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The far-field radiation originating from a finite-length pipe is well studied, especially for steady-state

conditions. However, because all physical systems do not begin in steady state, these radiation

characteristics are only valid after the transient portion of the solution has decayed. Understanding

transient radiation characteristics may be important (particularly for systems transmitting very

short-duration signals), as they can differ quite significantly. A numerical complication to this

problem involves dealing with a sharp corner in the domain of interest. While many numerical studies

have attempted to couple solutions from the domains inside and outside a pipe, the analysis presented

in this work treats the computational domain as a single region by expressing the entire physical

domain as a map from a simple rectangular domain in generalized curvilinear coordinates. This

method will be introduced in detail and general results of transient radiation will be presented for an

infinitely baffled, finite-length pipe using the finite-difference method expressed in generalized

curvilinear coordinates. Comparison will be made to previous results [P. Stepanishen and R. A.

Tougas, J. Acoust. Soc. Am. 93, 3074–3084 (1993)] that used a semi-analytic approach with certain

assumptions. VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4835915]

PACS number(s): 43.20.Px, 43.20.Mv, 43.20.El [NAG] Pages: 17–26

I. INTRODUCTION

Wave propagation through and from a pipe is a widely

studied topic in acoustics. Many researchers interested in tur-

bofans, ventilation systems, mufflers, exhaust pipes, loud-

speakers, etc., use the analysis of this system as a first step to

better understand more-complicated systems of interest.1–5

Additionally, the problem has been posed several different

ways in the past, rendering it broad and diverse in both its

solutions and applications. For example, pipes of finite,

semi-infinite, and infinite lengths with both baffled and

unbaffled ends and of constant or varying cross-section have

been studied analytically, numerically, and experimentally.

Furthermore, both time-harmonic1,5–14 and transient2–4,15

source conditions have been investigated.

The most applicable work to this paper is that of

Stepanishen and Tougas, who semi-analytically approxi-

mated the transient radiation from a baffled, finite-length

pipe for a short-duration signal.15 Their analysis assumed the

pipe to be circularly symmetric and the problem was solved

via transform methods, where the field variable for both a

circular pipe and a half space were matched at the adjoining

boundary. Their study investigated the radiation characteristics

of several modes generated within the pipe and showed that

radiation from higher-order pipe modes produced no on-axis

pressure in the far field. In order to simplify the analytical

complexities of matching the tractable solutions for both the

pipe and half-space domains, there was an assumed one-to-one

correspondence between the pipe modes that composed the

incident pressure wave propagating toward the pipe exit and

the reflected pressure wave propagating back down the pipe.

For example, a plane wave impinging on the pipe exit would

only produce a plane wave upon reflection back down the

pipe. These authors clearly noted the simplification involved in

having a one-to-one correspondence between incident and

reflected pipe modes, and they concluded their work by stating

that this assumption would need to be studied in further detail.

In this work, we introduce a relatively new development

for the finite-difference method (FDM), which involves

numerically mapping a simple rectangular domain,

expressed in generalized curvilinear coordinates, to a more

complicated or irregular geometry in Cartesian coordinates.

We demonstrate the basic process required, which involves
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moving the analytical equations into a generalized curvilin-

ear domain and Taylor expanding the differentials to create

the finite-difference problem. We contrast this approach with

other more conventional mapping techniques. The numerical

simulations for this study employs a second-order, leapfrog-

type FDM to evaluate time-domain wave propagation for

short-duration transient signals.

We demonstrate the robust nature of this grid-

generation technique by considering the problem solved

semi-analytically by Stepanishen and Tougas; this geometry

contains a sharp edge wherein the pipe exit joins the half

space, making it a more problematic geometry for conven-

tional software packages (i.e., see discussion at the end of

Sec. II C). By reproducing this problem numerically, the two

domains (the pipe and the half space) become a single do-

main, thus eliminating the need for their simplification and

allowing us to quantify its validity. Additionally, by includ-

ing a half space in the grids used to simulate wave propaga-

tion, we eliminate the need to define a complicated

impedance boundary condition at the pipe exit. As with the

work of Stepanishen and Tougas, the pipe is assumed rigid

and the case of no mean flow is considered. Some higher-

order modes are also independently excited in this initially

quiescent field by a single-cycle, gated sine wave. Last, this

problem is reproduced using COMSOL, a standard finite-

element software package, to both verify and compare

against the results from the method presented here.

II. THE MATHEMATICAL PROBLEM

A. The physical problem

Transient radiation is studied from a finite-length pipe

mounted to an infinite rigid baffle. At time t¼ 0, the fluid is

excited at the end of the pipe not mounted to the baffle. The

excitation signal is defined as a gated, single-cycle sine wave.

Once excited, an acoustic wave propagates through the pipe

and eventually radiates to infinity within a half-space domain.

Inside the pipe and in the half space outside the pipe,

the sound pressure p is mathematically modeled by the wave

equation in cylindrical coordinates (r, /, z), where we

assume the field to be independent of /:

@2p

@r2
þ 1@p

r@r
þ @

2p

@z2
¼ 1

c2
0

@2p

@t2�
: (1)

The radial coordinate r is perpendicular to the normal of the infi-

nite baffle, the z coordinate is parallel with the pipe, and c0 is the

free-field sound speed of the fluid. An illustration of the physical

problem is given in Fig. 1. The right-hand illustration in Fig. 2

depicts the computational interpretation of the physical domain

D, where wave propagation is numerically simulated with the

grid. Its boundaries C1 [ C2 [ C3 [ C4 are also illustrated.

The boundary condition at C4 models a rigid condition

for both the pipe wall and the infinite baffle. At C3, the sym-

metry condition requires that the pressure is continuous,

lim
�!0

pð�; z; tÞ ¼ pð��; z; tÞ; (2)

which leads to the boundary condition

@

@r
p 0; z; tð Þ ¼ 0: (3)

The condition on C1 is defined by the nature of the excitation

at this end of the pipe. It is assumed that the pressure field is

initially quiescent. Also, the mathematical description of the

outgoing wave at infinity is given through the well-known

Sommerfeld radiation condition, ptþ c0pR ! 0 as R ! 1,

where the subscripts t and R, respectively, denote derivatives

in time and space where R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
with its origin at

the center of the pipe exit.

Because this initial boundary-value problem (IBVP) is

solved numerically for p using the FDM in generalized cur-

vilinear coordinates to account for irregular geometries, a

truncation of the infinite half space to the right of the pipe is

necessary. Thus, the boundary C2 shown in the right-hand

illustration of Fig. 2 corresponds to an artificial infinite

boundary. This requires an introduction of an absorbing con-

dition at C2 instead of the Sommerfeld radiation condition.

This condition should be such that there are no spurious

reflections at the absorbing boundary. In this work, the

radiation condition ptþ c0pR þ c0=2Rð Þp ! 0, as R ! 1 of

O (1/R5/2) is used. A complete review of the non-reflecting

boundary condition used in this paper is given by Bayliss

et al. and Givoli.16–18 Summarily, the IBVP in complete

mathematical form is expressed as

1

c2
0

p r; z; tð Þtt ¼ prr þ
1

r
pr þ pzz; ðr; zÞ 2 D; t > 0; (4)

@

@n
p r; z; tð Þ ¼ 0 ðr; zÞ 2 C4 [ C3; (5)

@

@n
pðr; z; tÞ ¼ �q0âðr; tÞ; 0 � t � Td;

0; otherwise;
ðr; zÞ 2 C1;

�
(6)

pt þ c0pR þ
c0

2R
p ¼ 0; ðr; zÞ 2 C2; (7)

FIG. 1. Illustration of the physical domain used to study transient radiation

from a finite-length pipe.
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pðr; z; 0Þ ¼ 0 and ptðr; z; 0Þ ¼ 0; ðr; zÞ 2 D: (8)

B. The physical problem in generalized curvilinear
coordinates

Since much of the work done in generalized curvilinear

coordinates (n and g) maps to or from Cartesian coordinates

(x and y), it is desirable to write this IBVP in terms of x and

y. Since the wave equation no longer depends on /, the vari-

ables r and z are easily identified with y and x, respectively.

Thus, choosing y¼ r and x¼ z, Eq. (4) can be written as

@2p

@y2
þ 1@p

y@y
þ @

2p

@x2
¼ 1

c2
0

@2p

@t2
; (9)

where p is now written as a function of x, y, and t.
The mapping to curvilinear coordinates can be mathe-

matically described by a transformation to generalized cur-

vilinear coordinates (n, g) from Cartesian coordinates (x, y)

[though it should be remembered that our equation employs

cylindrical coordinates (z¼ x, r¼ y)]. Figure 2 pictorially

describes this transformation T: D0 ! D, defined by

x¼ x(n, g) and y¼ y(n, g) from a rectangular region D0
called the computational domain to the plane region D
called the physical domain.

As a result, the pressure is written in terms of curvilinear

coordinates as p(n, g)¼ p(x(n, g), y(n, g)). Moreover, the

wave equation expressed in Eq. (9) transforms into

1

J2
ðapnn � 2bpng þ cpggÞ þ

1

J3
ðaynn � 2byng þ cyggÞ xgpn � xnpgð Þ þ

1

J3
ðaxnn � 2bxng þ cxggÞ ynpg � ygpnð Þ

þ 1

yJ
xnpg � xgpnð Þ ¼

1

c2
0

ptt; (10)

in generalized curvilinear coordinates, where subscripts

denote partial derivatives and a¼ x2
g þ y2

g, b¼ xnxgþ ynyg,

c¼ x2
n þ y2

n, and J¼ xnyg� xgyn, which corresponds to the

Jacobian of the transformation.

The mathematical transformation T between coordinate

systems, introduced by Villamizar and Acosta, is adopted,19

axnn � 2bxng þ cxgg ¼ �awðn; gÞxn � c/ðn; gÞxg; (11)

aynn � 2byng þ cygg ¼ �awðn; gÞyn � c/ðn; gÞyg; (12)

where w¼ an/2a and /¼ cg/2c are known as grid control

functions. A more conventional conformal map was first

introduced by Winslow,20 which uses the same equations

given in Eqs. (11) and (12) but without the grid control

functions. While these types of grids are generally smooth, a

lack of grid control functions provides no control over the

location of the grid lines. As a consequence, these grids often

contain vast differences in cell size, creating computational

instabilities, and/or numerical inaccuracies. Because of the

sharp corner in the geometry used for this study, the grid

control functions allow for a more uniform cell size, while

maintaining the desirable feature of near orthogonal grids,

which is common to most elliptic grid generators. (Recent

work involving grid line control can be found in books by

Hansen et al.21 and Thompson et al.22) Thus, substitution of

Eqs. (11) and (12) into Eq. (10) simplifies the expression

considerably. Once again, the entire IBVP is presented, but

written in terms of generalized curvilinear coordinates:

1

J2
ðapnn � 2bpng þ cpggÞ þ

aw
J2
� xg

yJ

� �
pn þ

c/
J2
þ xn

yJ

� �
pg ¼

1

c2
0

ptt; n; gð Þ 2 D0; t > 0; (13)

@

@n
pðn; g; tÞ ¼ 1

J
ffiffiffi
c
p ðcpg � bpnÞ ¼ 0; ðn; gÞ 2 C04[C03; (14)

FIG. 2. Illustration of the transforma-

tion used in the generation of

boundary-conforming coordinates.
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@

@n
pðn; g; tÞ ¼ 1

J
ffiffiffi
a
p ðbpg � apnÞ ¼

�q0âðg; tÞ;
0;

0 � t � Td;
otherwise;

ðn; gÞ 2 C01;

�
(15)

pt þ
c0

JR
ðxyg � yxgÞpn þ ðyxn � xynÞpg
� �

þ c0

2R
p ¼ 0; ðn; gÞ 2 C02; (16)

pðn; g; 0Þ ¼ 0 and ptðn; g; 0Þ ¼ 0; ðn; gÞ 2 D0; (17)

where R (due to the coordinate/variable changes) is now cal-

culated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Equations (13) through (17) are in the

form used during the finite-difference (FD) simulation and

must therefore be discretized, as described in the following

section.

C. Discretization

A second-order discretization of all the governing equa-

tions expressed in curvilinear coordinates is needed for the

FD simulations. Since the governing equations are partial

differential equations in time and space, discretization must

occur both temporally and spatially. Temporally, the compu-

tation requires the current and past time steps to infer what

the solution of the governing equation over the computa-

tional domain will be in the future. This second-order

method is similar to the leapfrog scheme. Time steps are

indicated with the index n and written as superscripts in the

following equations. Spatially, the computational domain D0

is described by the coordinates n and g, where 1� n�N1

and 1� g�N2. For convenience, the computational step size

for both of these coordinates is Dn¼Dg¼ 1. The spatial step

numbers are indicated with the subscripts i and j, which cor-

respond to steps taken in n and g, respectively.

By using the following spatial and temporal

discretizations,

ptt ¼ pnþ1
i;j � 2pn

i;j þ pn�1
i;j ; pg ¼ ðpn

i;jþ1 � pn
i;j�1Þ=2;

pnn ¼ pn
iþ1;j � 2pn

i;j þ pn
i�1;j; ðxgÞi;j ¼ ðxi;jþ1 � xi;j�1Þ=2;

png ¼ ðpn
iþ1;jþ1 � pn

iþ1;j�1 � pn
i�1;jþ1 þ pn

i�1;j�1Þ=4; ðxnÞi;j ¼ ðxiþ1;j � xi�1;jÞ=2;

pgg ¼ pn
i;jþ1 � 2pn

i;j þ pn
i;j�1; ðygÞi;j ¼ ðyi;jþ1 � yi;j�1Þ=2;

pn ¼ ðpn
iþ1;j � pn

i�1;jÞ=2; ðynÞi;j ¼ ðyiþ1;j � yi�1;jÞ=2;

we solve for the pressure at the future time step. Thus, the

wave equation in curvilinear coordinates [Eq. (13)] becomes

pnþ1
i;j ¼ 2pn

i;j � pn�1
i;j

þ d2
i;j½ai;jðpn

iþ1;j � 2pn
i;j þ pn

i�1;jÞ

�
bi;j

2
ðpn

iþ1;jþ1 � pn
iþ1;j�1 � pn

i�1;jþ1 þ pn
i�1;j�1Þ

þ ci;jðpn
i;jþ1 � 2pn

i;j þ pn
i;j�1Þ

þ
�
ðanÞi;j

4
�

Ji;jðxgÞi;j
2yi;j

�
ðpn

iþ1;j � pn
i�1;jÞ

þ
� ðcgÞi;j

4
þ

Ji;jðxnÞi;j
2yi;j

�
ðpn

i;jþ1 � pn
i;j�1Þ�; (18)

where di,j¼ c0Dt/Ji,j and Dt is the time step.

Equation (18) is only used to calculate pnþ1
i;j on the inte-

rior points of the computational domain. In order to compute

an edge of this domain, the boundary condition equations

[Eqs. (14)–(17)] need to be discretized. Accurate

computations at the boundaries require the consideration of

ghost points. These are points that lie outside of the domain,

but can still be used in the calculation of the field values at

the boundary points. Essentially, the ghost points provide the

additional grid points needed to combine the governing

equation [Eq. (18)] with the discretized boundary-condition

equations. This combination of equations is desirable so that

field values at boundary points incorporate both wave

motion and the boundary stipulations.

Since the discretizations of the boundary conditions are

different for each boundary of the domain, they are treated

individually. At the boundary line C1, second-order discreti-

zation gives

pn
0;j¼

pn
2;j�

b1;j

a1;j
ðpn

1;jþ1� pn
1;j�1Þ þ

2q0 âð Þ1;j
a1;j

" #
; 0� t�Td;

pn
2;j�

b1;j

a1;j
ðpn

1;jþ1�pn
1;j�1Þ; otherwise;

8>>>><
>>>>:

(19)
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where the value at the ghost point pn
0;j is now determined.

Once the field value at the ghost point is calculated, substitu-

tion of this value into Eq. (18) gives the pressure field at that

boundary point. As mentioned previously, the boundary con-

ditions are thus correctly accounted for in the governing

equation via substitution of the ghost point.

The rigid condition on boundary C4 and the symmetry

condition on boundary C3 are very similar. Both require that

the normal derivative of the pressure be zero. Their discreti-

zations are similar since their normal vectors are in the same

axis (but opposite in direction) in the computational domain.

Once again, second-order discretizations and ghost points

are used to calculate the field values at these boundaries.

Thus,

pn
i;N2þ1 ¼ pn

i;N2�1 þ
bi;N2

ci;N2

pn
iþ1;N2

� pn
i�1;N2

� 	
; (20)

which solves for the ghost points just outside boundary C4, and

pn
i;0 ¼ pn

i;2; (21)

which solves for the ghost points for boundary C3. Both sets

of ghost points are then substituted into Eq. (18) to calculate

the pressure field on each respective boundary.

Finally, a second-order discretization of the absorbing

boundary condition on boundary C2 is presented. Because

both the governing wave equation and the absorbing bound-

ary condition contain derivatives of pressure both temporally

and spatially, finding pnþ1
N1;j

requires that both equations be

first solved in terms of the ghost point pn
N1þ1;j:. Then both dis-

crete equations are set equal to one another, eliminating this

ghost point and resulting in a single equation for the future

pressure value at the boundary pnþ1
N1;j

. This procedure pro-

duces the following equation, given without derivation:

pnþ1
N1; j ¼

1

1þ c0DtR

kN 1;jJN1;j

�
aN1;j þ

ðanÞN1;j

4
�
ðxgÞN1;j

JN1;j

2yN1;j

�

� d2
N1;j

aN1;j þ
ðanÞN 1;j

4
�
ðxgÞN1 ;j

JN1;j

2yN1;j

 !
� 2jN1;j

kN1;j
pg �

JN1;j

kN1;j
pn

N1;j
þ RJN1;j

c0kN1;jDt
pn�1

N1;j

� �"(

þ 2aN1;jðpn
N1�1;j � pn

N1;j
Þ � 2bN1;jpng þ cN1;jpggþ

ðcgÞN1;j

2
þ
ðxnÞN1;j

JN1;j

yN1;j
Þpg � þ 2pn

N1;j
� pn�1

N1;j
g;

 
(22)

where jN1, j¼ yN1, j(xn)N1, j� xN1, j(yn)N1, j and kN1, j¼ xN1, j(yg)N1, j

� yN1, j(xg)N1, j.

In summary, an FD technique has now been developed,

supported by a set of special elliptic grids, which applies to

wave propagation through axially symmetric boundaries in

three-dimensional space. The grid control functions a and /
introduced in Eqs. (11) and (12) aid in creating a more uni-

form cell area, while also enhancing smoothness and ortho-

gonality.23 While others have introduced usable techniques

for improving grid generation on complex structures,20–22

the grid-generation technique given here is fully automatic,23

more stable,24 and has even been shown to outperform grids

created by ANSYS (a popular computer-aided engineering

software package) when including a sharp corner.19

Villamizar and Acosta have continued to develop a variety

of curvilinear grids, similar to that used here, and have

applied them to scattering from multiple nonconventional

objects in two-dimensions.24,25

III. NUMERICAL SIMULATION

The model simulated in this work is scaled down to

exactly 1
4

the size of the mathematical model used by

Stepanishen and Tougas.15 Thus, their 4 kHz results corre-

spond to the 16 kHz results presented here. The cylindrical,

rigid pipe for this model is 0.5 m long with a radius of

ra¼ 19.05 mm (0.75 in.), where one end of the pipe is

mounted to an infinite, rigid baffle.

The absorbing boundary condition at C2 was applied at

a constant radius R¼ 50 cm from the origin (the center of the

pipe exit), over 7.5 times the Rayleigh distance kr2
a/2, where

k is the acoustic wave number for the highest frequency of

interest. The reflection coefficient from this boundary was

calculated to be approximately 1%.26 Moving it to distances

of 80 and 100 cm from the pipe exit and measuring the field

values at the same positions did create some slight differen-

ces in the radiation patterns versus angle. However, the dif-

ferences were likely due to the superposition of the small

reflected pressure waves from the absorbing boundary.

Therefore, a valuable comparison to Stepanishen and

Tougas’ far-field results can still be made. Because it was of

computational interest to keep the grid small and because the

results were still comparable, the boundary was kept at the

50 cm distance.

An appropriate acceleration profile was defined to inde-

pendently excite natural modes of the pipe. The goal was to

create a source function that enabled all of the acoustic energy

produced by the source to be transferred into any desired

mode. Following Stepanishen and Tougas, the acceleration

profile of the piston â(r, t) satisfied the following relationship:
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am;n ¼
1

S

ð
S

âðr; tÞUm;n dS; (23)

where am,n is the m,nth modal amplitude coefficient (differ-

ing from the grid metric a used above), Um,n is the m,nth

mode (eigenfunction) of a circular pipe, and S is the

cross-sectional area of the pipe. For a circularly symmetric

pipe, these eigenfunctions are

U0;n ¼ J0ðv0;nrÞ; n ¼ 1; 2; :::; (24)

where J0(v0,nr) is a zero-order Bessel function of the first

kind. Subscript m is always zero because only axisymmetric

modes are considered, as was done by Stepanishen and

Tougas. The values of v0,n are determined from the rigid

boundary condition at the pipe radius, r¼ ra, and are the set

of discrete values satisfying the wave equation in the radial

direction. Thus, substitution of Eq. (24) into Eq. (23) results

in the expression

a0;n ¼
1

S

ð
S

âðr; tÞU0;ndS ¼ 2p
S

ðra

0

âðr; tÞJ0ðv0;nrÞrdr:

(25)

In order to independently excite the nth mode of the

pipe, we choose the profile to be

âðr; tÞ ¼ J0ðv0;prÞsin

�
2pt

Td

�
; 0 � t � Td;

0; otherwise;

8<
: (26)

where Td is the period of the single-cycle sine wave. The

spatial nature of this profile is convenient due to the ortho-

gonality property of the Bessel function for 0� t� Td,

a0;n ¼
2p
S

ðra

0

J0ðv0;prÞsin

�
2pt

Td

�
J0ðv0;nrÞrdr

¼ J0ðv01;pÞ
2
sin

�
2pt

Td

�
; p ¼ n;

0; p 6¼ n;

8<
: (27)

where v01;n is the nth root of the first-order Bessel function of

the first kind.27 This spatial profile is the simplest that can be

chosen to independently excite a pipe mode.

IV. RESULTS

The FD model allows the study of the angular and time-

dependent properties of each natural mode of the pipe as

they subsequently radiate to the absorbing boundary C2. As

explained in the previous section, the acceleration profile at

the source boundary is prescribed spatially as a Bessel func-

tion of the first kind of order zero for independent modal ex-

citation. Simulations of the first three modes of the pipe,

independently excited and radiated to the absorbing bound-

ary, were recorded and analyzed using a 3101� 71 point

grid. The transient nature of the signal induced significant

numerical dispersion and therefore necessitated an extremely

fine grid to account for the high-frequency content of the

pulse. It permitted frequencies slightly higher than 52 kHz,

assuming 20 grid points per wavelength. Sufficient grid reso-

lution was verified by refining the grid until the (0,0) natural

mode propagated through the pipe without visually obvious

dispersion. This same check was also performed with the

data received at the absorbing boundary, as the element sizes

are larger here than in the pipe. In addition, other works

have discussed this issue in more detail for similar prob-

lems.28 Figure 3(d) shows the negligible amount of numeri-

cal dispersion for the chosen grid resolution while the sound

is radiated through the pipe. Finally, computation time for

each simulation was approximately 37 min when run on a

dual-core 32-bit computer with a 3.16 GHz processor and

coded in MATLAB. The step size was set to be approxi-

mately Dt¼ 2� 10�7 s.

Figures 3 and 4 show the development of wave propaga-

tion over time for the plane-wave and the first higher-order

mode, respectively, and a 16 kHz single-cycle sinusoidal ex-

citation. For the plane-wave mode, the pulse begins and

remains as a compact compression. However, for the first

higher-order mode, the signal rapidly disperses as the energy

created by the pulse travels down the pipe at many different

speeds. This is explained by phase and group speeds in many

fundamental acoustics textbooks.27,29 Lower-order modes

travel down the pipe faster than higher-order modes for a

given non-infinite frequency, and higher frequencies travel

down the pipe faster than lower frequencies for a given non-

planar mode.

FIG. 3. (Color online) Wave propagation images (spatial distribution of

pressure at an instant in time) for a single-cycle 16 kHz excitation signal in

the (0,0) mode. Wave propagation for the full spatial model is shown to

scale in (a), (c), and (e). Wave propagation solely within the pipe is shown

in (b), (d), and (f). The times for each subplot are as follows: (a) and (b)

0.0625 ms, (c) and (d) 1.5 ms, (e) and (f) 2.2 ms.
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While it is important to keep this fundamental analysis

in mind, many physical systems will likely never be this sim-

ple. Many sources cannot produce just one mode independ-

ently; their radiating surfaces commonly break up into

higher-order structural modes in an attempt to reproduce

high frequencies, thus exciting many different modes.

Consequently, some low-frequency energy may be imparted

to the plane-wave mode, which allows low-frequency energy

to be found at the front of the transient pulse as it propagates

down the pipe. In the literature, one related physical experi-

ment involved a ceramic disk as the excitation source.3 The

spread of frequencies was reported such that low frequencies

traveled down the pipe faster than higher frequencies and

could, with a long enough pipe, spread out enough to pro-

duce an audible frequency sweep.

Another phenomenon related to frequency shifts,

reported by Stepanishen and Tougas, is that the system

sweeps down in frequency after the initial signal is radiated

into the far field.15 The observation that higher frequencies

radiate from pipes more easily is consistent with theory.

Because their wavelengths are so small, the exit of the pipe

begins to resemble a free-field condition, rather than a reac-

tive boundary. Thus, almost no high-frequency energy is

reflected back into the pipe, and is primarily found in the be-

ginning of the transient signal radiated out to the far-field.

On the other hand, the low-frequency energy is kept in the

pipe longer due to the approximate pressure-release bound-

ary condition at the pipe exit. Lower frequencies continue to

ring due to the high amount of energy reflected back down

the pipe, radiating (or losing) only a small amount of its

energy to the far field after each wavefront impinges on the

boundary of the pipe exit. Temporal movement of audible

frequencies will largely depend on the geometry of the sys-

tem, the excitation signal produced, and placement of the

receiver.

As noted earlier, Fig. 3 shows the propagation of a single-

cycle sine wave with a plane-wave spatial profile. The cutoff

frequency corresponding to this profile is f0¼ 0 Hz. Therefore,

the phase and group speeds are c0, and all the energy imparted

from the original excitation moves through the pipe undis-

turbed and in the same form as initially produced. As a result,

the pulse-like shape created at the beginning of the pipe is

maintained throughout the first propagation down the pipe,

from the source to the pipe exit. The pressure profile for the

plane-wave mode does not appear as a gated sine wave because

this temporal profile was assigned to the acceleration. The pres-

sure profile can be derived analytically (in this case) by inter-

preting the impedance relation for a plane wave as follows:

p ¼ q0c0u

¼ q0c0

ðt

0

âðr;�tÞd�t

¼ q0c0Td

2p
J0 v0;0rð Þ 1� cos

2pt

Td

� �
 �
: (28)

Thus, only a compression from the plane-wave mode is

expected.

The results of Fig. 4 may also be explained through the

concepts of group and phase velocity. The cutoff frequency

for the first axisymmetric cross mode is approximately

11 kHz. Therefore, frequencies below the cutoff decay expo-

nentially and frequencies above the cutoff propagate without

appreciable decay. As seen from the theory, the higher fre-

quencies lead lower frequencies, as their group speeds are

higher and therefore must travel through the pipe more

quickly. As frequencies increase, their group speeds

approach c0. However, since the simulation cannot represent

many of these higher frequencies because of the finite spatial

grid, very little energy is physically given to those frequen-

cies and may therefore be neglected. Additionally, because

the boundary condition for the pipe walls is completely rigid,

no energy is lost in the associated reflections. The reflections

present in higher-order modal propagation would be less sig-

nificant if the boundary condition included a finite amount of

absorption.

As previously noted, a main point of analysis for each

simulation was to record the radiated pressure over time as it

arrived at the absorbing boundary C2 of the physical domain

depicted in Fig. 2. Figure 5 shows the results of the pressure

amplitude as a function of angle and time. The various sub-

plots depict the temporal evolution of the directional radia-

tion due to various pipe modes. One can note the different

arrival times for each independently excited mode. The

plane-wave mode travels at the sound speed of the fluid c0.

Assuming c0¼ 343 m/s and the sound must travel 1.008 m,

the signal should first arrive at the boundary at approxi-

mately 2.94 ms. Very high frequencies of higher-order

FIG. 4. (Color online) Wave propagation images (spatial distribution of

pressure at an instant in time) for a single-cycle 16 kHz excitation signal in

the (0,1) mode. Wave propagation for the full spatial model is shown to

scale in (a), (c), and (e). Wave propagation solely within the pipe is shown

in (b), (d), and (f). The times for each subplot are as follows: (a) and (b)

0.0625 ms, (c) and (d) 1.5 ms, (e) and (f) 2.2 ms.
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modes can travel close to the sound speed of the fluid; how-

ever, the numerical grid must be very fine to account for

these frequencies. The main body of energy is contained in

frequencies centered at 16 kHz (the frequency of the

single-cycle excitation period), which travels notably slower

than the plane-wave mode. When multiple modes and fre-

quencies are excited [see Fig. 5(d)], the temporal radiation

signal shows arrival of the plane-wave mode first, while

each higher-order mode arrives at the absorbing boundary at

progressively later times.

V. DISCUSSION

As Stepanishen and Tougas found, the results in Fig. 5

show significant off-axis radiation for higher-order modes.15

The radiation pattern for a transient signal depends not only

on frequency, but also on the spatial profile of the excitation

source. More specifically, as either frequency or the pipe

mode increases, so does the angle of maximum radiation. Of

course, this is with exception to the plane-wave mode whose

maximum radiation is always on axis. Table I summarizes

the angles at which maximum radiation occurs for 8 kHz and

16 kHz single-cycle sine-wave excitation signals.

General features of these simulations, such as the angles

at which maximum pressure radiation occur, agree visually

with the results obtained by Stepanishen and Tougas.

However, the simulations here also include a small amount

of on-axis radiation. We remind the reader of the governing

assumption in the semi-analytical calculations made by

Stepanishen and Tougas: there is no modal coupling at the

pipe exit. Figure 3 shows visible coupling between the im-

pinging plane-wave mode and the first higher-order mode.

One can note the apparent presence of the first cross mode in

Fig. 3(f) between 0 and �0.2 m. While most of the reflected

energy propagates as a plane wave, trailing this wave front is

radiation in other higher-order modes—predominantly the

first. Because the color scales were clipped considerably to

focus on the modal coupling, the sinusoidal pulse appears to

be constant in amplitude. Figure 4 is much harder to interpret

as energy is continuously moving up and down in the pipe.

However, a feel for the coupling is given by analyzing the

far-field radiation from this signal, as shown in Fig. 5.

Contrary to the work of Stepanishen and Tougas, the energy

radiated on axis is non-zero, though small at times. For

instance, consider the pressure radiated from the pipe due to

excitation of the (0,1) pipe mode [see Fig. 5(b) or Fig. 6(a)].

When considering individual wavefronts in the radiated

field, the maximum off-axis pressure is about four times

larger than the on-axis pressure (at t � 3.2 ms) and less than

double the on-axis pressure less than a millisecond later.

Though not presented in detail here, these simulations

were also confirmed in COMSOL, a commercial finite-

element software package. Figure 6 shows a side by side

comparison of the radiation as a function of time from the

numerical simulation introduced here [Fig. 6(a)] and from

COMSOL [Fig. 6(b)]. Agreement between the two simula-

tions regarding the amount of on-axis radiation relative to

the peak off-axis radiation for a given wavefront was within

1%. The angles of maximum off-axis radiation also agree to

within a fraction of a degree. These simulations mapped the

domain using a free-triangular mesh with approximately the

same number of elements as the FDM presented here (with

the pressure defined using quadratic shape functions), but

with only 10 points per wavelength at the 16 kHz center fre-

quency. COMSOL simulations also verified a significant

decrease in on-axis radiation for the case involving no pipe

TABLE I. Angles of maximum pressure radiation for the first three modes

of the pipe.

8 kHz 16 kHz

Mode (0,0) 0� 0�

Mode (0,1) 27� 33�

Mode (0,2) 36� 34�

FIG. 5. (Color online) Far-field radia-

tion (pressure magnitude) measured at

0.508 m from the exit of the pipe as a

function of angle and time for various

modes of the 16 kHz gated sine wave.

(a) (0,0) mode. (b) (0,1) mode. (c)

(0,2) mode. (d) Combination of several

modes, where the spatial component of

the normal acceleration is given as

cos(3pr/a).
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(an infinitely baffled piston). In this latter result, the on-axis

pressure was more than one order of magnitude below the

maximum off-axis pressure observed for the same wave-

front. It is interesting to note that the computation time for

the COMSOL simulation—even with a nearly identical num-

ber of elements—took around four times longer to compute.

We also note that the COMSOL result in Fig. 6(b) appears to

suffer from some minor numerical dispersion artifacts since

some radiation at the far boundary exists prior to 2.95 ms

(the time at which the earliest possible radiation could

arrive). However, this was sufficiently corrected by increas-

ing the number of elements to approximately 850 000 ele-

ments, more than four times the original number of

elements. While this refined COMSOL simulation greatly

reduced the numerical dispersion at the beginning of the

pulse, the main body of the signal (t> 3.1 ms) was identical

to both the results from the COMSOL model and the FDM

presented here. A larger number of elements required in the

COMSOL model is likely due to the free-triangular mesh

used for the simulation; this mapping provided a lower

amount of elements per wavelength in the direction of wave

propagation, thus admitting problems with numerical disper-

sion sooner.

Although the numerical simulation presented here elimi-

nates the problem of matching the pipe domain with the

half-space domain, the FDM has some issues of its own.

First, as mentioned earlier, numerical dispersion requires the

simulation to have a sufficiently fine grid for all higher fre-

quencies that are excited within the model. The FDM also

deals with an imperfect absorbing boundary, which to a

small degree reflects spurious numerical error back into the

computational domain. To ensure that the recorded radiation

patterns were not significantly affected by the imperfect

boundary condition, the boundary was moved farther from

the pipe exit (by increasing R) while radiated pressure was

recorded at the original distance. Results were the same

within numerical error, showing that the presence of the on-

axis radiation was not due to the imperfect boundary

condition.

VI. CONCLUSIONS

The relatively new numerical method discussed in this

paper employs an analytical mapping to an arbitrary do-

main from a simple rectangular grid in curvilinear coordi-

nates. Relevant analysis to incorporate this method into

numerical time-domain simulations was also presented.

This finite-difference method incorporates fully automatic

grid control functions for mesh generation that have been

shown to exceed grid performance of conventional methods

when the geometry contains sharp discontinuities. It was

used here to study a rigidly baffled, finite-length pipe and

observe coupling of pipe modes between incident and

reflected pressure waves and subsequent far-field pressure

radiation patterns. Natural modes of the pipe were excited

individually by using a Bessel function for the spatial ve-

locity profile. The temporal acceleration used for boundary

excitation was a single-cycle sine wave. Each of the signals

were varied spatially to excite the (0,0) and (0,1) natural

modes of the cylindrical pipe. The independent excitation

of modes resulted in unique radiation patterns over time

and angle. Results were presented for a single-cycle sine

wave at 16 kHz.

Pressures were recorded over angle at the absorptive

field boundary, and their peak locations were observed to

coincide with those found by Stepanishen and Tougas.15

From this standpoint, it appears that the models are in agree-

ment. However, the numerical simulations presented here

produced a degree of on-axis radiation for higher-order

modes, a feature not observed in their model. Simulations

performed in COMSOL also confirmed the amount of on-

axis radiation seen in the simulations presented here. The

difference with the work of Stepanishen and Tougas was

likely due to the simplified boundary condition at their pipe

exit, in which no coupling between pipe modes was permitted.

Excitation of a single mode within the pipe excites many other

pipe modes, to varying degrees, upon reflection at the pipe

exit. Because the present model requires no boundary condi-

tion at this interface, the coupling between the initial pipe

modes and all other pipe modes (within the limits of grid reso-

lution) are excited upon reflection and may be observed.

Further work may include extending these results to

horns (pipes of varying cross-section). The effects seen in

the horn may be less pronounced, but a related investigation

would help clarify radiation patterns produced by transient

signals, which can be much different than their steady-state

counterparts. Further work may also include employing a

time-dependent, three-dimensional numerical package to

excite and study non-axisymmetric modes.
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