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Engineered, multidomain ferroelectrics are of current interest for mechatronic and optical
applications. Previously [D. M. Hatch et al., J. Appl. Phys. 94, 5220 (2003)], we presented a set of
tables/symmetry rules showing all possible domain average engineered multidomain structures

arising from [100]-, [110]-, and [111]-ordering ferroelectric transitions from a Pm3m perovskite
structure. In this work we test those predictions against three-dimensional mesoscopic fast quench
simulations under various electric/stress field combinations and find excellent agreement with
multidomain group theory. These simulations use a Langevin strain-displacement/polarization
evolution strategy and are important to developing processing conditions for materials with precise
domain structures. © 2006 American Institute of Physics. [DOI: 10.1063/1.2234557]

I. INTRODUCTION

Ferroelectric ceramics are used in a variety of optoelec-
tronic and mechatronic devices due to their pronounced di-
electric, optical, piezoelectric, and pyroelectric properties.
Mechatronic devices include bending actuators, flow and
level control products, nebulizers (fluid atomizers), ultra-
sonic transducers, buzzers and ignitors, ultrasonic welding
components, superpiezospeakers, microhydraulic transduc-
ers, large force/displacement microelectromechanical system
(MEMS) microactuators,’ and flapping wing actuators of
micromechanical flying insects.” Optoelectronic applica-
tions include periodically poled crystals for frequency
conversion,’ electro-optic Bragg switches,* and complex
structures used for photonic band gap devices.” Material
properties are related to domain structures. If one can design
or control domain formation, one should be able to take full
advantage of ferroelectric materials in fabricating next-
generation optical and mechatronic devices.

There has been much previous work on modeling multi-
domain ferroelectric structures. Cao and co-workers have
proposed a three-dimensional Landau-Ginzburg model to de-
scribe the tetragonal twin microstructures in ferroelectrics,
and have studied boundary condition effects on ferroelectric
transitions, the influence of dipolar defects on ferroelectric
switching, the influence of system size, the effect of surface
induced nucleation of ferroelastic domains on polarization
switching, and the piezoelectric response of engineered
domains.®™® Nambu and Sagala simulated two-dimensional
(2D) domain structures in ferroelectrics with consideration of
multiple dipole-dipole-elastic contributions."’ Chen and co-
worker have compared the influence of long-range elastic,
dipole, and external field contributions to domain morphol-
ogy and have examined polarization switching.lzf14 Bhatta-
charya and co-worker have developed a potential gradient
flow model of ferroelectrics to simulate domain switching,
grain boundaries, and defect pinning.ls’16
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In this work we simulate domain average engineering
(DAE) of perovskite ferroelectrics. Domain engineering has
been discussed at length”_20 and refers to at least two kinds
of structural descriptions. The first, domain geometry engi-
neering, is a description including the details of geometrical
configurations in space, twinning patterns, and domain wall
orientation and positioning. The second, domain average en-
gineering, deals with an average of domain configurations
without considering spatial occupation details. Allowable
symmetry operations on such structures refer to domain vol-
ume fractions and may not bring the local structure back to
itself. Group theoretical considerations leading to domain av-
erage engineered structures were discussed in a previous
study.21

Reference 21 also derived all possible multidomain
structures arising after a ferroelectric transition from the

paraelectric Pm3m perovskite structure to the [100]-ordering
P4mm structure, the [111]-ordering R3m structure, and the
[110]-ordering Amm?2 structure. This was done by finding
combinations of external fields which induce each multido-
main symmetry. Here we simulate a diverse cross section of
multidomain symmetries for each of these ordering struc-
tures using a mesoscopic phase field model. This model is
similar to those in previous studies but also has some impor-
tant advantages which are discussed Secs. Il A and II B.
These simulations are done without any inclusion of the
symmetries in Ref. 21. Each multidomain structure is a prod-
uct only of the external stress/electric fields and the underly-
ing thermodynamics / kinetics.

The outline of the balance of the paper is as follows.
Section II A describes our coarse-grained model and an im-
proved simulation strategy. Section II B details some of the
numerical issues encountered in simulating DAE and their
resolution. Section III A illustrates our simulation methodol-
ogy on three types of proper ferroelectric perovskite multi-
domain structures paralleling previous group theoretical deri-
vations. Implications and future work are discussed in Secs.
I B and II C.

© 2006 American Institute of Physics
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Il. MODEL DEVELOPMENT
A. Phase field theory

As an apropos mesoscopic model we have chosen phase
field theory,12 which is based on fundamental principles of
thermodynamics and kinetics and which provides a powerful
method for predicting the temporal evolution of microstruc-
ture. This is done by solving kinetic equations of spatially
inhomogeneous order parameters without any prior assump-
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tions of transient microstructure. The phase field, free energy
functional is

F[P(r),u(r)]=J de(fp+fu+fe+fe+ faep)- (1)
Q

fp is the Landau-Ginzburg free energy functional for polar-
ization (including gradient terms),

fp=ay(P{+ P35+ P3) + ay (Pl + Py + P + ajp(PIP3 + P3P+ PiP3) + ayy (P + P + PS) + ay o[ P1(P3 + P3)

+P3(PT+ P3) + PA(PT + P) ]+ a3P1P3Py+ -+ +5G (P | + P35+ P33) + Go(PT | P3 o + P3,P3 5 + P1 P3y)

+G44[(P1,2+P2,1)2+ (P2,3+P3,2)2+ (P1,3+P3,1)2]+ %G!M[(PI,Z_PLI)Z"' (P2,3—P3,2)2+ (P1,3—P3,1)2]+ e (2)

The « coefficients are related to dielectric stiffness.** Trail-
ing dots represent possible higher order terms. The G coef-
ficients can be related to domain size, domain wall thickness,
and domain orientation. f, is the elastic energy. As a first
approximation we include only second order terms and use
the infinitesimal Lagrangian strain tensor sij:%(ui,ﬁ u;;)
where u; is the displacement,

1 2 2 2
fu=3cn1(e] + &0+ e33) +cpp(e €00 + £0p833 + £11833)
2 2 2
+ 2C44(812 + 823 + 813) . (3)

Higher order terms, gradient terms, and the finite Lagrangian
strain tensor would increase accuracy away from the phase
transition and at larger strains. Expansions in polarization or
strain and their derivatives are automatically generated to an
arbitrary order for any of the 230 space groups using
ISOTROPY. > f. 1s a coupling term between polarization and
strain,

fc=—k11(811p%+822P%+833P§) _k12[811(P§+P§)
+800(P2+ P2 + £55(P2 + P2)]
_2k44(812P1P2+813P1P3+823P2P3)+ T, (4)

where k; are the electromechanical coupling coefficients. fg
is an electric field interaction term,

fp=—E-P, (5)
and fg, is a deopolarization term,
fdep == Edep P, (6)

which is discussed further in Sec. II B.

Phase field theory evolves the system’s free energy
in time using a long-wavelength largest eigenmode
formalism.** This is synonymous to Langevin dynamics,
time-dependent Ginzburg-Landau theory, and the Allen-Cahn
equation for nonconserved order parameter evolution. It is a
well-established formalism for equilibrium relaxation'” and
has been used frequently on ferroelectrics,””' 113142326 1
contrast to other ferroelectric theoretical treatments, how-

ever, we evolve both primary (P; polarization) and secondary
(u; strain displacement) order parameters in a coupled set of
equations,

J
Pl oP(rr) G (.0,

(7)
J SF
9o e T —2E L e,
(%M,(I‘J) BurD) + &(r,1)

"7 is a kinetic coefficient and op is either u or P. &”(r,1) is
a Gaussian random force where

(&"(r,0)=0,

(®)

(&P, (x' 1)) = 2kpgTT P 5,;8(r —x") St —1').

These Langevin equations are frequently used to evolve
strain,” " and occasionally Newtonian dynamical equations
are used to evolve strain displacements.31735 However, it is
equally valid to use the Langevin formalism to evolve strain
displacements directly. This latter approach implicitly satis-
fies compatibility constraints®* and simplifies a real space
simulation.

As this approach is different from those reviewed in the
Introduction we comment once again on some of its at-
tributes. Most ferroelectric simulations employ instantaneous
long-range elastic contributions to the free energy, meaning
lattice strains are treated as a secondary order parameter and
are obtained via a variational procedure. The displacements
are substituted into the kinetic equations for polarization
evolution resulting in the so-called “adiabatic approxima-
tion” which produces long-range elastic interactions in the
free energy and instantaneous mechanical equilibrium. How-
ever, it should be clearly understood that in Egs. (7) me-
chanical equilibrium is not enforced at each time step.
Strictly speaking, enforced mechanical equilibrium is non-
physical since the real system requires a finite amount of
time to relax to mechanical equilibrium. However, as strain
modes operate at much faster frequencies than polarization
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TABLE I. Polarization expansion coefficients.
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TABLE II. Elastic coefficients and polarization-elastic coupling coefficients.

a; aqy A a1y a2 )23 n C12 Cy4 kiy kya kyy
(a,0,0) -1.00 -0.50 9.00 0.80 4.00 1.00 2.75 1.79 0.543 0.142 -0.0074 0.0157
(a,a,a) -6.45 -2.98 -1.55 6.46 1.06 -2.04
(a,a,0) -6.88 -2.69 5.09 2.69 0.35 3.66

modes, it is common to make this approximation. Equations
(7) remove this approximation by evolving strain displace-
ment with a separate kinetic coefficient. However, the real
advantage is they remove the long-range integrals; coupling
to mechanical modes occurs naturally through the differen-
tial equations or free energy functional during microstructure
evolution.

Another attribute of this model is that it is based on the
well-known Landau theory of phase transitions®®*’" which
has proven to be a simple yet effective model of mesoscopic
phenomena based on symmetry-adapted polynomial expan-
sions in primary and secondary order parameters and their
gradients. It has been used frequently in ferroelectric simu-
lations. Some ferroelectric treatments discussed in Sec. I in-
clude additional long-range dipole terms or solve Maxwell’s
equations. Although these studies may capture certain physi-
cal phenomena a Landau-based theory cannot, these ap-
proaches are not particularly necessary in a study which
compares traditional mesoscopic simulations of prototypical
ferroelectrics with group theoretical predictions of domain
morphology. Additionally, we have found little difference
when including these terms for the particular simulations
presented here; the gradient terms sufficiently take into ac-
count interactions between different regions of the system.
We now turn to the methods used to solve this set of differ-
ential equations.

B. Numerical implementation

There are several ways to obtain the coefficients for the
free energy functional. The most common method is to ob-
tain them from experimental measurements. However, this
creates a dependence on empirical accuracy, cripples design
efforts, and nullifies predictive power outside experimental
ranges. Another way is by first principles calculation which
has had encouraging results®™** but is still under develop-
ment due to approximations when transferring information
from a 0 K energy calculation to a finite temperature free
energy functional. Phase transition temperatures, for ex-
ample, can be off by hundreds of Kelvin.*’ Another option
for determining potential coefficients is to map out distinct
solutions or crystallographic structures for all values of the
potential parameters. These maps are called global phase dia-
grams (GPDs) and have been discussed in detail for molecu-
lar crystals.%_48 GPDs are intended to work in conjunction
with first principles calculations as a tool for crystal engi-
neering. As we seek to illustrate mesoscopic phenomena for
prototypical classes of materials, it is sufficient to find a rep-
resentative potential for each prototype using the techniques
of GPDs.*® These coefficients are shown in Table I for the
types of ferroelectric transitions discussed in Ref. 21, al-
though coefficients for the (a, 0, 0) solution have been taken

from the literature." Elastic/coupling coefficients are less
important in this study and so a single set, shown in Table II,
was used in each case.

GPD techniques do not apply to determination of the
gradient coefficients, however, which do not alter the crys-
talline phase but only the microscopic texture. Thus we dis-
cuss our technique for their determination. First, taking the
functional derivatives in Eq. (7) reduces the number of gra-
dient coefficients to three, g;1=G}, §1,=G12+G4— Gy, and
844=Gu+Gy, as shown in Appendix A. Positive gradient
coefficients describe penalties associated with changes in the
microscopic texture of the material. Thus with increasing
magnitude they cause larger domains to form, whose shape
depends on the polarization gradients with which they are
coupled. Negative gradient coefficients describe penalties for
uniformity in texture and so are unphysical. Estimates of the
magnitude of these coefficients can be found in the literature,
but for our purposes we modify these values slightly to ac-
commodate finite size effects in our simulation box.

Ideally DAE takes place in an infinite single crystal
since the initial state postulated by DAE should have equal
domain volume fractions and zero total polarization. This is
impossible since any numerical treatment must use finite
computational cells which typically produce somewhat un-
equal domain volume fractions. We adopt two measures to
overcome this deficiency. (1) Scale the gradient coefficients
(g’s) so domain sizes are smaller than typical ferroelectrics.
This is computationally justifiable since it is tantamount to
an increased coarse graining of the mesoscopic model and
using fewer mesh points in each domain. From this perspec-
tive domain sizes do not shrink but rather the size of the
single crystal increases. It is physically justified because in a
fast quench kinetic regime thermal motion effectively weak-
ens these coefficients such that smaller domain structures are
produced before being frozen in place. (2) A depolarization
term is added to the free energy functional as mentioned in
Sec. II A to maintain the net polarization of the crystal ap-
proximately near zero. Our treatment of depolarization does
this in such a way as to equalize domain volume fractions as
much as possible. It begins by postulating an overall depo-
larizing electric field proportional to the weighted sum of all
other domain solution directions,

Edepocz(Nd_N)ds (9)
d

where d indexes the possible domains for a given solution
type, d is a unit vector in that specific domain orientation
(i.e., [1001,[010],... for the tetragonal prototype), and

Ny=>,i where P, € d, (10)

L

which is the number of polarizations most closely oriented
along the polarization direction of a given domain d. The i
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TABLE III. 5 of the 12 possible distinct multidomain sets for ferroelectric ordering along [100]. Only nonzero
contributions of the order parameters are shown in columns 3, 4, 5.

Domain set Group I I3 Is Connected set
(a,a,a,a,a,a) m3m (1,2,3,4,5,6)
(a,a,b,b,a,a) 4,/m,m . m, (a,0) (1,2,5,6)
(a,b,a,b,a,b) 3,5 (a,a,a) (a,a,a) (1,3,5)
(a,a,b,a,a,a) 4zmxm,(7v (0,0,a) (a,0) 3)
(a,a,b,c,c,b) my,m2s, (0,a,-a) (a,\3a) (0,a,0) (3.6)

index goes over all space which is discretized, each vertex

containing one polarization P;. N is the average number of
polarizations belonging to a given domain d were all do-
mains exactly equal (N,,/number of domains). The magni-
tude of Eg, is variable and for numerical stability reasons is
set 80 fyep IS approximately equal to other contributions, fp,
fuw and f., in the free energy.

Effectively Eg, pushes each domain d so N, approaches

N. Even with this push domain sizes will not generally be
equal since contributions to Eg,,, from opposite domains (i.e.,

[100] and [100]) almost exactly cancel each other leading to
nearly equal opposite domain volume fractions but only
somewhat equal nonopposite domain fractions. This is dis-
cussed further in Sec. IIT A 1.

To use group theoretical guidance we must symmetry
adapt our potential to space group irreducible representations
(IRs). We apply a symmetry transformation matrix T to the
strain tensor, e= f €, such that, using the notation of Ref. 49,
e, transforms like a I'] distortion (volumetric strain), (e, ,e3)
like a I' distortion (deviatoric strain), and (e4,es,e¢) like a
I'? distortion (shear strain), where

N

o

e =g teptes;,

1
€= 5(811 -&n),

1
=— —2&4),
€3 2\6(811"‘822 £33)
(11)
€4=¢€12,
€5=¢€13,
€6= €23,

and the elastic comphance matrix and stress become sT

=T-5T" and 7=T- 0. The polarization already transforms
like a I'; distortion so no symmetry adaption is required.

These strain fields are implemented as a boundary con-
dition on cubic samples. Using Voigt notation this is

1‘;1 (a,aa), l"; (a,aa)

TRDT T

I, (0,a-8), T (a,sari(3)a) I'; (0,8,0)

=
&4

FIG. 1. (Color online) Distinct (a,0,0)-type structures after domain average engineering.
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x10*

FIG. 2. Original domain fractions in the [100]-ordering structure. Distinct
domains are numbered as discussed in Sec. III A 1. The depolarization
works only approximately to equalize domain volume fractions.

elin=s77, (12)
where () is the computational volume and ¢() the boundary.
A typical run from the paraelectric cubic phase uses periodic
boundary conditions in strain and polarization. During DAE,
however, polarization is periodic but applied strain is applied
to the boundaries as if the simulation supercell were equal to
the sample size. This quasiperiodicity is meant to most
nearly approach larger simulation sizes and realistic systems.

Although polarization, like strain, is a phenomenon re-
sulting ultimately from atomic displacements, these modes
operate at different time scales than strain'' and would ide-
ally require different time steps and kinetic coefficients.
However, as we seek only to illustrate certain DAE phenom-
ena, we have simplified our treatment for now by setting
I'P=I"" and use equal time steps for both types of order pa-
rameter. For the system of partial differential equations in
Egs. (7), finite differences and simple explicit Euler integra-
tion are used with Ax=0.3 and Ar=0.001 or 0.0001. Taking
the functional derivatives leads to the equations shown in
Appendix A. As the random force &7 exerts a negligible
effect at low temperatures and does not affect the late stages
of time evolution we henceforth omit it as has been done
elsewhere.'""?

lll. RESULTS
A. Domain average engineering

With these numerical details established we give a brief
introduction to DAE, the subject of this work. Briefly, DAE
considers a phase transition where the crystalline structure
changes from a high-symmetry group G to a low-symmetry
group HC G. G can be decomposed into cosets,

J. Appl. Phys. 100, 033526 (2006)

G=H+g,H+gH+ -+ +g,H, (13)

where g; are coset representatives and define n equivalent
domains associated with this phase transition.

Let us denote each domain volume fraction by v.. The
action of an operator g € G on a domain volume fraction
results in a transformation from one domain to another,

g =

; such that gg; € g;H. (14)

Let us write the n domain volume fractions as v
=(v;,v,...,v,). The action of g on w results in a permuta-
tion of the elements of v. The set of all distinct transforma-
tions of v forms a permutation group P. Multidomain sym-
metry consists of operators g which are mapped onto one of
the subgroups of P. Since P is a finite group, the number of
possible subgroups is also finite and therefore the number of
possible symmetries of multidomain structures is finite.
Finding the most general form of v for all operators in each
subgroup of P which leave v invariant produces the multi-
domain symmetry groups. For example, suppose v
=(a,a,a,b,b,b). This means domains 1, 2, and 3 are present
in equal volume fractions and domains 4, 5, and 6 in equal
volume fractions but that a # b. The subgroup of P pertain-
ing to this structure consists of all operators g which leave v
invariant.

We use this multidomain volume fraction notation [i.e.,
v=(a,a,a,b,b,b)] when considering three types of multido-
main symmetries: the [100]-ordering P4mm structure, the
[111]-ordering R3m structure, and the [110]-ordering Amm?2
structure. These are all I'-point phase transitions from the

Pm3m phase and so retain the same unit cell. The incipient
phase is created by small displacements in the named order-
ing directions resulting in the spontaneous ferroelectric po-
larization. The incipient multidomain structure occurs be-
cause this displacement is degenerate and could happen in a
number of distinct directions. The following three sections
discuss each of these cases.

1. [100]-ordering structures

For the Pm3m— P4mm transition, the symmetry is bro-
ken by a I'; space group IR and an (a,0,0) order parameter
(OP) direction with six possible energetically equivalent do-
mains. The labelings of the domains follow that of Ref. 21,
which are 1 (a,0,0), 2 (-a,0,0), 3 (0,0,a), 4 (0,0,-a), 5
(0,a,0), and 6 (0,—a,0). Reference 21 shows that there are
12 possible multidomain structures for such materials. In
Table III we have selected 5 of the 12 possible structures.
The “Domain set” column shows constants such as a, b, and
¢ which again represent volume fractions of each domain.

TABLE IV. 5 of the 17 possible distinct multidomain sets for ferroelectric ordering along [111].

Domain set Group r; I I Connected set
(a,a,a,a,a,a,a,a) m3m (1,2,3,4,5,6,7.8)
(a,b,b,b,a,b,b,b) 3, s (a,a,a) (2,3,4,6,7,8)
(a,b,b,a,b,a,a,b) 4,m,msz, (0,0,a) (a,0) (1,4,6,7)
(a,b,b,a,a,b,b,a) Mg, (a,0) (a,0,0) (1,4,5,8)
(a,b,b,b,c,d,d,d) 3y My (a,a,a) (a,a,a) (2,3,4)
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FIG. 3. (Color online) Distinct (a,a,a)-type structures.

The “Group” column gives the point group of the multido-
main structure after the convention of Ref. 21. Columns 3-5
give the space group IRs of the external fields and their di-
rections that lead to the domain average engineered structure.
The “Connected set” column gives those domains that are
equivolume, such as (1,2,5,6) in the previous example and is
discussed in detail in Ref. 21.

Figure 1 shows simulations of the multidomain struc-
tures given in Table III. The previous equidomain structure is
on the far left. Evolved multidomain structures after applica-
tion of external fields labeled by space group IR and OP
direction are on the right. As discussed in Sec. II B, an ex-
ternal electric field has the symmetry of the I'; IR while
compressive and shear stresses have the I'j and T'{ space
group symmetries. In a bar plot near each structure is shown
the volume fractions of each of the six domains, numbered
from the top. Each domain volume fraction is labeled by that
predicted by multidomain group theory.21 The agreement is
generally good, although many volume fractions that should
be equal according to group theory are only approximately
equal. This is because the size of the simulation cell, 64
X 64 X 64, is occasionally comparable to domain size creat-
ing artificial boundary effects.

The domain sizes/shapes in this fast quench regime do
not always resemble those based on equilibrium experimen-
tal conditions or simulations. As discussed, it is impossible,
given the size of the simulation box, to achieve the domain
volume fraction predicted group theoretically using equilib-
rium simulations lengths. For this reason this work focuses
on the fast quench regime and postpones full equilibrium
runs to a later study. When we have let our simulation times
approach a greater degree of equilibrium, we have achieved

patterns  similar to other ferroelectric
simulations."’

In Sec. II B we also discussed how even with a depolar-
ization term the domain volume fractions in the nonengi-
neered multidomain ferroelectric have somewhat unequal
domains. This is shown in Fig. 2 for the [100]-ordering struc-
ture. To emphasize the changes in the domain volume frac-
tions in the engineered samples we have normalized all vol-
ume fractions by this initial ratio. This gives exactly equal
domains for the initial cube in Fig. 1 with a magnitude of 1.
This practice has been followed in [111]- and [110]-ordering
structures as well. When engineering the domains the depo-
larization term is not included. If it were included, however,
we would expect little variation in our results since the de-
polarization term only approximately equalizes domain vol-

umes as apparent in Fig. 2.

equilibrium

2. [111]-ordering structures

For the Pm3m— R3m transition, the symmetry is broken
by a I'; space group IR and an (a,a,a) OP direction with
eight possible energetically equivalent domains. The label-
ings of the domains are 1 (a,a,a), 2 (a,—a,-a), 3 (-a,a,
-a), 4 (-a,-a,a), 5 (-a,-a,-a), 6 (-a,a,a), 7 (a,-a,a),
and 8 (a,a,—a). Table IV shows distinct volume fractions for
ferroelectric ordering along [111] for 5 of the 17 possible
multidomain structures. Figure 3 shows simulations for these
types of domain patterns. A 64 X 64 X 64 simulation cell was
again used so finite size effects partly come into play, al-
though the agreement between theory and simulation is quite
good overall.
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TABLE V. 5 of the 22 possible distinct multidomain sets for ferroelectric ordering along [110]. Only nonzero
contributions of the order parameters are shown in columns 3-5.

Set Group I I3 rs: Connected set
(a,a,a,a,a,a,a,a,a,a,a,a) m3m (1,2,...11,12)
(a,a,a,a,b,c,c,b,b,c,c,b) 4,mm,, (0,0,a) (a,0) (5,8,9,12)
(a,b,b,c,a,b,c,b,a,c,b,b) 3 (a,0) (a,0,0) (1,4)
(a,b,a,b,b,a,a,b,c,c.d,e) mym, 25, (0,a,-a) (a.\3a) (0,a,0) (1,3,6,7)
(a,b,c,a,d,e.f,g.f.d.g,e) 25, (a,—a,0) (a,0) (0,a,a) (5,10)

3. [110]-ordering structures

For the Pm3m— Amm2 transition, the symmetry is bro-
ken by a I'; space group IR and an (a,a,0) OP direction
with twelve possible energetically equivalent domains. The
labelings of the domains are 1 (a,a,0), 2 (a,—a,0), 3
(-a,a,0), 4 (-a,-a,0), 5 (a,0,a), 6 (a,0,-a), 7 (-a,0,
-a), 8 (-a,0,a),9 (0,a,a), 10 (0,-a,-a), 11 (0,a,—a), and
12 (0,—a,a). Table V shows possible multidomain symme-
tries for ferroelectric ordering along [110] for 5 of the 22
possible multidomain structures. Figure 4 shows the corre-
sponding simulations for these types of domain patterns.
Here a 96 X 96 X 96 simulation cell was used because of the
larger number of possible domains. Thus smaller-looking do-
mains are mostly a result of larger system size. Overall, the
agreement with theory is quite encouraging, except for struc-
ture 25, which should have seven distinct domain sizes. In-
stead domain sizes d, e and f, g appear roughly equal. This
appears to be again an artifact of finite system size, espe-
cially considering the large number of distinct domains re-

DRPIIIDITD DD

quired in the Pm3m— Amm?2 case and the good agreement
for the previous two cases with smaller numbers of total
domains.

B. Discussion

Figures 1, 3, and 4 show encouraging results regarding
the accuracy of group theoretically derived maps of possible
multidomain structures in perovskite ferroelectrics. Without
any reference to these maps, mesoscopic simulations using
combinations of external fields have reproduced predicted
symmetries. This represents a significant step in our under-
standing of mathematical symmetry in complex ceramic
structures. Figures 1, 3, and 4 also suggest that the multio-
rder parameter evolution strategy for ferroelectrics may be
more efficient than simulations employing instantaneous me-
chanical equilibrium. Further testing employing realistic ma-
terials will be used to verify this.

The simulation methodology described above has been
incorporated in a program (DOMAINS) which is freely avail-
able and can describe bulk systems, thin films, and clusters.

CTUOMTANTROTOR

1';1 (a,a,a), [‘:'5' (a,a,a)

T, (a-a,0), TS (a0), T} (0,a,)

PO O+Q w0 QDO TD

FIG. 4. (Color online) Distinct (a,a,0)-type structures.
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As a possible application of DOMAINS is the processing of
MEMS components with small dimensions and nonperiodic
boundary conditions; we have avoided spectral methods to
numerically solve the differential equations although this is
typically the method of choice because of fast Fourier trans-
forms. This real space method allows any type of boundary
condition for polarization (charge injected, clamped, peri-
odic) and strain.

Part of the power of phase field theory is that it describes
the essential characteristics of microstructure with efficient
algebraic expansions. Its limitations are that it is a mean field
theory and so lacks interpolarization unit correlations (each
mesoscopic unit assigned a polarization is not instanta-
neously interacting with all other polarization units but only
their average). Also, its range of validity is limited to near
the phase transition, although this can be improved by add-
ing higher order terms to the expansion. The types of sym-
metries attainable in the emerging phases are limited to those
found in the potential (i.e., antiferroelectric transitions are
impossible unless these X point symmetry terms are added to
the polarization expansion). To obtain information far from
the transition temperature, such as during phase diagram
construction, phase field theory must be supplemented with
Monte Carlo/molecular dynamics simulations, or low-
temperature expansions.

To further test simultaneous order parameter evolution,
DOMAINS is being extended to multiferroics such that fer-
roelastic transitions compete with and preempt ferroelectric
transitions.™ Extending to ferromagnetics51 would also
lead to applications to other multiferroics such as

J. Appl. Phys. 100, 033526 (2006)

magnetoeleotrics.52 Other long term extensions might be to
ferroelectric nanodomains useful in quantum dot ferroelec-
tric random access memories (FRAMs) or atomic holo-
graphic optical storage.

C. Conclusion

Encouraging agreement has been observed between a
theoretical derivation of possible multidomain structures of
three ferroelectric transitions and simulated results. Such
transitions occur in many perovskite oxides such as BaTiO3
([100] ordering), PZN-PT ([111] ordering), and KNbOj;
([110] ordering), and may be systematically applied to such
materials in the future. Furthermore, a hybrid multiorder pa-
rameter evolution strategy has been used to model three-
dimensional structures, differing from most previous ferro-
electric studies that treat two-dimensional crystals. The
group theoretical enumeration of all possible multidomain
structures and its numerical validation are needed for high
precision domain engineering and are vital to a “bottom-up”
micro- and nanotechnology materials design approach to
achieve macroscopic materials with precise properties.
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APPENDIX: TIME EVOLUTION EQUATIONS

After taking the functional derivatives described in Sec.
II B, the evolution equations have the following form:

J
gPl(r,t) =2(11P1 +4a11P?+6a111P?+ (46(11 +Zalz)P1P§+4a112P1P§+2a112P1P‘2‘+4a’11P1P§+2a12P1P§

+4a112P?P§+2“123P1P§P§+2“112P1P§_811azpzl —812< e + 32P3> _5’44(82_1021
ox oxdy  dxdz dy
&ZPI ou, oy duy  duy uy  dus
+ ?) +51113 +61125 +6144P2(g + g) - 26144P3<5—Z + §> +E,.
gt"‘l(r’t) = Cll% + 044% + 044% +(cpp+ C44)ﬁ +(cp+ C44)jzx_boii + 21)1(‘144&&_123 + 1144%)2 + 6111%)
+2P2(5112a_132+f]44a_1)1) +2P3<61440_P1+61123_P3)- (A1)
ox ay 9z ox

Evolution equations for other components follow by permu-
tation of the indices.
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