. 1. This is to accommodate the pos- 
sibility that the two main bundles of fibers can be acti- 
vated independently to some degree. Should this be the 
case (a notion which has not received much debate), a 
sizable contraction of the muscularis would cause rigid- 
ity in the lateral portions of the vocal cord, thus moving 
the effective boundary of the cord medially. This con- 
cept has been used to explain the phenomenon of "damp- 
ing," i.e., fixing part of the cord, while another portion 
remains free to vibrate (Rubin and Hirt, 1960; von Leden, 
•6•). 

The mucous membrane mantles the inner vocal cord 

structure of the glottal and superior surfaces. During 
phonation, however, this loose structure is initially 
blown upward within the glottis, thereafter residing 
primarily on top of the ligament and vocalis. Thus, the 
upper layer of the vocal cord resembles a viscous liq- 
uid (mucus) with exceptionally high surface tension (the 
mucous membrane). 

In summary, the five regions identified in Fig. 1 pro- 
vide a reasonable representation of the piecewise homo- 

geneous tissue structure. The complexity of this struc- 
ture can only be fully appreciated when one recognizes 
that, over the wide range of possible vocal adjustments, 
both the regional configuration, and the tissue properties 
within each region, are subject to change. Thus, the 
degree of muscular activity, externally imposed tissue 
strains, and even temperature, can cause significant 
modification in the arrangement of the tissue members 
and their mechanical properties. A precise description 
of the normal modes of this system must therefore be 
limited to a particular vocal adjustment. For example, 
if the normal chest (modal) register is under considera- 
tion, the muscular portions of the vocal cord constitute 
the bulk of the system. A single-layer structure would 
then suffice, ligamental and mucosal portions being add- 
ed as perturbations to the primarily muscular system. 
For the falsetto register, on the other hand, the mus- . 
cular portions can be omitted entirely, the ligament can 
be treated as a thin bar (or a thick string), and the mu- 
cosa as a secondary "string," this being much more 
tightly coupled to the ligament than in the lower register. 
We are concerned primarily with the single-layer con- 
figuration in this report. 

II. WAVE PROPAGATION IN VOCAL CORD TISSUES 

In order to' approximate the natural responses of the 
vocal cord, let us begin by deriving the wave equation 
for a "miniscopically homogeneous" fibrous substance. 
In other words, we assume that the vocal cord consists 
of longitudinal muscle fibers, as illustrated in the en- 
larged square in Fig. 1. The muscle fibers are sur- 
rounded and separated, however, by thin layers of con- 
nective tissue called sarcolemma. This substance is 

primarily elastic and accounts for the bulk of the re- 
storing force under compression and shear. We allow 
the tissue properties to vary as a function of vocal cord 
depth, i.e., laterally. Figure 2 illustrates a rectangular 

FIG. 2. Differential element of tissue, with displacement vec- 
tor • and longitudinal stress T, within a rectangular parallele- 
piped representing the vocal cord. Transverse elastic moduli 
are not indicated. Note boundary conditions. 
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parallelepiped in Cartesian coordinates. Some bound- 
ary conditions are indicated, but these are not relevant 
at this point, and are discussed later. The origin of the 
coordinate system is centered at the vocal processes, 
i.e., posteriorly and on the center line of the glottis. 
The anterior end of the cord is therefore at y = L, the 
thickness 7' is measured along the z axis. We assume 
that any portion of the vocal cord can be displaced ar- 
bitrarily by a vector •, which has components • in the 
x direction and • in the z direction. Thus we may write 

•,(x,y ,z, t) = ti(x,y ,z, t)• + •;(x, y,z, t)• . (1) 
Now consider a differential element of tissue, i.e., a 
small group of fibers, represented by the smaller par- 
allelepiped in Fig. 2. If the longitudinal stress is •-(x), 
the Young's modulus E(x), the shear modulus •(x), and 
the tissue density p(x), the equations of motion for the 
differential element are 

+ axayn[(a•/az),-(a•/az),.•,] 

+ • ay az p(aZ•/at z) = 0, (2) 

axaz• [(a •/ay )• - (a•/ay)•.a•] 

+ •ay•o(az•/at z) =0. (3) 
Each bracketed term represents a differential force ex- 
erted on the tissue dement owing to stresses on opposite 
•r•lel planes. The stresses are related to the strains 
linearly through Hooke's law. Although the overall 
stress-strain curve for human tissue is nominee, there 
are many pho•tory adjustments in speech and si•i• 
which result in small amplinde vibration, and thus 
linearization is valid. •enever the ligament is stretched, 
for example, •eause of e•ernal erieothyroid contrae- 
tio• the vibration• amplinde is relative small. Small 
ampli•des •e also e•erienced when the blowing pres- 
sure is small, or when adduetion is incomplete. 

A further justification for the present approach is, 
however, not based upon displacement amplitude or 
linearity at all. We are trying to establish the normal 
modes of vibration, and therewith the number of degrees 
of freedom which are necessary to describe adequately 
the observed vibrational patterns. It is conceded at 
onset that the driven frequencies of vibration in many 
cases differ substantially from the normal-mode fre- 
quencies. For example, in the typical modal register 
of phonation, 7, E, and •/may be subject to large fluc- 
tuations, i.e., their effective value may change over 
different portions of a cycle. During glottal closure, 
the effective Young's modulus • increases owing to 
direct contact with the opposite vocal cord. Further- 
more, the longitudinal stress ß can readily increase 
during peak excursions of the vocal ligament. In other 
words, since the strain-stress curves of the ligament 
and vocalis are highly nonlinear (van den Berg, 1960), 
dynamic stresses and static stresses can differ appreci- 
ably. These nonlinear features of the tissue properties 

have all been incorporated in precise dynamic modeling 
of the vocal cords (Ishizaka and Flanagan, 1972; Titze, 
1973, ), but can be ignored in the present investigation 
of the normal modes. 

Proceeding with the analysis, Eqs. 2 and 3 can be 
cast into more familiar elastic wave equations by divid- 
ing by •xAy •z and allowing the differential lengths to 
approach zero: 

o, (4) 

a=o. (5) 
Henceforth, the solutions to Eq. 4 are entitled x modes 
and the solutions to Eq. 5 z modes. Thus, the x modes 
describe horizontal motion of the vocal cords (trans- 
verse to the glottal air flow) and the z modes describe 
vertical motion of the vocal cords (in the direction of 
the air flow). 

III. DISCUSSION OF TISSUE PARAMETERS 

Equations 4 and 5 are of course similar to the classi- 
cal wave equations for small vibrations in linear iso- 
tropic elastic media. There are some notable differ- 
ences, however, The transverse shear is 7 with re- 
spect to the y axis and •/with respect to the x and z 
axes. This, of course, reflects the anisotropy of the 
tissue, and the fact that large external and internal 
stresses can be applied in the direction of the tissue 
fibers. It has already been pointed out that the vocal 
ligament can be subjected to enormous stresses in ca- 
davers. But what about the stresses which the human 

himself can exert during normal conditions of phonation? 
Most of the information available at present is in the 
form of electromyographic data. Although emg record- 
ings of muscular activities are very useful for qualita- 
tive description of muscular behavior, the authors have 
so far been unsuccessful in transforming "level of activ- 
ity" into the mechanical equivalents of dynes/cm 2. One 
attempt at such a transformation has been carried out 
by Hast (1966) in an experiment on dog larynxes. In 
this study the recurrent nerve was artificially stimulated 
by electronic pulses at varying frequencies. The section 
of the thyroid cartilage containing the anterior attach- 
ment of the thyrovocalis muscle was carefully cut out 
and attached to a force transducer. In this manner the 

level of muscular activity could be correlated with the 
isometric tension. The results indicate that the over- 

all muscular tension ranges between 100 and 300 g 
when the muscle is stimulated, and between 0 and 100 
g when the muscle is passive. Total elongation (strain) 
and frequency of stimulation govern the exact values 
within those ranges. Unfortunately, the value of the 
cross-sectional area of the muscle is not given. Thus, 
in order to determine the average longitudinal stress 7, 
we estimate a muscular cross section of about 0.25 

cm 2. Then 

•'= (200 g)(980 cm/secZ)/(O. 25cm •') = 106 dynes/cm • 
for the average active stress, and approximately one 
fourth that for the average passive stress. It is shown 
later, by an indirect method using normal-mode fre- 
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quencies, that the above value derived from measure- 
ments on dogs is not unrealistic for human subjects. 

Now let us focus our attention on the remaining elastic 
constants e and t/. It might at first appear as though ß 
were a bulk compressibility, as it would be if Eqs. 4 
and 5 were to represent wave motion in infinite, or semi- 
infinite, elastic media. Such a bulk compressibility 
would be extremely high compared to any other elastic 
constants of the tissue--in the order of 10 •ø dynes/cm • 
(Oestreicher, • 1951). It is inconceivable that compres- 
sional waves of such high velocities would play a role 
of any significance in vocal cord vibration, since fre- 
quencies are low and the extent of the material is very 
limited. On the other hand, since the vocal cord depth 
and thickness are so small, a compression of one of 
these can take place at the expense of an extension of the 
other, still maintaining overall bulk incompressibility, 
or near incompressibility. The amount of transverse 
extension is, of course, measured by Poisson's ratio 
of the• tissue. The circular geometry of the muscle 
fibers and surrounding sarcolemma turns into a slight- 
ly oval geometry. It might be expected that such a de- 
formation is accompanied by a sizable loss of energy. 
Viscosity of compression and shear will be treated in 
a succeeding paper. 

Before attempting to give an estimate of the Young's 
modulus ß, it is beneficial to discuss the shear modulus 
t/, for it has been determined for some tissues. Oes- 
treicher (1951) gives a value of 2.5x104 dynes/cm • for 
tissues near the body surface. This constant was de- 
rived from measurements of the mechanical impendance 
at the surface of the body for a wide range of frequencies 
Since the vocal ligament is composed of elastic fibers 
with considerably higher shear modulus than the softer 
muscle and fatty tissues, and since elastic strands 
penetrate throughout the entire vocal cord, it is probab- 
ly more correct to assume an average t/of about 105 
dynes/cm •. 

The deformation of the fiber-sarcolemma structure 

under shear is really no different from that already 
discussed for lateral or vertical "compressibility." 
Circular ministructures are converted into slightly oval 
shapes, only the orientation is different. We conclude, 
therefore, that ß and •/must be of the same order of 
magnitude. In summary, then, the values for the bulk 
tissue parameters in Eqs. 4 and 5 are assumed to be 

r= 105-10 • dynes/cm •' (average 10 e dynes/cm"), 

½ = 105 dynes/cm •' (average), 

•/= 105 dynes/cm •' (average), 

p= 1.1 g/cm 3 (approximately water). 

Obviously, a great deal of refinement is necessary be- 
fore one can treat the zonal structure of Fig. 1 in great 
detail. 

IV. NATURAL MODES OF THE VOCAL CORDS 

We shall derive the normal modes for two simplified 
cases of the overall configuration indicated in Fig. 1. 
First, let us assume that the entire vocal cord consists 

of a single layer of muscle with uniform properties 
throughout. Standard techniques of separation of vari- 
ables are employed in the solution of Eqs. 4 and 5. For 
sinusoidal variation in time, the solutions can be written 
as 

•:(x,y ,z, t) =Ae i•x• cos (2n• - 1)•rx n•y n,•rz 2D sin L cos T ' (6) 
(2n• - 1)•rx n_n_•y n_rj_•z 

•:(x,y,z,t)=Be• •eos 2D sin L cos T ' {7) 
where the free-fixed, fixed-fixed, and free-free bound- 
ary conditions indicated in Fig. 2 have been imposed. 
n•, n•, n• are integers, A and B arbitrary constants, and 
% and co• are the radian frequencies of vibration. When, 
Eqs. 6 and 7 are substituted into the wave equations 4 
and 5, the normal-mode frequencies are obtained as 

•(•) l/•.[n •. (2n• 1)•. _•]l/•. -+ x modes (8) f• = • L • + 4D • r ' 

•{r•t•/•'[_•• (2n•-l)•'r/ n__• ß ] •/•' z modes. (9) 
Note, that if ß and t/are equal, as they have been as- 

sumed here, the x and z modes are degenerate. Fur- 
thermore, if both ß and t/are much less than r, con- 
ventional string modes result. Figure 3 illustrates 
tissue displacements for some common x and z modes. 
Discussion of the eigenfrequencies themselves is enter- 
tained later. 

In most cases of phonation, only the lowest-order 
modes are excited by the glottal air stream. Thus, the 
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ny = I n x = I n z = I 
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'-t;---•; .... •"• 

._.t__ __ __,t ______ J:_] 
nz= I nx= I 

(b) 

SAGITTAL 
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FIG. 3. Tissue displacements for some vibrational modes 
which have been observed. (a) Low-order x modes, (b) low- 
order z modes, and (c) higher-order z mode. 
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n•= 1 x mode [Fig. 3(a), left] reflects the often observed 
"oval" glottis, whereas the more nearly rectangular 
glottis corresponds to nx= 1 [Fig. 3(a), center]. When- 
ever there are sudden adjustments, such as "voice 
breaks," or whenever the vocal cords are "pulse ex- 
cited," as is the case during very forceful glottal closure 
or opening, there is a strong possibility that higher 
modes of the cords are indeed excited. This has been 

demonstrated by Rubin and Hirt (1960) via high-speed 
cinematography. Six ridges of mucus, collected on the 
superior surface of the vocal ligaments, are evidence of 
the fact that standing waves are present within the liga- 
ment and mucous membrane. This indicates that higher 

z modes, at least up to n• = 7, are possible in some sub- 
jects under some conditions. In the particular case re- 

. ported by Rubin and Hirt, the vocalist was a female sing- 
ing a high C (approximately 1000 Hz). Normal-mode 
frequencies up to 6000 Hz were excited temporarily with- 
in the vocal cord tissues. Figure 3(c) illustrates dis- 
placements of the ligaments for the z mode just de- 
scribed. These displacements are, of course, highly 
exaggerated. Any mucus residing on the surface of the 
vocal cord collects at the locations designated by small 
vertical lines. 

Rubin and Hirt also illustrate motion picture sequences 
for a typical "voice break, "i. e., a sudden adjustment 
from falsetto to full voice, or vice versa. By careful 
observation of their framerby-frame sequence, one can 
note higher-order x modes during the transition. Higher- 
order z modes were also observed by Rubin and Hirt 
along the glottal edge. The authors called the phenome- 
non "scalloping," but it is not nearly as convincing as 
the "'ridging" phenomenon described earlier. 

Of particular interest has been the phenomenon called 
"vertical phasing," i.e., the movement of different 
vertical portions of the glottal edge of the vocal cord in 
opposite directions at a given time (Farnsworth, 1940; 
Flanagan and Landgraf, 1968; Ishizaka and Flanagan, 
1972; Titze, 1973; Titze, 1974). What is described is 
usually a combination of two phenomena which are some- 
what independent. If the phasing occurs primarily with- 
in the vocalis muscle, we are talking about the nz = 1 
shear mode illustrated in Fig. 3(a), right side. The 
shear modulus •7 governs this mode. It is a particularly 
likely mode to be excited by the air stream when the 
vocal folds are thick and lax (Gupta el al., 1973). Dur- 
ing glottal closure the bottom portion of the vocal fold 
is forced laterally by the subglottal pressure, whereas 
during the open portion of the cycle the Bernoulli pres- 
sure tends to "suck" the same portion medially. The 
top portion follows out of phase. In this mode of vibra- 
tion the upper and lower portions have very nearly equal 
masses, as dictated by the cosine term in Eq. 7. 

There is another kind of vertical phasing which has 
been described by Hirano (1968), among others. This 
involves the relative motions between the mucosa and 

the ligament vocalis, and occurs whenever the vocal 
cord is unstretched. A surface wave is seen to propa- 

gate laterally from the glottis toward the vocal cord 
boundary, as illustrated in Fig. 4. Due to the high sur- 
face tension of the mucosa (which is, of course, the 

FIG. 4. Surface wave in the mucosal portions of the vocal 
cord. 

tension of the mucous membrane), the surface wave is 
readily dispersed, but occasionally gets reflected from 
the boundary and travels back toward the glottis (Farns- 
worth, 1940). It is important to realize that a surface 
wave of this type originates from an initial upward mo- 
tion of the mucosa. When the ligaments separate after 
closure of the glottis, the mucosal portions have a ten- 
dency to remain adducted for a short period of time. 
This allows the full subglottal pressure to be applied to 
part of the mucosa. The result is a sudden upward dis- 
placement, followed by lateral propagation and disper- 
sion. 

In certain types of phonation the z modes (vertical 
motion of the cord) may be more significant than the % 
modes. This is the case, for example, when the vocal ß 
processes are firm in place, but the vocal cord length 
is equal to, or even less than, the neutral length. The 
center of the vibrating portion of the cord is then blown 
upward like a swinging door before it proceeds laterally. 
Low-order z modes, corresponding to n• = 1, n z = 1, and 
nx= 1 are depicted in Fig. 3(b). The net effect of a com- 
bination of the n• = 1 z mode and the n• = 1 • mode is a 
rotary motion of the vocal cord edge. This kind of mo- 
tion is particularly likely to occur when the vocal cord 
edge is thin, because the area of attachment of the liga- 
ment to the vocalis is reduced, causing the ligament to 
move quite independently from the rest of the cord. It 
is conveivable that under some conditions the lateral 

motion may become very minimal, or cease altogether. 
This might occur when there is incomplete adduction and 
high tension in the ligaments. The air flow through the 
narrow glottis is then unmodulated, but the vocal tract 
is still excited because of the vertical motion of the 

cord. One might call this a "membrane" mode, because, 
aside from the slit in the center, the vocal cords are 
functioning like a membrane stretched across a circular 
tube. 

V. DISCUSSION OF EIGENFREQUENCIES 

Now let us briefly discuss the eigenfrequencies them- 
selves, shown in Fig. 5. Only 18 of the lower frequen- 
cies are depicted. These correspond to all combinations 
of the integer values: 

n•=l, 2, 3, n=1,2,3, nz=0, 1. 

For the sake of simplicity, the degenerate case was 
chosen (½ = •]= 10 5 dynes/cm"). Unequal values of E and 
• would produce an additional set of 18 frequencies, 
corresponding to the z modes. These would be distrib- 
uted evenly within the region of the existing eigenfre- 
quencies. - 

The parameter of primary interest is the longitudinal 
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FIG. 5. Normal-mode frequencies of the vocal cord for three 
different adjustments of longitudinal stress. (a) r=10 5 dynes/ 
cm 2, (b) r=10 6 dynes/cm 2, and (c) r=10 ? dynes/cm 2. In all 
cases e =7 = 10 5 dynes/cm 2. 

stress r. In an attempt to illustrate the eigenfrequen- 
cies for three distinctly different vocal adjustments, the 
following conditions were chosen- 

(1) L=1.2 cm, D•l.0cm, T=0.7cm, 

r = l0 s dynes/cm 2, 

rDT = longitudinal tension 

= 70 000 dynes (approximately 70 g), 

lowest eigenfrequency .--- 154 Hz; 

(2) L=l.4cm, D=0.8cm, T=0.5cm, 

r = 10 • dynes/cm •', 

zDT = longitudinal tension 

= 400 000 dynes (approximately 400 g), 

lowest eigenfrequency = 371 Hz; 

(3) L=l.6cm, D=0.6 cm, T=0.3 cm, 

r = 10 • dynes/cm •', 

rDT = longitudinal tension 

= 18 000 000 dynes (approximately 1.8 kg), 

lowest eigenfrequency = 1000 Hz. 

It must be noted that the longitudinal tension computed 
in part (3) above is unrealistic. Although neither the 
dimensions of the vocal cord nor the value of r is un- 

realistic, it must be borne in mind that the vocal cord 
supports high tensions primarily in the ligament, i.e., 
in the glotta1 edge of the vocal cord, rather than through- 
out its entire depth. An estimate of the cross-sectional 
area of the vocal ligament can be made from pictures 
given by Hirano (1968) and van den Berg (1958). Such 
an estimate is in the order of 0.05 cm 2, depending on 
the subject. This is less than one third of the product 
of D and T indicated in part (3) above. With this con- 
sideration, the longitudinal tension required to produce 
a 1000-Hz fundamental frequency would be 500 g instead 
of 1.8 kg. 

It was stated earlier that it is possible to utilize the 
normal-mode analysis to estimate the ligament stress 
required to produce the extremely high pitches achieved 
by trained vocalists. This is now evident. Assuming 
that the ligament supports virtually all of the longitudi- 
nal tension, that ½ and • are much smaller than r, and 
that the fundamental frequency of the glottal air stream 
(F0) corresponds to the lowest-order x mode, Eq. 8 
yields 

r=4L2f•p . (10) 

For a female vocalist singing high C (= 1000 Hz), this 
corresponds to the value of 107 dynes/cm s in part (3) 
above (L = 1.6, p = 1.0 g/cmS). This is about five times 
larger than the average stress and about three times 
larger than the maximum stress computed earlier from 
the measurements made by Hast (1966) on live dogs. 
Recall, however, that an uncertainty in the cross-sec- 
tional area of the muscle existed in that computation. 
For this reason it might be a little more accurate to 
compare the total longitudinal tension, which has al- 
ready been suggested to be 500 g for this case. This 
compares favorably with the 300-g maximum tension 
noted by Hast on dogs. 

The foregoing discussion points out the limitations of 
the single-zone structure considered here. The change 
of elastic properties from ligament to vocalis can be 
accounted for by allowing two zones. If the ligament ex- 
tends from x =0 to x =d and the vocalis from x =d to 

x = D, the input impedance at the glottis can be determined 
by a two-step impedance transformation as follows: 

Z(d) = - i(kx•.e•oo) cot kx2(D-d), (11) 

- i(kx•e•/k•,•e•) cotk,z(D - d) + i tank•,d 
Z(O)= (kxlel w) 1 + (kx•e•/kxlel) cotk,•(D- d)tank,•d ' 

(12) 
• the above, k•, k•, e•, and e• represent the propaga- 
tion constants (wavenumbers) and Young's modu• of the 
ligament and vocalis, respectively. The prop•ation 
consents are determined by the tissue properties •d the 
the overall boundary conditions- 

kxl = [• O/•l- (n,x/L)•rl/(l- (nz•/T)g .l/eli 1/2, (13) 

. ]•/2 (14) 

The normal modes of the system are then obtained by 
letting the input impedance, defined by Eq. 12, vanish- 

(k,2e2)/(k,lel) cot kx•.(D -d) = tankx•d . (15) 

An exact solution of co x from Eq. 13, 14, and 15 requires 
numerical methods. Qualitatively, the results are not 
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much different from the simpler single-zone model. 
Since the tissue parameters are not known with much 
precision at this point, it is not fruitful to continue a 
quantitative analysis of multiple-zone models. 

ß 

Returning once more to the eigenfrequencies in Fig. 
5, note that at low pitches the spectrum is almost con- 
tinuous, especially in view of the fact that any amount of 
damping results in a broadening of each of the lines. It 
is therefore highly probable that the fundamental fre- 
quency is determined in part by the aerodynamic forces. 
This substantiates the myoelastic-aerodynamic theory 
of voice production for low pitches. For extremely high 
pitches, however, the natural frequencies congregate 
in clusters around the harmonic string modes. It is 
therefore concluded that at high pitches F 0 very nearly 
corresponds to the natural frequency of vibration of the 
cords, allowing for only slight modification owed to 
aerodynamic forces. 

Although the vocal cord length, depth, and thickness 
have been systematically adjusted to reduce the effec- 
tive mass of the vocal cord at higher pitches, no attempt 
is made here to categorize these adjustments by reg- 
ister. Since register is intimately connected with the 
efficiency of conversion of steady flow into time-varying 
flow, the shape of the glottis is more crucial than the 
shape of the vocal cord. Thus, in order to accommodate 
registration, a vocal cord model must not only have a 
number of longitudinal and vertical degrees of freedom 
in the tissue but also provisions for adjusting the static 
(prephonatory) position of the vocal cord. Discussion 
of vocal cord models and their adequacy is entertained 
presently. 

Vl. LUMPED MASS-SPRING MODELS 

Although many analog models of the vocal cords have 
been devised over the last century, the digital versions 
of the last five years have been the significant ones for 
quantitative analysis. Of these, the single-mass model 
by Flanagan and Landgraf (1968), the two-mass model 
by Ishizaka and Flanagan (1972), and the 16-mass model 
by Titze (1973, 1974) are discussed briefly. The Flan- 
agan and Landgraf model has a single horizontal degree 
of freedom. Although it has been successful in demon- 
strating self-oscillation, some gross features of regis- 
ter, and plausible relationships between subglottal pres- 
sure and fundamental frequency, there are some serious 
limitations. The restricted range of oscillation, for ex- 
ample, resulting from interactions between the vocal 
cords and the vocal tract, has been discussed in detail 
by Ishizaka and Flanagan (1972). Aside from this, how- 
ever, it is evident from present considerations that a 
single-mass model cannot realistically account for shear 
in the tissues. Furthermore, a single spring represent- 
ing the lateral restoring force does not adequately dif- 
ferentiate between the longitudinally applied stress •' and 
the lateral Young's modulus e. 

The two-mass model by Ishizaka and Flanagan does 
incorporate shear, but is equally inadequate with re- 
spect to longitudinal details. Figure 6(a) is a sketch of 
the model. The spring constants/r• and/r•. are effective 
spring constants which take into consideration both Ion- 

gitudinal tension and Young's modulus, whereas/% ac- 
counts for the shear between the masses. It has been 

pointed out earlier that, unless the upper mass repre- 
sents different tissue (such as the mucosa), the two 
masses must be of equal size to satisfy the second co-- 
sine term in Eq. 7. The so-called "typical" conditions 
by Ishizaka and Flanagan consist of unequal masses, 
suggesting modeling of both types of tissue. Since the 
model has no vertical degrees of freedom, however, it 
is still inadequate for complete description of the dy- 
namics of the mucosa. Titze (1973) has included the 
vertical degrees of freedom in his 16-mass representa- 
tion of the vocal cords, and has been successful in sim- 
ulating the motions of the mucosa. A sketch of the 
model proposed by Titze is shown in Fig; 6(b). How- 
ever, since there are still only two masses in cross- 
section, both types of vertical phasing cannot be achieved 
simultaneously. It is therefore concluded that at least 

ß 

three masses in cross section are necessary to account 
for the shear in muscle tissues as well as the mucosal 

coverings. 

Gupta el al. (1973) have recently argued that, based 
upon nonsteady air-flow analysis in the subglottal region, 
a one-mass vibrator can oscillate only in a limited fre- 
quency range, i.e., from 250 to 500 Hz, whereas the 
two-mass vibrator can cover the 50-450-Hz range. 
Based upon the present analysis, the authors of this 
paper agree that additional degrees of freedom increase 
the oscillatory range of the vocal cords, but it seems 
unlikely that these additional degrees of freedom lower 
the range. It is a well-known fact that the lowest mode 
of any vibrational system is the one in which all dis- 
placements are in phase. The fact that vertical phasing 
occurs at low pitches and not at high ones results from 
two factors. First, the vocal cord is thicker at low 
pitches, resulting in a larger surface over which a pres- 
sure gradient can exist, and second, the ligament is 
lax, allowing for a higher degree of shear between var- 
ious tissues near the glottal edge. If we were to assume 
a hypothetical case in which the longitudinal tension re- 
mains uniform throughout the depth of the cord as the 
pitch is raised, and the thickness likewise remains con- 
stant, a transition from n• = 0 to n• = 1 would appear to 
raise the pitch, not lower it, as Gupta el al. suggest. 
There are, however, some small pitch-lowering phe- 
nomena associated with vertical phasing. Viscous losses 
in the vocalis and various connective tissues do lower 

the pitch slightly (Titze, 1975), especially the viscous 
drag associated with the motion of the mucosa. Since 

(a) (b) 

FIG. 6. Vocal cord models which capture some features of the 
natural responses of the vocal cords. (a) The Ishizaka-Flana- 
gan model, and (b) the Titze model. 
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FIG. 7. A multimass model of the vocal cord allowing for 
eight longitudinal degrees of freedom. 

the shear between the mucosa and the ligament is small, 
the effect of its motion is primarily one of energy loss, 
and hence, pitch reduction. 

Neither the one-mass model nor the two-mass model 

are capable of representing horizontal differences along 
the length of the cord. This presents a number of limi- 
tations. The fixed boundary conditions at the anterior 
and posterior ends of the cord cannot be simulated. 
Hence, the frequently observed "oval" glottis never ex- 
ists in the model. Furthermore, to accomodate regis- 
tration, portions of the cord should be able to be 
"damped," i.e., fixed, and the prephonatory shape of 
.the glottis should be triangular under some conditions. 
These features have been incorporated by Titze (1973; 
1974) in his 16-mass representation of the vocal cord. 
Figure 7 illustrates some of the details of the model. 
Note that the prephonatory shape of the glottis can be 
controlled by the parameter W, which defines the posi- 
tion of the vocal processes, and hence, the degree of 
adduction. Longitudinal variations in vocal cord mass, 
stiffness, and boundary can be incorporated for simu- 
lation of localized abnormalities, i.e., lesions and 
growths. The number of degrees of freedom of this 
model is, of course, still finite, forcing an upper limit 
(n• = 8) upon the normal-mode spectrum. An eigenanaly- 
sis of the 16-mass system has been carried out by Titze 
(1973). The results are very similar to those presented 
in Fig. 5. 

VII. SUMMARY 

This analysis has focused upon the small amplitude 
(normal mode) response of the vocal cord. Some as- 
sumptions were inherent in the treatment, and should 
be summarized at this point. A rectangular cross sec- 
tion of the cord was chosen. Most x-ray and tomo- 
graphic studies indicate that this assumption is reason- 
able for low pitches. For higher pitches, on the other 
hand, a wedge-shaped vocal cord is the more common 
configuration. In addition, the vocal cord boundary 
should be more nearly circular, allowing for cylindrical 
modes in the outer portions of the tissue. Finally, in 
the exact mathematical analysis, uniform tissue proper- 
ties were assumed over portions of the cord. The ef- 
fects of the inhomogeneities arising from the ligament 
and mucosa were analyzed qualitatively. It is expected 
that, in future considerations, perturbations of this type 
can be included in a more quantitative fashion. Some 
vital clues to vocal fold behavior have been offered. In 

order to construct a complete model of vocal cord vi- 
bration, which must take into consideration the aero- 
dynamic driving forces, the nonlinearities, and the loss 
mechanisms, it is imperative that the representation of 
the tissue itself be sufficiently complex to account for 
the possible, and only the possible, degrees of freedom. 
The elastic properties of the vocal cord have been re- 
lated to the bulk properties of the tissues, thus allowing 
for measurements to be made on fragments of the tissues 
rather than on the whole system including the boundaries. 
Sonninen et al. (1972) have recently considered some of 
the stresses and strains--within vocal cord tissues-- 

which might result from vocal abuse, giving rise to 
temporary or permanent damage. Providing that ac- 
curate data on longitudinal stress, Young's modulus, 
shear modulus, and viscosity of the tissues can be col- 
lected, a model based upon the compressional, shear, 
and viscous modes can predict the maximum strains, 
the energy loss per cycle, and the vocal efficiency. 
Finally, the normal modes, governing the transient re- 
sponses of the vocal cords, must be invoked in the anal- 
ysis of sudden phonatory attacks, "voice breaks," and 
other rapid manipulations of vocal constraints. 
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