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This paper discusses basic and advanced aspects of the sound radiated by the singing rod demon-

stration commonly used in physics courses to depict an example of longitudinal waves. Various

methods of exciting these rods are discussed along with the issues associated with each method.

Analysis of the sound radiated by various rods with small-signal and large-signal excitations is pre-

sented for four different rods. The small-signal sound radiation consists of a fundamental frequency

and odd harmonics (each corresponding to a longitudinal mode) when the rod is held at its mid-

point. Large-signal sound radiation is highly dependent on the rod’s geometry. The large-signal

sound can possess strong even harmonics and/or beating tones resulting from modal coupling of

transverse bending modes and either subharmonic longitudinal modes or torsional modes. A

detailed analysis of the sound radiation from a singing rod can provide excellent laboratory exer-

cises or classroom demonstrations for advanced undergraduate or graduate level acoustics courses

whose scope includes resonances of a bar. VC 2012 Acoustical Society of America.
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I. INTRODUCTION

In elementary physics courses it is common to utilize

the so-called singing rod demonstration to illustrate the con-

cept of longitudinal wave resonances in solid media. One

holds a long metal rod (usually aluminum) between two fin-

gers at the midpoint of the rod’s length. Two fingers on the

other hand are then used to rub the rod longitudinally in a

steady motion. The key to excitation of the longitudinal

modes is the use of a substance to create sufficient friction

between the fingers and the rod. Through tactile inspection

of one end of the rod, one may observe longitudinal motion

by noting that the motion along the axis of the rod is greater

than the motion perpendicular to the rod’s axis.

To the authors’ knowledge, the first citation, albeit brief,

of the idea of the singing rod demonstration was by Meiners.1

Naba2 and Nicklin3 then suggested ideas for obtaining the fre-

quencies of resonance of the singing rod in a classroom or lab-

oratory setting. Rossing and Russell4 provided an excellent

review of longitudinal, torsional, and bending wave modes in

a bar. They also described a means to observe a rod’s modal

frequencies in steady state with an electromagnetic excitation

for a laboratory experiment. Later at a sectional American

Physical Society meeting, Minnix et al.5 presented the idea

that singing rods driven with sufficient amplitudes “scream”

intermittently when the rod vibration couples with a trans-

verse mode, although this work was never written up. Errede6

wrote an unpublished report on the physics of the singing rod

and suggested a means to rotate the rod after exciting it to cre-

ate a Doppler shift beating effect in the classroom. Finally,

Machorro and Samano7 presented a laboratory exercise to

measure the speed of sound in a singing rod by determining

the angles where interference minima occur in the radiation

patterns, considering the ends of the singing rod as two in-

phase sources.

The purpose of this paper is to characterize the sound

radiation from a few different aluminum rods (singing rods).

Various methods to excite a singing rod are described.

Observations of the excitation phase and the decay phase of

the sound radiation are made. Calibrated sound pressure lev-

els of the typical sound radiation from the singing rods are

presented. The difference between the small-signal and

large-signal excitations of the singing rods are explained,

yielding further teaching opportunities in a classroom or lab-

oratory exercise. The large-signal, sound radiation may con-

tain tones resulting from bending modes, torsional modes,

and subharmonic longitudinal modes, and sometimes a beat-

ing effect when two of these modes are in close proximity.

Recently, Krueger et al. showed that beating tones can arise

from nonlinear modal coupling in the structural vibration

and can result in highly desirable tonal quality of gongs in

some cultures.8 It is postulated here that the apparent nonlin-

ear behavior of singing rods of certain geometries is due to a

similar nonlinear modal coupling as the rod vibrates with

sufficient amplitude.

II. BACKGROUND

Theoretical derivations of the longitudinal, torsional,

and bending modes for a homogeneous rod are given by

many (see, e.g., Ref. 4). As a review, this section will give

expressions for the frequencies of resonance for each of

these types of modes.

A. Longitudinal modes

The frequencies of resonance for longitudinal modes of

a constant cross section, free–free rod (regardless of whether
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the rod is solid or hollow, or whether the cross section is rec-

tangular or cylindrical) are harmonically related so that

fL ¼
n

2L

ffiffiffi
E

q

s
; n ¼ 1; 2; 3; :::; (1)

where n is the mode number, L is the length of the rod, E is

the Young’s modulus of elasticity of the rod, and q is the

mass density of the rod. The nodes nm xð Þ of the rod for a

given mode n are located at

nm xð Þ ¼ mL

nþ 1
; m ¼ 1; 2; 3; :::; n: (2)

B. Torsional modes

The frequencies of resonance for torsional modes of a

free–free cylindrical rod are also harmonic, such that

fT ¼
n

2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2q 1þ rð Þ

s
; n ¼ 1; 2; 3; :::; (3)

where r is Poisson’s ratio. The torsional wave speed for rods

of noncircular cross sections is somewhat lower due to a

decrease in the radii of gyration (the radius of gyration is

essentially the average radius of an object’s parts, as it

bends, from its center of gravity). The resonance frequencies

for a square rod are 0.92 times the expression given in

Eq. (3).4 For a rectangular rod, with the width twice the

thickness, the frequencies are 0.74 times the expression in

Eq. (3).4 The nodes of these torsional modes are located at the

same locations as those for longitudinal modes [see Eq. (2)].

C. Bending modes

The frequencies of resonance for bending modes of a

free–free rod are not harmonically related due to the disper-

sive nature of the bending wave speed. The bending wave

speed of a rod depends on the radius of gyration, j, of the

rod (determined by its cross-sectional geometry). These res-

onance frequencies are given by Kinsler et al.9

fB ¼ 3:0112; 52; 72; 92; :::
� � pj

8L2

ffiffiffi
E

q

s
: (4)

Note the difference in the dependence on the length for fB ver-

sus the dependence for fL and fT . Thus fB are more sensitive

to changes in length. For a solid cylindrical rod, j ¼ a=2,

where a is the radius.10 For a hollow cylindrical rod, j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a2

i

p
=2, where ai is the inner radius.10 For a solid rectan-

gular rod, j ¼ h=
ffiffiffiffiffi
12
p

, where h is the rod thickness.10 For a

hollow rectangular rod, j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bh3 � bih

3
i

� �
= 12 bh� bihið Þ½ �

q
,

where b is the width (where, in general, L > b > h), bi is the

inner width, and hi is the inner thickness of the rod.10 The pre-

vious analysis is based upon the Bernoulli–Euler theory and

therefore neglects the effects of shear deformation and rotary

inertia. The Timoshenko theory, an improvement upon the

Bernoulli–Euler theory, incorporates these effects and results

in a decreased sound speed with increasing frequency relative

to the predicted Bernoulli–Euler wave speed. Thus, we expect

the predicted bending wave modal frequencies to be some-

what higher than measured values, and for this departure to be

more significant for higher numbered modal frequencies.

Similar findings were reported by Rossing and Russell.4

D. Common nodes

As stated previously, the torsional modes have nodes in

the same locations as the longitudinal modes.7 If the rod is

firmly held at the midpoint along its length then only the odd-

numbered modes of each of these types of modes should pos-

sibly be excited, as they all possess a common node at the

midpoint (noting that longitudinal motion would induce some

transverse component due to the Poisson effect11). The bend-

ing wave mode nodal locations are more complicated to

determine, but all of the even-numbered modes have a node

at the midpoint, whereas all of the odd-numbered modes have

an antinode at the midpoint.9 Thus, it is conceivable that

when a singing rod is held at its midpoint and subsequently

excited, the radiated sound will primarily contain contribu-

tions from the odd-numbered longitudinal modes and tor-

sional modes and from the even-numbered bending modes.

III. ROD EXCITATION

A. Methods of excitation

To excite longitudinal modes in a singing rod, it is ideal

to support the rod with two fingers of one hand and slide two

fingers of the opposite hand along one end of the rod. Typi-

cally one places the thumb and either index finger or middle

finger opposite each other at the middle of the length of the

rod to induce a vibration node. One then uses a similar com-

bination of fingers of the opposite hand to slide along one

end of the rod as depicted in Fig. 1. A steady velocity and

FIG. 1. (Color online) Photograph of a singing rod being played in the

anechoic chamber. The microphone is identified by the arrow.
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constant applied force with the sliding hand’s fingers excites

a rod into longitudinal resonance. A shrill pitch from a sing-

ing rod will wake up any classroom. Repeated excitation by

the sliding hand as the rod is singing allows excitation of

successively higher vibration amplitudes. Because the rod is

gripped at the center, only the fundamental longitudinal

mode and odd harmonics are expected to be excited. One

can then place their node hand at different nodal positions of

higher longitudinal modes to excite higher order longitudinal

modes of the rod (including exciting the higher harmonics

that have matching nodal positions).

Traditionally it has been suggested that violin rosin be

applied lightly to the finger tips of the sliding hand. The

downside of using rosin is the residue that it leaves on the

fingers. We have found one may avoid application of rosin

or another powder directly to the fingers if Octadecanol (also

known as stearyl alcohol or octadecyl alcohol) powder, of

molecular weight 270, is applied to the rod. This powder

sticks to the rod and remains for a long time. The advantage

of the powder is that the residue is colorless and a minimal

amount remains on the fingertips.

Other excitation methods may be used. Powder-free

nitrile gloves may also be used to excite a rod. The thickness

of the glove material influences the ease of excitation. For

example 0.004 in. thick nitrile gloves are easier to use to

excite an aluminum rod than 0.0055 in. thick nitrile gloves.

We have also found that spraying methyl alcohol onto a pa-

per towel and sliding the paper towel on the rod also excites

the rod. Neither a paper towel wet with water excite the rod,

nor the methyl alcohol paper towel once it dries somewhat.

Apparently the wet methyl alcohol’s evaporation at room

temperature creates a friction mechanism.

B. Measurements of excitation

In order to determine the interaction between the sliding

fingers and the rod, accelerometers are affixed onto the fin-

gernail of the sliding hand thumb (ST) and to the fingernail of

the node hand thumb (NT) using bees wax. Accelerometers

placed on an end of the rod causes the vibrations to damp out

too quickly. The use of a laser vibrometer would be ideal but

it is difficult to hold the rod steady enough for the laser to ac-

quire data. Clamping the midpoint was found to be very chal-

lenging, either resulting in damping out the vibrations too

quickly or clamping too much of the length of the rod at the

midpoint. Thus, we determined that accelerometers mounted

on thumbs were a decent method to monitor the rod vibration.

The accelerometers are axial and thus respond to vibration

perpendicular to the rod’s long axis. As the sliding hand

excites the rod, the acceleration is measured.

Figure 2(a) displays a few cycles of the acceleration

waveform from the ST accelerometer. Note the triangle

wave shape of the waveform, indicative of a stick-slip inter-

action that is common with the playing of bowed string

instruments (a driven string).12 However, the stick times and

the slip times vary as the rod is excited (as the point of exci-

tation is changing and the amplitude is increasing), whereas

in musical instruments these times remain fairly consistent

(where the point of excitation does not change in general).

The waveform is sawtooth in nature, meaning that a funda-

mental frequency and all harmonics (even and odd) are

likely present. Figure 2(b) displays the waveform as

recorded by an accelerometer mounted onto the NT, located

at the midpoint of the rod. One can see the rise in energy up

to �1.45 s as the sliding hand excites the rod, constituting

FIG. 2. (Color online) Example ex-

citation and decay of the vibration of

a singing rod measured with acceler-

ometers. (a) A few sample cycles of

the waveform measured with the ac-

celerometer mounted onto the slid-

ing thumb, illustrating the stick-slip

excitation. (b) Measured accelera-

tion waveform from the accelerome-

ter mounted onto the node thumb.

(c) Instantaneous acceleration ampli-

tudes measured with the node thumb

accelerometer for the first three

longitudinal modes of a singing rod

(the dotted vertical line indicates

the transition between the excitation

and decay portions of the signal).

(d) Acceleration amplitudes meas-

ured with the sliding thumb (ST) and

node thumb (NT) accelerometers for

various longitudinal modes during

excitation and decay (ST decay is

not applicable as the ST leaves the

rod after excitation).

J. Acoust. Soc. Am., Vol. 131, No. 3, Pt. 2, March 2012 B. E. Anderson and W. D. Peterson: The song of the singing rod 2437

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.187.97.22 On: Thu, 13 Mar 2014 20:58:16



the excitation phase. At �1.45 s the sliding hand releases the

rod and the acceleration then decreases during the decay

phase. In Fig. 2(c), the instantaneous acceleration amplitude

(determined through application of appropriate narrow band-

pass filters) of each of the first three modes, as recorded by

the NT accelerometer, is displayed. During the excitation

phase each of the first three modes are excited (along with

other higher order modes, although only the first three are

displayed). The theory developed in Sec. II suggested that

the even-numbered longitudinal modes should not be easily

excited because they possess antinodes at the midpoint of

the rod. As soon as the sliding hand leaves the rod the second

mode’s acceleration quickly drops 25 dB, whereas the first

and third modes decay less rapidly. The rapid decay of the

second mode is due to the damping induced by the node

hand being located at one of the antinodes for the second

mode. Figure 2(d) shows the relative acceleration amplitudes

of various modes, taken from normalized Fourier transforms

during the duration of each respective phase, during the exci-

tation of the rod (from the ST accelerometer) and the decay

of the rod’s vibration (from the NT accelerometer). Note the

fairly constant amplitude rolloff with increasing mode

number during the excitation, for both the ST and NT accel-

erometers), suggesting that the node hand is not significantly

affecting the excitation of even-numbered modes. In contrast,

note the relative higher amplitudes of the odd-numbered

modes compared to the even-numbered modes during the

decay phase, confirming that the node hand damps out the

even-numbered modes as expected. This analysis suggests

that the timbre of the sound changes between the excitation

phase and the decay phase due to the differences in harmonic

content.

IV. MEASUREMENTS

The analysis presented in Sec. III B discusses the longi-

tudinal modes that are present during the excitation and decay

phases of singing rod excitation when the rod is excited at

relatively low amplitudes. Here we will show that even-

numbered bending modes, odd-numbered torsional modes,

and subharmonic longitudinal modes, along with coupling

between these modes, can also be excited during the decay

phase when the rod is excited with a larger amplitude, sug-

gesting nonlinear behavior. The rod is excited with larger am-

plitude by increasing the force applied by the sliding hand

fingers and/or by exciting the rod multiple times with the slid-

ing hand. There is an apparent abrupt amplitude threshold,

below which the small signal sound is heard and above which

the large signal sound is also heard. The nonlinearity does not

appear to be an acoustic nonlinearity generated in the air, but

rather within the large vibrations in the rod.

Each of the experiments presented in this section were

performed in an anechoic chamber with working dimensions

3.00� 2.38� 2.59 m. This anechoic chamber has a low fre-

quency cutoff limit of 125 Hz. The radiated sound was

recorded with a 12.7 mm (1/2 in.) type-1 precision ICP
VR

con-

denser microphone placed �0.5 m away from the one end of

each rod. The rod was held at an angle of �30� from hori-

zontal. Octadecanol powder is rubbed onto one end of each

of the rods. Figure 1 displays a photograph of the rod being

excited in the anechoic chamber with the microphone identi-

fied by the arrow. A sampling frequency of 96 kHz was used

in the microphone recordings. Each calibrated spectrogram

shown in this section utilizes 3000 point segments, a Ham-

ming window, and 50% overlap of time segments.

Each of the rods is �182.88 cm (6 ft) in length, although

the actual lengths vary slightly and are denoted below.

The rods are 6061 aluminum with material properties of

E ¼ 68:9 GPa, q ¼ 2700 kg=m
3
, and r ¼ 0:33. A rod of

this length would have a longitudinal mode fundamental fre-

quency of 1381 Hz. The torsional and bending mode fre-

quencies depend on the radius of gyration of the rod and

therefore the respective cross-sectional geometry of the rod.

The predicted longitudinal modal frequencies for each of the

four rods studied in this paper, based on Eq. (1) are tabulated

in Table I. Table II gives the predicted torsional mode fre-

quencies for each rod based on Eq. (3), and Table III gives

the predicted bending mode frequencies based on Eq. (4).

A. Hollow rectangular rod

The first singing rod, whose small- and large-signal

behavior is examined, is a hollow rectangular rod. The outer

cross-sectional dimensions of the rod are 3.81� 1.91 cm

(1.5� 3/4 in.). The walls of the rod are 0.318 cm thick (1/8 in.)

and the rod is 182.80 cm in length. Figure 3(a) displays a

sample spectrogram of the sound radiated by the rod with a

small-signal excitation, as recorded by the microphone. Note

that the first, third, and fifth modes (at 1390, 4170, and

6950 Hz, respectively) are more prominent than the second

and fourth modes (at 2780 and 5560 Hz, respectively) as

expected.

Figure 3(b) displays a sample spectrogram of the sound

radiated by the rod with a large-signal excitation, as recorded

by the microphone. The rod was excited multiple times to

achieve the large-signal behavior whose decay phase starts

at �2.7 s. One observes that from 2.5 to 2.7 s modes 1–7 are

all briefly excited during the excitation phase. After the exci-

tation phase has ended there is a strong apparent subhar-

monic at 695 Hz corresponding to half the frequency of the

first mode. Additional new content at 2085 and 3475 Hz is

also observed, each corresponding to 3/2 and 5/2 times the

fundamental mode frequency, respectively. The subhar-

monic at 695 Hz is likely evidence of nonlinear wave

TABLE I. Predicted longitudinal mode frequencies (rounded to the nearest

hertz) for the four singing rods in this study.

Rectangular Cylindrical

Mode number Hollow Solid Hollow Solid

1/2a 691 690 693 693

1 1382 1380 1387 1387

2 2763 2760 2773 2773

3 4145 4140 4160 4160

4 5527 5520 5546 5546

5 6909 6900 6933 6933

aThe 1/2 mode number corresponds to the subharmonic frequency.
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behavior in the rod. Others have observed subharmonic gen-

eration in many types of acoustic and vibration systems (see

a nice review of early work in Ref. 13), including work show-

ing subharmonics in cymbal musical instruments.14–17 Appa-

rently it is common for subharmonics to have a certain

amplitude threshold before they appear18 and this is indeed

the case for the singing rods examined here. The acoustic

sound pressure levels generated by the singing rods in the

current study are not sufficient to induce nonlinear wave

steepening in the air, rather the authors believe that the nonli-

nearity is generated in the structural vibrations within the rod.

There is an apparent beating effect visible in the spec-

trogram of Fig. 3(c) at 695 Hz after 2.7 s and it is quite audi-

ble with a beat frequency of 5.5 Hz. This figure is zoomed in

and its amplitude color scale is adjusted to clearly show the

beating in the spectrogram. The beating shows up as ampli-

tude fluctuations in the spectrogram. The beating of the sub-

harmonic frequency calls for further analysis. The sixth

bending mode for this rod would be 718 Hz. Rossing and

Russell4 found that the measured bending mode frequencies

fell slightly below the predicted frequencies with the

Bernoulli–Euler theory as expected, as shear deformation

and rotary inertia are neglected. They also found that at a

frequency midway between a torsional mode and a bending

mode that they could “observe motion which combines these

two normal modes.” It is postulated here that the beat fre-

quency effect found in Fig. 3(c) is due to a similar coupling,

as found by Rossing and Russell, although of the subhar-

monic longitudinal mode and the sixth bending mode (their

rod had quite a different geometry than the present one).

An analysis (not presented here), employing the so-

called instantaneous frequency method,19–24 of the beat fre-

quency reveals that it slightly increases over time as the rod

vibration decays. One can audibly hear the increase in the

beat frequency as well (increase of 1–2 Hz). This may be

due to slight shifts in resonance frequencies as the length of

the rod dynamically changes with large excitation amplitude.

TABLE II. Predicted torsional mode frequencies (rounded to the nearest

hertz) for the four singing rods in this study.

Rectangular Cylindrical

Mode number Hollow Solid Hollow Solid

1 627 778 850 850

2 1254 1557 1700 1700

3 1881 2335 2550 2550

4 2508 3114 3401 3401

5 3135 3892 4251 4251

TABLE III. Predicted bending mode frequencies (rounded to the nearest

hertz) for the four singing rods in this study.

Rectangular Cylindrical

Mode number Hollow Solid Hollow Solid

1 39 20 22 17

2 106 54 59 48

3 208 106 116 93

4 344 176 192 154

5 514 263 287 230

6 718 367 401 321

7 956 488 534 427

8 1228 627 686 549

9 1534 784 857 685

10 1874 957 1046 837

11 2248 1148 1255 1004

12 2656 1357 1483 1186

13 3098 1583 1730 1384

14 3574 1826 1995 1596

15 4084 2086 2280 1824

16 4628 2364 2584 2067

17 5206 2659 2906 2325

18 5818 2972 3248 2598

FIG. 3. (Color online) Example spectrograms of small-signal and large-

signal excitations of a 3.81 cm� 1.91 cm� 182.80 cm hollow rectangular

singing rod (0.318 cm wall thickness) in (a) and (b), respectively, measured

by a microphone. Amplitude is represented in calibrated sound pressure

level (dB re 20 lPa). (c) Zoomed-in display of the data in (b) with a different

amplitude color scale.
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During dynamic vibration the bending wave mode frequen-

cies would be affected more by length changes than longitu-

dinal mode frequencies due to their relative dependencies on

rod length [see Eqs. (1) and (4)]. Further research could be

done to verify this.

B. Solid rectangular rod

A solid square rod of thickness 1.27 cm (1/2 in.) and

length 183.04 cm is now analyzed. This rod is excited multi-

ple times and with a significant amount of force applied by

the sliding hand and there is not a noticeable difference in

the sound quality of the rod with larger excitation. Figure 4

displays a sample spectrogram as recorded by the micro-

phone. Note the strong fundamental frequency at 1359 Hz

and its odd harmonics. In this experiment, the rod is initially

excited and set into its decay phase at� 1.0 s. Note the gen-

eration of all harmonics during the excitation phase roughly

from 0.5 to 1 s. It is then excited a second time at �3.2 s,

again confirming the findings from Sec. III B. that all har-

monics are excited during the excitation phase.

When the rod is excited a second time (from 3.2 s on),

one can observe that the even harmonics remain in the decay

phase, albeit at lower amplitudes than their neighboring odd

harmonics. The amplitude of the second harmonic during the

second excitation is 30 dB higher than in the first excitation,

whereas the amplitudes of the first and third harmonics rise

only 14 dB in the second excitation compared to the first

(similar findings can be made for other even and odd har-

monic amplitudes). Thus, the generation of the even harmon-

ics in the second excitation appears to suggest that the

second excitation is of sufficient amplitude to generate nonli-

nearity in the vibration, as the added energy is unevenly dis-

tributed among the mode frequencies.

C. Hollow cylindrical rod

We now analyze cylindrical rods and begin with a hol-

low cylindrical rod of diameter 1.27 cm (1/2 in.), length

182.17 cm, and wall thickness 0.159 cm (1/16 in.). The hol-

low cylindrical rod is the easiest rod to excite in terms of the

applied force necessary by the sliding hand. Figure 5(a) dis-

plays a sample spectrogram of a microphone recording of its

sound. The figure depicts a first excitation between 0.1 and

1.5 s and a second excitation from 1.5 s on. Note that even

with a lower level excitation (the first excitation) the even

harmonics are present, although again at lower amplitudes

relative to the odd harmonics. It is also apparent from Fig.

5(a) that during the second excitation that a subharmonic

and higher integer multiples of the subharmonic, are gener-

ated. A beating effect also takes place likely between the

subharmonic at 702 Hz and the eighth bending mode at

686 Hz. Each of these effects are similar in nature to the

sound radiated by the hollow rectangular rod.

Figure 5(b) displays the amplitude of various harmonic

components versus different time segments (or steps). Each

time step is 0.83 s in duration. The first time step is taken

from the middle of the first excitation (between 0.42 and

1.25 s). The subsequent time steps, 2–9, are taken between

1.56 and 8.23 s [not all shown in Fig. 5(a)] with no overlap.

The noise floor is �30 dB for the modal frequencies dis-

played. Note the lack of the subharmonic for the first excita-

tion (it is in the noise floor). The subharmonic is then excited

in the second excitation and it decays more rapidly than the

first three harmonics. It is interesting to note that the levels of

the harmonics are not much different between the first excita-

tion and the first segment of the second excitation for the first

and third harmonics. Thus, when the rod is excited the second

time, the vast majority of the added energy results in the exci-

tation of the subharmonic, again suggesting a nonlinear effect

FIG. 4. (Color online) Spectrogram of the large-signal excitation of a

1.27 cm� 1.27 cm� 183.04 cm solid rectangular singing rod. Amplitude is

represented in calibrated sound pressure level (dB re 20 lPa).

FIG. 5. (Color online) (a) Spectrogram of the large-signal excitation of a

1.27 cm diameter, 182.17 cm long hollow cylindrical singing rod (0.159 cm

wall thickness). Amplitude is represented in calibrated sound pressure level

(dB re 20 lPa). (b) Amplitudes at various time segments (steps) for the sub-

harmonic, first, second, and third longitudinal modes.
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as the energy at the fundamental frequency did not rise with

increasing input energy.

D. Solid cylindrical rod

Finally we analyze the sound radiated by a solid cylindri-

cal rod of diameter 1.27 cm (1/2 in.), and length 182.17 cm.

These are the same outer dimensions as for the hollow cylin-

drical rod. Figure 6 displays a sample spectrogram of a

microphone recording of its sound. During this recording, the

rod is set into its first decay phase at 0.5 s. A second excita-

tion takes place just after 2.0 s.

Note that nearly a half-second after the first excitation,

two tones appear at 543 and 827 Hz. These two tones are not

subharmonically related to the fundamental frequency. How-

ever, the predicted eighth and tenth bending mode frequencies

for this rod are at 549 and 837 Hz, respectively, suggesting that

these two modes are responsible for these two tones. A beating

effect is apparent at the 827 Hz tone (that is quite audible). The

first predicted torsional mode of this rod occurs at 850 Hz and

it is likely that the beating results from a similar effect, as

observed by Rossing and Russell,4 noted in Sec. IV A.

When this first rod is excited the second time, the 543

and 827 Hz tones remain. Additionally, tones at 1168, 1570,

and at 2540 Hz are generated. These additional tones likely

result from the 12th, 14th, and 18th bending modes as the

predicted modal frequencies are at 1186, 1596, and at

2598 Hz, respectively. Although not as apparent from the

spectrograms, the third longitudinal mode at 4110 Hz peaks

at 104 dB and it nearly dominates the audible radiated sound.

This particular rod is actually difficult to excite without

exciting the 837 Hz tone, although it is possible. The meas-

ured level of the fundamental frequency with a small-signal

excitation just below the apparent threshold of generating

the 837 Hz tone is 80 dB. In contrast, the level at the funda-

mental frequency is 89 dB for the first excitation, displayed

in Fig. 6, and 91 dB for the second excitation.

A second rod of the same geometry (exact same length)

is found to exhibit the same beating effect as observed

between the first torsional mode and the tenth bending mode.

In an effort to shift the bending mode frequency away from

the torsional mode frequency, this second rod is then cut

down by 12.7 cm (5 in.) to shift the tenth bending mode fre-

quency to 967 Hz and the first torsional mode frequency to

914 Hz. The shorter length increases all predicted longitudi-

nal and torsional mode frequencies by 7.5%, whereas the

predicted bending mode frequencies are increased by 15.5%.

After the rod is cut the beating effect can no longer be

excited even with significantly large excitation amplitudes as

the torsional and bending mode frequencies are no longer in

close proximity.

V. EDUCATIONAL CONSIDERATIONS

The singing rod demonstration is well known and has

been used for many years by physics educators as an exam-

ple of the existence of longitudinal wave motion. Educators

commonly show that the location of the node hand deter-

mines which longitudinal mode numbers radiate. Addition-

ally, they also show that rods of different cross section

geometries (solid versus hollow, or rectangular versus cylin-

drical), but of the same length, may be used to show that lon-

gitudinal modes of a rod only depend on the rod’s length. In

this paper, we have presented complex nonlinear phenomena

in singing rods that may be used to illustrate advanced topics

in acoustics and vibration. The purpose of this section is to

provide some ideas for advanced demonstrations with sing-

ing rods. It is recommended that an educator have a running

spectrogram (several free programs are available online) dis-

played in the classroom as the rods are excited so that the ed-

ucator can discuss the various frequencies generated.

In this paper we have shown that one may design a sing-

ing rod’s geometry such that bending modes and torsional

modes may also be predicted and observed. These modes are

enabled when the length of the rod is adjusted such that a pre-

dicted even-numbered bending mode frequency nearly

matches the modal frequency of either a subharmonic longi-

tudinal mode or of a torsional mode. It appears from our

experiments that unless this near matching of modal frequen-

cies occurs, torsional and bending modes cannot be observed.

The importance of the vibrational pattern of the rod, in

terms of the locations of nodes and antinodes, can also be

illustrated as two rods of the same cross-sectional geometry

but of different lengths can be designed to more easily ex-

hibit nonlinear coupling of a bending mode with either a sub-

harmonic longitudinal mode or with a torsional mode. One

rod may be cut to a length to potentially enable the nonlinear

coupling of the subharmonic longitudinal mode and an even-

numbered bending mode, whereas a second rod is cut to a

length to potentially enable the nonlinear coupling of the

subharmonic longitudinal mode and an odd-numbered bend-

ing mode. Only the rod tuned to the even-numbered bending

mode will exhibit the nonlinear beating as it shares a node at

the rod’s midpoint, and therefore radiates more efficiently.

To determine the ideal length, LL�B, to enable coupling of

the subharmonic longitudinal mode with an even numbered

bending mode, Eq. (1) with n ¼ 1=2 is set equal to Eq. (4)

including only the even modes and solving for L, resulting in

LL�B ¼
p
2

j 2nþ 1ð Þ2; n ¼ 2; 4; 6; :::: (5)

FIG. 6. (Color online) Spectrogram of the large-signal excitation of a

1.27 cm diameter, 182.17 cm long solid cylindrical singing rod. Amplitude

is represented in calibrated sound pressure level (dB re 20 lPa).
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The ideal length, LT�B, to enable coupling of the first tor-

sional mode with an even numbered bending mode is found

by setting Eq. (3) with n ¼ 1 equal to Eq. (4) including only

the even modes and solving for L, resulting in

LT�B ¼
pj

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ rð Þ

p 2nþ 1ð Þ2; n ¼ 2; 4; 6; :::: (6)

In each of these two length calculations, it should be remem-

bered that Eq. (4) is based on the Bernoulli–Euler theory and

those bending mode frequencies should be slightly higher

than that found experimentally. Thus, the educator should

consider trimming off some of the lengths given in Eqs. (5)

and (6) to achieve the best coupling.

The spacing of the modal frequencies for the various

types of modes may be used to illustrate the concept of dis-

persion (a medium with a frequency-dependent wave speed).

In the case of longitudinal and torsional waves, which pos-

sess frequency-independent wave speeds, the higher order

modal frequencies are integer multiples of the fundamental

frequency and therefore longitudinal and torsional waves are

not dispersive. On the contrary, bending waves possess a

frequency-dependent wave speed and thus their higher order

modal frequencies are not harmonics of the fundamental fre-

quency, which is evidence of dispersion. If the instructor

designs a rod such that many bending modes are excited,

they can then display the spectrum of the singing rod’s

modal frequencies and point out the lack of integer multiple

spacing of its harmonics.

VI. CONCLUSIONS

The song of the singing rod can be quite complex. All

harmonics are present as the rod is excited, even for small

signal excitation. After small signal excitation, the even-

numbered modes decay out, when the rod is held at its mid-

point. For a singing rod of a given geometry, there is an

apparent threshold when the large-signal, nonlinear behavior

of the rod comes into play (the threshold depends on the

rod’s geometry). The large-signal radiated sound contains

tones due to bending modes, torsional modes, subharmonic

longitudinal modes, and increased radiation of the even-

numbered longitudinal modes (the reason for the increased

radiation efficiency of even-numbered modes is not known).

It is also possible for the large-signal radiated sound to exhibit

a beating effect possibly due to nonlinear modal interaction.

It is generally easier to excite hollow rods at larger

amplitudes than solid rods. From an education standpoint,

the radiated sound from solid rods may provide more inter-

esting spectra, due to the rich harmonic content and nonlin-

ear modal coupling (if their lengths are such that coupling

exists between bending and torsional modes).

Measurements made by placing accelerometers on the

thumbs of someone exciting a singing rod, at small ampli-

tudes, show that all longitudinal modes are present during

the stick-slip excitation of the rod. When the sliding hand

leaves the rod the even-numbered modes tend to decay

rapidly and the sound is dominated by the odd harmonics

(only for small-signal excitation). Various means to create

the friction necessary to excite an aluminum rod were dis-

cussed. We recommend the use of Octadecanol powder with

a molecular weight of �270, due to the ease of rod excita-

tion, no need to apply any substance to the fingers, and the

lack of residue remaining on the fingers after excitation of

the rod (except during the initial application of Octadecanol

onto the rod).

The large-signal radiated sound is highly dependent on

the rod’s geometry. The threshold for additional tonal gener-

ation is dependent on the rod’s geometry, e.g., when the

proximity of an even-numbered bending mode frequency to

the subharmonic of the fundamental longitudinal mode fre-

quency is small. A beating effect can also occur when the

frequency difference between these mode combinations

(even-numbered bending mode and subharmonic longitudi-

nal mode) is small. It is apparent that the subharmonic tone

is not excited unless its frequency is close to that of an even-

numbered bending mode frequency.

Advanced demonstration ideas have been presented to

allow educators to predict and observe torsional and bending

modes, illustrate the concept of dispersion, and illustrate the

importance of the locations of nodes and antinodes (with

application to musical instruments for example).
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