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Abstract: Strong-field laser-atom interactions provide extreme conditions
that may be useful for investigating the de Broglie-Bohm quantum inter-
pretation. Bohmian trajectories representing bound electrons in individual
atoms exhibit both even and odd harmonic motion when subjected to a
strong external laser field. The phases of the even harmonics depend on the
random initial positions of the trajectories within the wave function, making
the even harmonics incoherent. In contrast, the phases of odd harmonics
remain for the most part coherent regardless of initial position. Under the
conjecture that a Bohmian point particle plays the role of emitter, this
suggests an experiment to determine whether both even and odd harmonics
are produced at the atomic level. Estimates suggest that incoherent emission
of even harmonics may be detectable out the side of an intense laser focus
interacting with a large number of atoms.
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1. Introduction

Recently, the de Broglie/Bohm interpretation of quantum mechanics has been applied to laser
high-harmonic generation [1–4]. In the Bohmian formalism, one is invited to conceptualize a
point particle piloted by the electron quantum wave (as well as by external potentials). These
studies emphasize insights into the harmonic generation process that the Bohmian approach
offers, without necessarily promoting the Bohmian interpretation per se. In any case, Bohmian-
like language is widely used when speaking of a three-step model: an electron breaks free of
the atom, makes a laser assisted excursion in the continuum, and re collides with the nucleus.
This description is used even though the greater portion of an electron wave packet remains
bound to the atom throughout the process, with only a tiny fraction of the overall wave function
undergoing the motion spoken of.

Ironically, Bohmian trajectories that remain close to the core generally exhibit stronger high-
harmonic motion than the ones that accompany the part of the wave packet that breaks away
and returns. In this context, an ensemble of Bohmian trajectories makes a set of useful mark-
ers of local wave-function behavior. Indeed, the average motion of a very large ensemble of
Bohmian trajectories (statistically chosen to match the Born probability distribution) recovers
the behavior of the wave-packet position expectation 〈r〉 [4].

In this paper, we entertain the possibility that 〈r〉 in general is insufficient to describe single-
atom behavior when an atom is subjected to a strong laser field, in spite of the fact that the term
“single-atom” is sometimes invoked in this context [5]. Within an atom, the quantum prob-
ability current often develops spatial structure across the laser-driven electron wave packet,
owing to interactions with both the applied laser and the atomic potential. Much of this struc-
ture ‘washes out’ when Maxwell’s equations are sourced with 〈r〉, or when sourced with the
probability current directly. Might the local behavior within a wave packet (as opposed to its
overall structure) be important to single-atom light emission? Can Bohmian trajectories, taken
individually (as opposed to averaged ensembles), predict spectral features in emitted light?

We will treat the scattered light classically and consider the probability of measuring photons
to be proportional to light intensity. We emphasize that sourcing Maxwell’s equations with 〈r〉
effectively permits emission from different parts of the same electron wave function to inter-
fere. In this sense, representing a single atom with 〈r〉 conjures the (discredited) Schrödinger
interpretation where the electron is treated as a charge distribution smeared across the wave
function [6]. In contrast, the Born probabilistic interpretation considers the wave packet to be
an indication of where a point-like electron might be found if a measurement is performed.

We recently demonstrated, using quantum electrodynamics (QED), that a free electron in a
laser field scatters radiation at a rate independent of wave-packet size [7, 8]. When an electron
wave packet is large compared to the driving laser wavelength, such that different parts of the
same electron wave packet oscillate out of phase, there is no interference/suppression of the
scattered light field. The scattered light maintains the same strength as that from a classical
point emitter. In contrast, light emission based on 〈r〉 depends crucially on wave-packet size,
allowing emission from different parts of the wave packet to interfere. Alternatively, the de
Broglie-Bohm interpretation (i.e. of a point trajectory somewhere within the electron wave
function) lends intuition to this QED result, but from the semiclassical framework.

Strong-field laser-atom interactions provide extreme conditions that may prove useful for
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probing the de Broglie-Bohm interpretation of semiclassical quantum physics. We hypothesize
that individual Bohmian trajectories can be used to source emitted radiation. As will be shown,
a Bohmian trajectory calculated for a wave function bound to an atomic potential can exhibit
both even and odd harmonic motion when subjected to a strong external laser field. The phases
of the even harmonics depend on the random initial position of the trajectory within the wave
function, indicating that even harmonics would be emitted incoherently (i.e. extremely faint).

2. Bohmian Mechanics for a single-electron atom in a strong laser field

Following the standard Bohmian formalism, one solves the Shrödinger equation

ih̄
∂Ψ

∂ t
=− h̄2

2m
∇

2
Ψ+V Ψ (1)

in the usual way. With Ψ in hand, a point-like trajectory piloted by the wave is then computed
from

dr
dt

=
h̄
m

Im
{

∇Ψ

Ψ

}
(2)

This differential equation requires an initial position, which is selected (at random) consistent
with the conventional initial probability distribution ρ = |Ψ|2 at t = 0. A brief overview of
Bohmian mechanics is provided in appendix A.

We study the behavior of Bohmian trajectories using a one-dimensional single-electron
model ‘atom’ subject to a strong field. The potential is given by

V (x, t) =− e2

4πε0
√

x2 +a2
− exE0 (t)cosωt (3)

where a =
√

2a0 is a smoothing parameter chosen to make the ground-state binding energy
match that of hydrogen; a0 is the Bohr radius. We neglect possible magnetic effects and treat
the wave function as being much smaller than an applied laser wavelength.

Figure 1(a) shows an array of possible Bohmian trajectories associated with the ground-state
wave function, computed via (2). Although it is interesting to look simultaneously at multi-
ple trajectories, presumably only one trajectory would inhabit any individual atom. Figure 1(b)
shows a representative Bohmian trajectory with initial position x = 1 atomic unit (i.e. a0). Dur-
ing the applied Gaussian laser pulse, which reaches a peak field strength of E0 = 0.03 atomic
units (i.e. 0.03h̄2/

(
ema3

0
)
↔ I = 3×1013 W/cm2), the bound wave function undergoes a mod-

est amount of sloshing from side to side while interacting with the laser field. Figure 1(c) plots
the position of the representative Bohmian trajectory together with the position expectation
〈x〉 =

∫
Ψ∗xΨdx as a function of time. The frequency is set to ω = 0.055 atomic units (i.e.

0.055h̄/
(
ma2

0
)
↔ λ = 800 nm). During the course of the entire pulse, about 0.5% ionization

occurs, as evidenced by the outer trajectories in Fig. 1(a) escaping from the atom.
The behavior of the majority of individual Bohmian trajectories looks qualitatively similar to

the behavior of 〈x〉. However, on close inspection of Fig. 1(c), it is noticed that the oscillations
of the representative Bohmian trajectory are not symmetric about the initial position x = 1. (The
trajectory approaches closer to x = 1.5 than to x = 0.5.) This is because the Bohmian trajectory
oscillates on only one side of the potential well. The spacing between the different possible
trajectories, as seen in Fig. 1(a) stretch and compress as they travel farther from and closer to
the potential minimum. This asymmetry gives rise to even harmonic motion, reminiscent of
those produced by eccentric classical Kepler orbits studied by Bandarage et al. [9].

Figure 1(d) shows the Fourier transform of both the representative Bohmian trajectory and
the position expectation 〈x〉. The Bohmian trajectory exhibits both even- and odd-order harmon-
ics with roughly equal strength, whereas the position expectation exhibits only odd harmonics.
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Fig. 1. (a) Media 1 of possible Bohmian trajectories with equally spaced initial positions ranging
from x=-5 to x=5 atomic units during atomic exposure to a Gaussian laser pulse. The wave function
and potential well are also shown. (b) Close up view of a representative Bohmian trajectory with initial
position x = 1. (c) Position of the Bohmian trajectory in (b) plotted as a function of time together with
the conventional position expectation 〈x〉=

∫
Ψ∗xΨdx. (d) Power spectrum of curves in (c), Bohmian

trajectory (solid) and 〈x〉 (dotted), showing harmonic components.

As mentioned, when a statistical ensemble of Bohmian trajectories is averaged, the result be-
gins to resemble 〈x〉 [4]; the even harmonics cancel away while the odd harmonics reinforce.
The even harmonics exhibited by individual Bohmian trajectories were first noticed by Lai et
al. [1] and discovered independently by us [10]. Lai et al. called the even harmonics “unphys-
ical” and advocated averaging multiple trajectories to achieve their removal. In this paper, we
entertain the possibility that the even harmonics are physical.

We outline an experiment to test whether both even and odd harmonics are emitted from
individual atoms. This represents a novel testable ‘prediction’ of the Bohmian interpretation
(albeit qualified by the conjecture that an individual Bohmian trajectory effectively acts as a
source of emission). Since the incoherent signal is expected to be weak, it will be necessary to
employ a very large ensemble of atoms.

3. Ensemble emission and phase matching

Consider a single radiating dipole pn = ẑp0 cos(−ωt +ϕn), oriented along the z-direction, os-
cillating with frequency ω = ck. The parameters p0 and ϕn represent the amplitude and phase.
This dipole might represent a particular oscillating component, such as the second harmonic,
associated with a Bohmian trajectory within an individual atom located at rn.
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In the far field, the electric field radiating from the dipole is [11]

En (r, t) =−
p0

4πε0
((ẑ · ˆ�r�) ˆ�r�− ẑ)

k2 cos(k �r�−ωt +ϕn)

�r�

(4)

where �r��r��r�≡ r−rn and ˆ�r�≡ �r��r��r�/�r�. In the far field, we may also write �r�
∼= r−rn · r̂ in the cosine and

�r�
∼= r in the denominator. Further, (ẑ · ˆ�r�) ˆ�r�− ẑ∼= (ẑ · r̂) r̂− ẑ = θ̂ sinθ in spherical coordinates.
If we add together the fields from many dipole oscillators, the time-averaged Poynting flux

from the distribution becomes

〈S〉t = cε0

〈∣∣∣∣∣ N

∑
n=1

En (r, t)

∣∣∣∣∣
2〉

t

=
cp2

0 sin2
θ

2(4π)2
εo

k4

r2

[
N +

N

∑
n=1

N

∑
m6=n

cos [k(rn− rm) · r̂− (ϕn−ϕm)]

]
(5)

For simplicity, we have taken the strength of each dipole in the population to be p0.
In the limit of many dipoles (i.e. N→∞), if there exists any coordination between the phases

φn and positions rn, the double summation in (5), which has approximately N2 terms, tends to
dominate over the term N. Coordination between φn and rn is commonly referred to as phase
matching. For example, if φn = 3kLx, and k = 3kL, where kL is associated with a stimulating
laser field, we say that third-harmonic emission is phase matched in the x-direction. In this
case, for the x-direction only, it is as though all dipoles are collocated and oscillating with the
same phase. On the other hand, emission in other directions can be dramatically suppressed
if the dipoles are distributed throughout a finite volume. (Endowing φn additionally with the
Gouy shift, perhaps played against index variations in k and kL or intensity-dependent intrinsic
phases, makes little difference to arguments made here.)

An incoherent signal, on the other hand, has random phase φn, even if spatial structure is ad-
ditionally inscribed onto φn. This would be the case for even harmonics generated by Bohmian
trajectories. The double summation in (5) in this case has an expectation of zero (albeit with
fluctuations), making the overall signal proportional to N, regardless of emission direction. In-
coherent emission from an ensemble of N atoms is therefore essentially the same as the accumu-
lated signal from N measurements on a single atom. Since the majority of individual Bohmian
trajectories exhibit even and odd harmonics with roughly equal strengths, one can estimate the
strength of even-harmonic emission by simply dividing phase-matched odd-harmonic signal
(proportional to N2) by the number of atoms N participating in the emission.

4. Feasibility of an even-harmonic measurement

It has been observed that 1 µJ of third harmonic light can be produced in approximately 200
torr of argon using a 1-mJ, 25-fs, 800-nm laser pulse [12]. The narrow beam of third harmonic
light (comprised of 1012 photons) emerges in the direction of the residual laser beam with a
solid angle of approximately 10−4 steradians [13]. If the phase-matched generating volume has
radius 50 µm and length 1 cm, this would suggest as many as N = 1015 atoms participate in the
observed coherent signal. Helium has a somewhat lower conversion efficiency.

Dividing the number of photons 1012 by the number of atoms N = 1015 suggests a disappoint-
ing one-photon-per-1000-laser-shots. Fortunately, this can be improved by collecting photons
from, say, 10−1 steradians as opposed to the 10−4 steradians in the pencil-like 3rd-harmonic
beam mentioned above. Moreover, since phase matching plays no role in an incoherent signal,
the atomic density can be increased as well as the laser pulse energy (employing larger focal
volume and/or longer pulse duration). To avoid potential noise from plasma effects, it will likely
be necessary to work with ultra pure targets at intensities well below the ionization threshold.
Fortunately, the onset of ionization is an extremely nonlinear process, whereas the reduction in
second harmonic signal presumably follows a more gentle I2 law.
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With the above considerations, it appears plausible that an incoherent even-harmonic signal,
if it exists, may be observed out the side of a laser focus during the course of a scan involving
many laser shots. In particular, a high-quantum-efficiency detector might be employed in a
search for the second harmonic of an 800 nm laser in a gas target such as argon or helium. The
second harmonic signal should have a bandwidth somewhat narrower than the laser bandwidth,
and it should shift when the center frequency of the laser is shifted.

5. Summary

To date, only odd-order harmonics have been observed to be emitted from atoms subject to
a strong laser field. What we are calling into question is whether this result is truly a single-
atom effect or whether it arises from ensemble averaging. After all, it is common for quantum
textbooks to describe 〈r〉 as being representative of ensemble behavior [14].

If even harmonics from symmetric atomic potentials are observed, it would suggest that the
de Broglie/Bohm interpretation possesses a certain predictive power within the semiclassical
framework, which aims for consistency with QED. The ramifications might impact how we
view quantum wave functions and associated notions such as ‘wave-function collapse’ [14].
We expect that regardless of the outcome of a search for even harmonics, the result will align
with QED, although a QED calculation appears to be difficult at this time.

The authors gratefully acknowledge helpful discussions with S. Bergeson, J. Corson, E. Cun-
ningham, and M. Ware.

A. Appendix: Underpinnings of Bohmian mechanics

Equation (2) is motivated as follows [15]: We write the wave function as Ψ = |Ψ|eiS/h̄, where
S is real, and substitute into (1). Equating separately the real and imaginary parts, one obtains
the continuity equation

∇ ·J+ ∂ρ

∂ t
= 0 where J≡ |Ψ|

2
∇S

m
and ρ ≡ |Ψ|2 (6)

coupled with
∂S
∂ t

+
(∇S)2

2m
+V +Q = 0 where Q≡− h̄2

2m
∇2 |Ψ|
|Ψ|

(7)

Equations (6) and (7) taken together are nothing more than the Schrödinger equation in the
new (real) variables |Ψ| and S. However, the latter resembles the Hamilton-Jacobi equation
for classical motion of a point particle. In this context, the phase of the wave-function S is
interpreted as an action. Accordingly, one is inspired to visualize a point particle responding to
the potential V as well as to a quantum potential Q, which presumably describes the influence
of de Broglie’s ‘pilot-wave’ on the particle. The usual quantum uncertainty stems from a lack
of information regarding the initial position of the trajectory.

To review the Hamilton-Jacobi formalism, one may describe a classical point particle’s mo-
tion using Newton’s second law d2r/dt2 =−∇V (r, t)/m, or, alternatively, using

dr
dt

=
∇S (r, t)

m
(8)

Equation (8), which is the basis for (2), relates a particle’s velocity to the action S. To obtain
S from a prescribed potential V , (8) can be substituted into Newton’s second law to remove
d2r/dt2 and dr/dt. This leads to (7) in the absence of Q, which is the Hamilton-Jacobi equa-
tion for a classical point particle. In the quantum context (where Q exists), if the Schrödinger
equation has been solved, then (7) has been solved as well. Moreover, there is no need to extract
S from Ψ since its gradient may be found directly from (2).
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