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Proper ferroelastic transitions in two dimensions: Anisotropic long-range kernels, domain wall
orientations, and microstructure
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For structural transitions with strain serving as the transition primary order parafpeiper ferroelastios
we obtain 23 proper ferroelastic transitions in two dimensions and derive distinct “elastic compatibility”
kernels that specify anisotropic, long-range order-parameter interactions. These kernels influence possible
domain-wall orientations, local rotations, and parent-product interfaces in two-dimensional ferroelastics. Using
the approach described here, these results can be extended to two-dimensional improper ferroelastics and
three-dimensional proper/improper ferroelastics.
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I. INTRODUCTION enumerate all ferroelastic speci€i) obtain values of the
OP (straing in different domains(iii) identify domain pair
In many structural transitions one or more components otlasses(iv) determine allowed domain-wall orientatioris)
the strain tensor act as the primary order param@&p calculate local rotations for different domain wal(si) pre-
driving the transition. To describe various low-symmetry dict habit plane(parent-product interfageorientations, and
phases and the associated microstructure, a Ginzburg-Landally (vii) describe features of microstructure for 2D fer-
free energy(GLFE) is expanded in strain componeﬁf§9 roelastic transitions. It is important to no_te that a Pﬁm_am
However, this GLFE cannot be directly minimized due toonly GL treatment captures.the essential phyS|cs_ since the
restrictions arising from elastic compatibility which connectsk€rmnels embody both material aspedisrough elastic con-
all components of the strain tensor through a single dif‘feren-Stant$ and (':ry.stal symmetry attrlbgtes, as \(veII as th? long-
tial equatiod~ in two dimensiong2D) and six equatioris range elastic interaction. Thus, this formalism contains the

in three dimension&3D). To accommodate the compatibility necessary information for predicting orientation features of

. . . icrostructure. In the following, we will use tH6OTROPY
constraints, a widely used procedure is to express the GLF oftware by Stokes and Hatéhwhich is developed for 3D
in terms of a single-valued displacement field. The compaty

: " ut through projection it applies equally well to the descrip-
ibility conditions are then automatically satisfied and the gh proj PP qualy P

o ) . tion of structures in 2D.
variation with respect to displacements becomes uncon-

strained.
Our goal has been to obtain a unified description of proper

ferroelastic phase transitions based entirely on strain All Crysta”ine structures in 2D have a symmetry defined
variables’*** Here we aim to demonstrate how symmetry by one of 17 two-dimensional space groups. In Table I, we
can be systematically used to enumerate all possible fefist these structural symmetries and give the corresponding
roelastic transitions in 2D and obtain the resulting free ener3D space group which yields the 2D symmetry upon projec-
gies as well as various aspects of microstructure. The strainion along the principal axidIn the lattice column we give
based formalism uses strain as the primary order parametehe lattice type(e.g., OP represents oblique primitive, gtc.
provides Landau polynomial free-energy invariants, and thend in parenthesis the space-group identification number as
Ginzburg gradient terms. The Landau free energy is anhagiven according to the International Tables for
monic (Fg) in terms of the POP and harmoniE.J in the  Crystallography’] A proper ferroelastic transition takes
secondary OP straif$> When the GLFE is minimized in place when the product phase results from the onset of new
the context of the compatibility constraint, the secondary ORstrain components and this resultant strain can be reoriented
strain components can be eliminated and the GLFE can bigom one domain of the product phase to another. We do not
expressed solely in terms of the POP strain components. Byonsider improper ferroelastic transitions here in which
substitution, the harmonic teris.. then becomes an aniso- strain acts as a secondary order parameter and some other
tropic long-range interacti§r*1!! between these primary physical variable(e.g., shuffle, polarization, magnetization
strain components, induced by the compatibility relations. drives the transition.

Given this(statig GLFE, which is a function of the strain In Table Il we list the proper ferroelastic transitions that
POPonly, we should be able to determine the low-symmetryare allowed in 2D. Note that there may be more than one
phases and théstatio microstructure. In addition, there are product phase and thus more than one ferroelastic transition
important structural characteristics embodied within thesdérom a given parent. In column 2 the resulting subgroup is
compatibility kernels. In this paper we demonstrate in 2Dindicated. In column 3 we indicate the irreducible represen-
that through the use of symmetry we d@ncomprehensively tation (IR) form of the POR(i.e., the relevant strain tensor

Il. FORMALISM
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TABLE I. Correspondence between two-dimensional and three- TABLE Il. 23 Proper ferroelastic transitions in 2D.
dimensional space groug$G). For the lattice specification, O,

oblique; R, rectangular; S, square; H, hexagonal; P, primitive; andParent Subgroups Primary IR
C=centered.

pemMm(17) czmm(9), p2(2) I's=(e2,—€3)
2D SG Lattice 3D SG p6(16) p2(2) I'3l's= (€2, €3)

p31m(15) cm(5), p1(1) I3=(e2,~ €3)
pémm(17) HP P6mm(183) p3m1(14) cm(5), p1(1) I';=(e2,— €3)
p6(16) HP P6(168) p3(13) pl(1) Lol's=(ez,~ €3)
p31m(15) HP P31m(157) p4gm(12) p299(8) I'=(e2)
p3ml(14) HP P3m1(156) c2mm(9) I'3=(€3)
p3(13) HP P3(143) p2(2) I+ 1'3=(€2;€3)
p4gm(12) SP P4bm(100) p4mm(11) p2mm(6) I'2=(e2)
p4mm(11) SP P4mm(99) c2mm(9) I'3=(e3)
p4(10) SP P4(75) p2(2) [+ 3= (ez;€3)
c2mm(9) RC Cmn2(35) p4(10) p2(2) I+ T3=(€z;€3)
p299(8) RP Pba2(32) c2mm(9) p2(2) I'=(e3)
p2mg(7) RP Pma2(28) p299(8) p2(2) I'2=(es)
p2mm(6) RP Pmm2(25) p2mo(7) p2(2) I'y=(e3)
cm(5) RC Bm(8) p2mm(6) p2(2) I'y=(€3)
pg(4) RP Pb(7) cm(5) p1(1) I'>2=(e3)
pm(3) RP Pm(6) pg(4) p1(1) I'>=(e3)
p2(2) OoP P2(3) pm(3) pl(1) I'2=(€3)
p1(1) opP P1(1) p2(2) p1(1) I'2=(e3)

components, and e3) which induces the ferroelastic tran- classe¥ where each member of the class is crystallographi-
sition. The additional strain components are secondary OP’sally equivalent to any other in the class. From the viewpoint
Throughout this development we use the symmetry adaptedf energy and OP profiles, we need only consider one repre-
forms for straine;=3(U,x+Uyy), €2=3(Uxx—Uy,), and  sentative member of each class?® This representative do-
€3=3(Uxy+Uy,). [The associated local rotation i®;  main pair will then determine allowed domain wall orienta-
=3(Uxy—Uy).] The corresponding IR's for strain are de- tions and energies from which any other pdand its
noted by I';. In two cases [3I's and I',I';) a two- domain-wall orientationsin the class can be obtained by a
dimensional sum of IR’s drives the transition. The physicallyparent symmetry element.

irreducible representation is composed of two IR’s neither

one of which can be chosen rédln three caseof the form Il PROTOTYPE EXAMPLE
I';+1I'3) two one-dimensional IR’s simultaneously drive the o ) ) )
transition and the associatédoupled POP strain compo- We will illustrate our procedure of using strain variables

nents are separated by a semicolon. We emphasize that tke describe the transition. To have a specific example in
three |OW_Symmetry rectangu|ar subgroqp)m(?,), pg(4), mind, we consider the first entry in Table Il. This corre-
andp2mg(7) cannot be obtained as a product phase in a 23ponds to the mF2mm(3) ferroelastic species mentioned
proper ferroelastic transition. It is through the 2D to 3D Cor-above. This transition takes a triangular lattice to a centered
respondence thasoTROPY:® was used and the identification rectangular lattice with three orientational states of the latter.
of the appropriate IR OP form was made. Note that there aréhe POP(see column 3 of Table )Jlis a two-component
23 ferroelastic transitions in 2D in contrast to 94 in ¥D. shearl's=(e;,—€3) and the secondary OP is the dilatation
Also note that an oblique oblique transition p2—p1) is  I'1=(e€1). The(hexagonalfree energy for this transition, to
allowed in 2D. There is no ferroelastic transition within the fourth degree in POP and to second degree in secondary
same Crysta| System in 3D' eg., a tricliniariclinic is not OP’S, is given in Table Ill and the Compatlblllty equation for
allowed. all transitions in 2D is of the formG=(d5+ %) e, + (5

The above 23 transitions correspond to 12 ferroelastic- oﬁ) €,—2d,0,63=0. The free energy consists of three
species: mR2mm(3), emmPR2(6), 6F2(3), 3mFm(3), parts;F=F +Fc+Fg, the Landau term without coupling
3mF1(6), 3F1(3), ammR2mm(2), 4mmPR2(4), 4F2(2), (F), the part with coupling between the POP and secondary
2mmPR2(2), mF1(2), and F1(2). Thenotation follows OP’s (F¢), and the Ginzburg part containing gradients of the
that of Aizu®® On the left is the point group of the parent and POP ). Since a third-order invariant is allowed |
on the right the point group of the product phase. They arehis transition is of first order. It is straightforward to include
separated by the lettd¥ representing “ferroelastic.” Each sixth degree terms in the POP for those first-order transitions
species will determine a number of symmetry related doin which a third-order invariant is not symmetry allowtd.
mains(i.e., variants. The number of domains is given above The Landau term is further written & =Fy+ F¢., Where
in parenthesis. Pairs of domains can be collected intd¢, (Fs.o) depends upon the PQBecondary OP
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TABLE Ill. Free-energy invariants for all 2D ferroelastic tran-
sitions. For simplicity, summation in coordinate space on the right
has been dropped.

Rectangle and oblique:
FL=APUZ 2+ APUZ 12+ AP ed2+ AP es/4
Fc=Ciu, x5+ Caly €5
Fezglfg,x"‘gzeg,y
Square:

Fi=AMe22+ AP 22+ AP es2+ AP 212+ AR a2
Fc=Cie165+ Coer€5+ Caeses
Fo=01(e5,+ fg,y) +0o( €5, + fg,y) +J3(€axezyt €2y€3x)
Hexagonal:

FL=APe22+ AP+ €2) 12+ AP (e3—3e5e5)/3
+AP 3+ €2)2/4
Fc= c:1'51(‘55"' 5%)

Fe= gl(3egvx+ 2¢€yx€3yF e§’y+ 26y €35+ e§VX+ 36:2;”),)
+ 92(E§,X+ Bery€zy— Eg,y_ 2€)y€35— e%x-i- fg,y)

2 2 2 2
+ 93(62')(— 262’X63yy+ 362&,— 262’y€3vx+ 3631x+ e3yy)

FIG. 1. (Colop Example of microstructure for the
6mmPR2mm(3) ferroelastic transition for which the PQBee col-
umn 3 of Table I} is a two-component shedl;=(e,,— €3). Top:

. - ... _The three values of the shear strain are color coded with red
notion of such variation for the square to rectangle trans't'Oonsitive, blue (negative, and greer(zerg. Note the domain-wall

was presented in Ref.)dn a spatially inhomogeneous struc- ientations with angles that are multiples#6 andr/3. Bottom:

ture the order parameters become de_pendent on position. Tl?ﬁe two values of the deviatoric shegrare shown with redposi-
free energy then changes to a spatial sum over these 10C@le) and blue(negative.

contributions to the free-energy density, which becomes a
sum over wave vectors in Fourier space. In this hexagonal o
case, for exampldv:secEErfse(,(F):ErA(ll)éilz- Here/_\(ll) cpmpat|b!l|ty |rr_1pl|es thatl = \/§qolz. Thus, there are oppo-

is the bulk modulus, one of the relevant elastic constafits site rotations in the two.domalns. The POP §tra|n profile
of Table IIl. The variation givesin k space assuming peri- through the domain-wall interface can be obtained by solv-

. N . 2 L2v x oy g A (D) ing the appropriate differential equations under these bound-
odic boundary conditionse; (k) = (ky+ky) A(K)/A;”. We 41y conditions. At some specific temperattie., a specific

then substitutes;(k) back into the compatibility constraint value of the coefficient of the harmonic POP term at which
condition and solve for the Lagrange multipli¢(k). Thus, the domain-wall problem becomes one dimensipimakach
'31(|2) is expressed in terms osfz(IZ), 63(|2) and in Fourier Case an analytic form fo_r the d(_)malr_1 wall can be obtaﬂﬁfed.
space Figure 1 shows typicalstatio microstructure for this
6mmPE2mm(3) transition. The shear straig are displayed
. . . R in Fig. 1 (Top) with the color coding representing positive
feed KI=(L2AM Y Uy (K)e(K) €, (K), (red), negative(blue), and zero(green strain values associ-
e ated with the three centered rectangular orientations. The two
where fse(,(lz):A(ll)l(k)z(_ki) 62/k2+2k)2(k§e3/k2|2/2. The ppsitive(red) and negative{blue) valges ofez are shown in
Fig. 1 (bottom. The domain-wall orientations correspond to

The Euler-Lagrange variation §F —= A G] with respect
to the secondary OP’s is theA(Fsec— SAG)/8e;=0. (The

(statio “compatibilityakernel”AU(k) is independent ofk| at multiples of w/6 and /3. The structures were obtained by
long wavelengthst (k) —U(k). Hence, in coordinate space rejaxing the free energy using a time-dependent Ginzburg
this is an anisotropic long-range-(L/r°, with D=2) poten- | andau(TDGL) equation** The emphasis here is not on
tial mediating the elastic -interaCtion.S Of. the POP. dynamics] but on examp|es of typ|Ca| “equi”brium" struc-
There are three possible domains in the product phasgres and the TDGL is one way of obtaining these textured
(i.e., three centered rectangular orientatjoosrresponding  configurations Such microstructure has been seen using
to POP directions &,0),(— (1/2)a, — (/3/2)a), and (—(1/  phase contrast microscopy on lead orthovanaddated has
2)a,(1/3/2)a), with a denoting an arbitrary constahfmong  been simulated by other methdt®
these three orientations, there is only one class of domain Note that if we consider the first entry in Table Il but a
pairs and for simplicity we take the pair consisting of thedifferent ferroelastic speciesnémP2, we will get six ob-
second and third orientation stat€s3) as representative of lique (p2) orientational states in the product phase. How-
the class. ever, the free energy will be the same, to this order of ex-
The boundary conditions for this pair are at pansion, as given in Table Ill. All 23 ferroelastic transitions
—0; a=—ayl2, b=—+3ay/2, €,=0, wz=— and at in 2D can be described by three GLFE forfifave limit the
+o00; a=—ay2, b=13ay/2, €,=0, wz=+Q. Elastic degree of expansion in strain and neglect additional second-
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TABLE IV. Representative elastic compatibility kerndal$g,(IZ)
for all 2D ferroelastic transitions for interaction between POP
through the free energ¥Fsec=(1/2)S ¢ (U €celr =2 fsod K).
Here €,= 3 (U, x—Uy,y) and es=75(Uy ,+ Uy ).

Rectangular and oblique to oblique:
fsed K) = 2APTKEK] €2l 21/ (kg + AP KGIAL)
Square to oblique:
fsed K) =[A{/2]] (K2~ K2) €5 /K% + 2Kk, €5 /K2
Square to rectangle(Heviatorio:
fsed ) =[AL2][ (G —k7)?| | V[ (KE+ kD)
+4AMKEKG AR
Square to rectangle [sheay):
foed KN =[ALI2][KIG] e UK+ AP K~ K AP]
Hexagonal to rectangle or oblique:
fsed K) =[A{D/2]| (K2 K2) €5 /K% + 2Kk, €3 /K2

PHYSICAL REVIEW B 68, 104105 (2003

FIG. 2. Example of local rotation«fz) of domains for the
square to rectangl@) transition driven by the deviatoric strain. The
solitonlike profiles in the lower part of the figure are deviatoric
strain (e,, solid ling interpolating betweent: e, and local rotation
(dashed linginterpolating between (1, respectively.

tion, the square>rectangle transition can be driven either by
a deviatoric strain or by a shear strain. The latter leads to a

ary OP’s such as shuffle for crystals without a monatomiccentered rectangular lattice.

basig and five elastic kernels. The five forms for the kernels

are given in Table IV. Note also that rectangul@2mm)
—oblique (p2) and oblique p2)— oblique (1) transitions

In Fig. 2 we illustrate the locdlattice) rotation associated
with domain matching for the square to rectangular transition
resulting from the deviatoric straft® This local rotation is

are described by the same kernel but the strains are defingiven by w;= %(ux,y_uy,x)1 as mentioned earlier. The rota-
with respect to a rectangular lattice in the former case andion does not contribute to the free energy. However, it does
with respect to an oblique lattice in the latter case. In addirestrict compatibility of neighboring domains. The slanted

TABLE V. Characteristics of all proper ferroelastic transitions

in 2B={b+(b%+a?)¥/a, r={3b+3a+2[3(a%+b?)]"2/{3a

—\/3b}, s={3b—\3a+2[3(a’+b?)]"3}/{{3b+3a}, a={—b+(b?>+a?)*3/a.

Ferroelastic Domain Pair Wall Habit plane

species values classes orientations orientations

emmE2mm (a,0), (—a/2,—3a/2), (—al2,\3a/2) 1,2 x=—3y,x=y/+/3 X=y,X=—Yy

6mmP2 (a,b), (—al2+ J3b/2,— \/§a/2—b/2) 1,2, (1,3 X=SsYy,Xx=—y/s;x=ry,x=—ylr; X=ay,Xx=—Yyla
(—al2—\/3b/2,\/3a/2—b/2) 1,9 X= 3y, x=—y//3;

(—a/2+/3b/2,/3a/2+b/2), (a,—b) 1,9 x=0y=0;

(—al2—\/3b/2,— \[3a/2+b/2) 1,6 x=y/y3.x=—3y

6F2 (a,b), (—al2,/3a/2) 1,2 X=ry,x=—ylIr; X=ay,x=—Yyla
(—a/2+/3b/2,—\/3a/2—b/2) 1,3 X=sy,x=—yls

3mFm(s) (a,0), (—al2,\/3a/2),(—al2,—3a/2) 1,2 x=13y,x=—y/+/3 X=y,X=—Yy

3mF1 (a,b), (—a/2—\3b/2,\3a/2—b/2), 1,6, (1,5 x=y/\/3,x=—y3;x= 3y, X=Yy,X=—Yy

(—al2+3b/2,—f3a/l2—b/2), (a,—b) (1,9, (1,3 x=—y/\3;x=0y=0;x=sY,

(—al2+\/3b/2,\/3a/2+b/2), 1,2 x=—yls;x=ry,x=—ylr
(—al2—\/3b/2,—\[3a/2+b/2)

3F1 (a,b), (—a/2—\3b/2,\3a/2—b/2) 1,2 X=ry,x=—ylIr; X=ay,x=—yla
(—a/2+/3b/2,—\/3al2—b/2) 1,3 X=sy,x=—y/s

4mmPF2mm(p) (@), (-a) (1,2 X=Y,X=—y X=y,X=-y

AmmPE2mmy(s) (a), (—a) 1,2 x—0y=0 x=0y=0

dmmP2 (a,b), (—a,—hb) 1,2, (1,39 X=py,x=—ylp;x=0y=0; X=ay,x=—yla

(a,—b), (—a,b) 1,9 X=Y,X=—Yy
4F2 (a,b), (—a,—hb) 1,2 X=py,Xx=—y/p X=ay,X=—-yla
(a,—b), (—a,b)

2mmP2 (a), (—a) 1,2 x=0y=0 x=0y=0

mF1 (@), (—a) 1,2 x=0y=0 x=0y=0

2F1 (@), (—a) 1,2 x=0y=0 x=0y=0
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dashed line represents a twin boundary between the two reatnergies containing both primary and secondary OP’s are
angular variants. easily obtained usingoTrRoPY.:® The five anisotropic com-

In Table V we list the relevant characteristics of all properpatibility kernels have been obtained by an Euler-Lagrange
ferroelastic transitions in 2D. For each species we have listethinimization. These kernels embody the essential physics of
the following: (a) in column 2, the OP values for each do- the microstructure in ferroelastics. In addition to specifying
main, (b) in column 3, a representative for each of the pairanisotropic, long-range interactions, the kernels influence
classegwhere more than one pair is listed, there is more tharpossible domain-wall orientations, local rotations, and
one equivalence class of pairéc) in column 4, the domain- parent-product interfaces in 2D ferroelastics. In a later work,
wall orientations, andd) in column 5, the habit plane orien- compatibility kernels have been used in an underdamped
tations (consistent with those obtained by Boulesteix dynamics:t
et al?Y). Other wall orientations are allowed but they are  Our philosophy can also apply to improper ferroelastics
equivalent and easily obtained by the rotations or translation&.g., ferroelectrics or magnetoelastioshen a physical
which were lost from the parent structure at the transitionquantity other than straiisuch as shuffle, polarization or
The notationp,s in column 1 refers to the orientation of the magnetizatiohis the POP and strain serves as a secondary
ferroelastic crystal relative to the principal axis of the parentOP. In these cases, elastic compatibility leads to an aniso-
structure. The lettersp” and “ s” stand for “principal” and  tropic long-range interactiof@enerally in the higher powers
“side,” respectively. The symmetry considerations given in of the nonstrain POP. Our approach can be readily applied to
Table V were obtained usingsoTRoPY'® These include find the orientations of domain walls in the primary OP, e.g.,
space-group changes at the transition, order-parameter fornfgrroelectric and magnetoelastic walls. Similarly, by exploit-
domain configurations, equivalent and inequivalent pairsing symmetry to the full extent we can obtain similar results
etc. in 3D, i.e., prediction of domain-wall orientations for the 94

ferroelastic transitions as well as habit planes.

IV. CONCLUSION
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