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Orientational twins involve two domain states that exhibit rotational symmetry relationships between them.
For an improper ferroelastic cubic to tetragonal first-order phase transition driven b§stheone-boundary
phonon in the CsCI structure, there are three possible directions for the tetragonal axis of the low-temperature
phases. The existence of four antiphase-related-domain states for each given tetragonal orientation introduces
additional possible pairing schemes for the twins. We obtain only three distinct domain pair classes: two
antiphase boundary classes and one orientational boundary class. F(Dfﬁ-tli)ig1 (Pm?m-|4/mmn) transi-
tion we derive the general governing equations for the orientational twins based on a Ginzburg-Landau theory,
which constitute a system of four coupled nonlinear differential equations. General features of the orientational
twin solutions are demonstrated through a special choice of the parameters for which the four coupled equa-
tions can be reduced to two. The orientational twin boundaries have relatively large elastic energy and,
therefore, they are strongly restricted to preferred lattice planes.
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[. INTRODUCTION We illustrate a general approach to these considerations in
the context of ferroic phase transitions occurring in materials

The Oﬁ (Pm3m) to Dﬂ(l4/mmn) cubic to tetragonal with CsCl structure(space groupOﬁ,PmSm) induced by
improper  ferroelastic first-order phase transition inMg mode softening, specifically, a first order, improper fer-
RAg;_4In, (whereR=La, Ce, and Prresults in 12 different roelastic transition to a tetragonally distorted low symmetry
domain states with three independent tetragonal axes. As dighase Dj/,l4/mmn), such as in the pseudobinary rare-
cussed in Ref. 1 there are four different displacement patearth alloy LaAg_,In, (x~0.2) (Fig. 1(a)). We have previ-
terns for each tetragonal axis, which differ by a fractionalously identified the six-component primary order parameter
translation of the parent unit cell. These four domain state$OP), nineteen secondary OP(icluding strain, and pre-
with the same tetragonal axis can form antiphase structuresented the Landau free enefgin addition, we found five
An antiphase pair is a domain pair relationship where a purgradient invariantsfor theMy distortion mode. The class of
lattice translation is lost from the parent symmetry group andOP directions consistent with this irreducible representation
transforms the first domain into the second. Another imporand the observed atomic displacements of the rare-earth alloy
tant type of domain structure is an orientational pair, which iss denoted a®;, in the notation of Stokes and Hafcand
commonly referred to as a “twin.” An orientational twin contains 12 equivalent directiorier domains.
boundary(OTB) is formed by two domains that are related  Note that the scientific and technological interest in the
by a lost rotation from the parent group but that cannot beCsCl structure materials is related to the tendency of the
related by a pure translation. The orientational twins considiransverse acousti€TA) phonon mode to soften at thd
ered here consist of two domain states having different tepoint of the Brillouin zone. For LaAg ,In, (x=0.2) the
tragonal axes. The domain walls tend to be planar since thetructure has been determined and softening of both the shear
elastic energy is high for wall bending. In addition, the num-modulus and the TAY,,) phonon mode at th®! point have
ber of orientations for the twin domain pair walls are morebeen observed. In addition ®Ag;_,In,, there are related
limited than for antiphase boundaries. materials, e.g., YCu and LaCd, that undergo similar cubic to

The study of various types of domain walls and their en-tetragonal transformations. The cubic to orthorhombic tran-
ergetics in the context of both the first- and second-ordesition caused by a relateM-point phonon softening ob-
structural phase transitions has been carried out in receserved in the shape memory alloys AuCd and N¥TitM
years for a variety of materials. Within the Ginzburg-Landau=Fe, Al, Cu) (Refs. 5—F can be understood within the
formalism a few analytic solutions for these domain wallspresent Ginzburg-Landau free-ener¢@LFE) framework.
have been obtained for relatively simple free energy funcTherefore, the results on the orientational twin boundary pre-
tionals. However, it becomes an increasingly unwieldy tasksented here have a wide applicability.
to classify and study all possible domain walls whenthe In this paper we present a systematic and comprehensive
primary and/or secondary order parameters are multicomparoup-theoretic treatment of domain walls based on the con-
nent, and(ii) there are several independent invariants in thecepts of thedirection of the OP and théotropy groupof the
gradient(Ginzburg part of the free energy. OP? For a given phase transition, this technique allows us to
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magnetoresistance materials, pseudobinary rare earth alloys
(e.g.,RAg;_,In,, R=La, Ce, Py and many other materials.

T

"N o o Based on the same model as in Ref. 1, in the following
/Z?Z ola two sections, we address in detail the problem of domain
N = o (Ag,In) pairs and orientational twins, respectively, from a group-

(@

, theoretical perspective. In Sec. Il we analyze domain pairs.
}: .;—» =5 We findonly onecrystallographically distinct class of OTB’s
y ,\/ / andtwo distinct classes of antiphase boundafiBB) out of
A T (3)(12)(13)= 78 possible boundaries. The APB’ :
e " ® 3 possible boundaries. The APB’s were stud
° ® ied in detail in Ref. 1. Here we emphasize OTB’s. In Sec. llI
> O DY the (solitonlike) OP profiles for a twin domain are computed
/A 7LZ/\ and the constraints on the free-energy coefficients are deter-

mined for the specific OTB. For more general cases, we
present a set of four coupled nonlinear differential equations
and look at some special twin solutions and corresponding
lattice displacements. We summarize the main results in Sec.

z
T \, IV. The details of the variational equations are given in the
y Appendix.

> ’V\ @La
"4 \1./ © (Ag,In) Il. DOMAIN PAIRS
e N ):1 Possible homogeneous crystal structures are obtained by
% N « minimization of the Landau part of the GLFE. From these
/\ V / solutions one finds the values of the order parameters, which
j o Ao are then used as boundary conditions for the heterogeneous

V‘c }5\ \ —y problems. In our case, the high symmetryO% (Pm3m),
/ and the lower symmetry B3/ (14/mmmn). TheM; irreduc-
/ A \ ible representation of th@ﬁ cubic space group is the repre-
X/ N sentation of interest here. This representation defines three
arms of the star, corresponding to the pointsw(Q)
X(3,%,0), (2m/a)(3,03) and (27/a)(0,5,3) in the Bril-
louin zone and two-dimensional small representatfofike
/’/ class of OP directionsP;, defined in Ref. 4 gives us the
’)}4 olLa correct distortions at the transition and the representative ex-
0 (Ag,In) pression for the ORdomain 1 is »=(a,a,0,0a,—a),
wherea is an arbitrary lattice mode displacement amplitude.
\)/0\ Thus the P,y direction combines contributions from two
arms of the star, arms 1 and 3 for this domain. The elements
{ of the isotropy subgrouD% for this order-parameter direc-
v tion are listed in Table I, and have a point group of order 16.
/ —Y This is not the most general orientation of the OP. Corre-
/ N sponding to the most general directio 8%, the triclinic
/b subgroupCi(Pl) with a cell size change of 4 is obtained.
Nor is this the highest possible symmetry for this IR, since
FIG. 1. Three different domain states of CsCI structure withthe direction @,0,0,0,0,0), corresponding to one arm of the

displacements oM5 symmetry that lead foRAg;_4In, to aDﬂ] star, giv_es the orthorhombic space grdD@_(Pmma) Wi_t_h
tetragonal low-temperature structure. only a size change of 2. However, the particular transition of

interest here defines the choice of the order-parameter direc-
(a) construct all independeritanday free-energy and gra- tion Pyg.
dient invariants,(b) classify possible homogeneous phases, There are 12 equivalent domaiKer directions for the
() classify all crystallographically equivalent domains andP1o clasé® that correspond to the minimization of this
domain pairs,(d) obtain criteria for the stability, merging, GLFE. Each domain can be obtained from another domain
and splitting of domain wallsie) determine secondary OP’s by a lost high-symmetry operatidfiWe denote these direc-
and their effect on the domain walls, and finalfy calculate  tions asPy¢(i) withi=1,...,12. Any domain can be chosen as
the continuous OP profiles fdantiphase andorientational a representative for the class. These crystallographically
twin structures. This procedure could be widely applied toequivalent domains constitute a distinct otbitith respect
ferromagnetic, ferroelectric, ferroelastic, magnetoelasticto the space groufsg (O,l1 for our specific considerations
(perovskite basedhigh-T, superconductors and colossal- Two domains arecrystallographically equivalenti.e., they

(c)
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TABLE |. Elements of isotropy subgroup 14/mmm, domain 1.

Basis vectors Origin Elements

(210101 (012701 (01012 (%7%10) (E|O|0’0)1 (C2X|011'O)l (C2y|11070)l (C22|11170)1
(C2/1,1,0), €4z +[1,0,0), (€4,]0,1,0), (C24/0,0,0),
(11,1,0, (¢4/1,0,0), ,]0.1,0), (#,{0,0,0),

(045/0,00),(S4/0,1,0), (64,/1,0,0), (42l 1,1,0)

have the same structure but different orientations or posiequivalent order-parameter directions are listed in Table Il
tions, if there is an elemeng,in G, that can transform one and are denoted 1 through 12 in column two. In Table Il we
domain into the other. For our case this meang, ig in Oﬁ give the OP directions in the equivalent labeling correspond-
thengPso(i)=P1o(j). All such domains can be obtained by ing to lattice normal mode®."* The normal-mode basi®
acting with the operations dD} on the OP expression for is related to the order-parameter basienoted by )

any one domain, Sa-?lo(l)- Theresu|ting set constitutes a through an Orthogonal transformation. In column 5 of Table
classof crystallographically equivalent domains. Il we list the displacements arising from tiés mode in-

The group elements that do not charfge., leave invari-  ducing the transition to the subgrobygy, . We have listed the

and the order parameter, for a particular domain, form thedisplacements of the atoms, which are in equivalent in the
isotropy group Fof OP direction.F must be a subgroup of body-centered tetragonal subgroup. Their positions and di-
O}. For directionP,,, domain one, the subgroupls/ with  rections are indicated with respect to the cuBit axes. All

the specific symmetry elements listed in Table |. The otheother atoms in theD}lﬁ structure can be obtained by lattice

TABLE Il. Order parameter directions: Homogeneous solutions.

Displacement ak,y,z=[0,0,0], [1,0,0, [0,1,0],

0,0,1]
Order parameter atx,y,z,=1/2[1,1,[1], 1/]2[3,1,1], 1/41,3,1],
Tetragonal axis Label State Q7 1/2[1,1,3
X 3 Iy (0,Q0,Q0,0,0,0) [011], [011], [011], [011]
(a,—a,a,a,0,0) [100], [100], [000], [000]
6 I, (0,-Q0,Q0,0,0,0) [011], [011], [011], [011]
(a,—a,~a-a0.0) [000], [000], [100], [ 100]
9 , (0,.Q0,—Q0,0,0,0) [011], [011], [011], [011]
(-a.a,a,,00) [000], [000], [100], [100]
12 IVy  (0,-Q0,—Q0,0,0,0) [011], [011], [011], [011]
(-a.a,-a-a0,0) [100], [100], [000], [000]
y 2 ly (Q0,0,0,0,0Q0) [101], [101], [1,0,1], [101]
(0,0a,-a,a,a) [010], [000], [010], [000]
5 Iy (Q0,0,0,0,0- Qo) [101], [101], [101], [010]
(0,0a,-a,—a,~a) [000], [010], [000], [010]
8 My (—=Q0,0,0,0,0Q0) [101], [101], [101], [101]
(0,0~-aaaa) [000], [010], [000], [010]
11 IVy  (—Q0,0,0,0,0-Qp) [101], [101], [101], [101]
(0,0-aa,~a~a) [010], [000], [010], [000]
z 1 I, (0,0,0Q0,Q0.,0) [110], [110], [11,0,], [110]
(a,a,0,08,~-a) [001], [000], [000], [001]
4 I, (0,0,0-Qp,Q0.0) [110], [110], [110], [110]
(-a,—a,0,0a,~-2) [000], [001], [001], [000]
7 l,  (0,0,0Q0,—Q0.0) [110], [110], [110], [110]
(a,a,0,0-a,a) [000], [001], [001], [000]
10 IV (0,0,0-Qp,—Q0,0) [100], [110], [110], [110]

(—a,—a,0,0-a,a)

[001], [000], [000], [001]
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translations and body centering within the subgroup, e.g.dropped theP;, notation from the domain labeling since we

lattice translation$2,0,0), (0,2,0, (0,0,2 and body center- are now restricting our attention to just this class of OP di-

ing position(3, 3, 3) for domain 1. rections) We obtain only one class of OTB'’s represented by
If a group operation;; transforms domain 1 into domain (1,2). Other equivalently related domain pairs in these three

i, tj;d(1)=d(i), then all the elements of the left coset classes are given in Table IV. We stress that the group-

t;,F() also transform domain one into domain theoretical methods used here are systematic and have effec-
(1) _ o tively reduced our considerations to only three domain pair
tirFHd(1)=ti,d(1) =d(i), types represented by the domain paitg) (1,10, and(1,2)

whereF() is the isotropy group of domain one. There are'ather than the 78 possible pairs that might initially be con-
twelve sets of distinct elements,F®) that will transform sidgred._We dropped consideration of the trivial fourth do-
d(1) intod(i), i=1,2,3,...,12, respectively. In fact the parent M&in pair class corresponding to the pdirl).
groupO? can be decomposed into left coséts: Every domain has definite values fegcondanOP’s,O; .

h ' A secondary OP is a parameter direction from another IR of

Go=EFW 4ty FD 4t ty, FOD, (1)  the high symmetry group, which is also invariant under the
’ ’ symmetry group of the primary OP, i.=(70;=0;. Since
Theith left coset transforms domain 1 into domairEleven  the symmetry of the lower symmetry phase is a subgroup of
left cosets are listed in Table Il while the first left coset is the parent phase, the isotropy group@f can be a super-
just the isotropy grouf ), or D}/, with the elements listed group of F) (and must be a subgroup &). From these
in Table I. group symmetries we can find the corresponding physical
An ordered pair of domains is written d®(i),P(j)).  distortions that can be chosen as secondary OP’s. The sec-
The set of transformatiorts; such thatt; P(i)=P(j) is la-  ondary OP of interest here is the spontaneous strain. In a
beled T;. The two domain pairs(P(i),P(j)), and ferroelastic crystal, the domain wall directishis(are along
(P(k),P(l)) are said to berystallographically equivalerto ~ some specific directiqr).'**® e.g., y=*z defines the do-
each other if there exists an elementQﬁ such thatg P(i) main walls for domains 1 and 2.
=P(k), and simultaneouslgP(j)=P(l). We denote this
equivalency agP(i),P(j))~ (P(k),P(l)). All such equiva-

lent domain pairs form alomain pair class Domain pair I1l. ORIENTATIONAL TWINS
classes can be determined by the decompositio@fpmto ) . . )
disjoint double cosefs—13 We have collected t_he 12 domains, Ilsted_ in Tqble !I, into
three sets corresponding to the three possible directions for
Go=FVecFD 4+ FOt,Flg- -+ F0t, D, the tetragonal orientation. The four domain states in each

tetragonal orientation are antiphase related and we represent
Each double coset corresponds to the following action: théhem by Roman numerals 1-1V. The tetragonal axis is la-
left cosett,;F() above transforms doma(i) into P(r). If  beled by a subscrip, y, or z. For example, J represents
we then act with an elemer of F() on the domain pair domain state | with tetragonal axis in thedirection. We
(P(i),P(r)) an equivalent domain pair is obtained, namely,choose domain stategand |,, corresponding to an orienta-
(P(i),gP(r))=(P(i),gtFP(i)). All such pairs forg in  tional twin, as an example to derive the equations for equi-
F@ are crystallographically equivalent (& (i),P(r)). Thus librium configurations. The displacement patterns for these
the number of inequivalent domain pairs is in one-to-onetwo domains are shown in Figs(t) and Xc). This orienta-
correspondence with the usual double coset process of grodjpnal twin is equivalent to thél,2) twin representative.
theory. The concept of a domain pair class is important since From the results of Sapri€lthe wall orientations for fer-
domain pairs belonging to the same class will have equivaroelastic twins are determined by strain compatibility condi-
lent relative symmetry properties, differing only in their ori- tions. These wall orientations minimize elastic strain ener-
entation relative to the parent group. Therefore, we need onlgies. For the twins between domain statgand |, one of
consider a representative domain pair that belongs to thake allowed domain walls has its normal [i210]. In the
class. We pick the representative pair so f@t) is always  discussion presented below, we will assume this domain wall
in the first position, i.e., of the forniP(1),P(j)). This rep-  orientation to illustrate the use of the Ginzburg-Landau
resentative domain pair then yields the types of domain wallsheory to derive the OTB structure profile.
to be investigated, which are common to all pairs in this The Order-parameter “vector” has four nonzero compo-
class. nents.(For an antiphase boundary, only two components are

Antiphasedomains imply a domain relationship where a nonzero, see Ref.)1The free energy for thedl, orienta-
pure translation can be found in the left coset that transformgonal twin can be written as follows:

the first domain into the secondwin domains cannot be

related by a pure translation, but lgroper or improper

rotations or, for nonsymmorphic space groups, by rotations F=F_+Fg+F.+Fg, )
together with translations. For th@} to D}/ transition we

obtain two distinct classes of antiphase pairs represented by

the pairs(1,4) and (1,10, which were studied in detail in where(setting,Q,=Qs=0 in the free-energy expression in
Ref. 1 and we will not consider them further hef@/e have Refs. 1 and 2

094110-4



ORIENTATIONAL TWINS IN AN IMPROPER . ..

PHYSICAL REVIEW B 65094110

TABLE Ill. Left cosets relative td3/ of domain 1.

T1,1

Operations

TlO,l

Tll,l

T12,1

{C31-1000;, {S51:|010, {Css |100, {Ss4:|00%,
{C3,-100%, {Sg,,[100, {Cs5-|010},

{S63-1000}, {Cy4y:+[000, {Ss4- 010, {C, 010},
{04:/000}, {C4y 001, {Syy+ 100,

{C24l100, {44003

{C31+1000, {Ss;-|10G, {C3,.00%, {Ss,-|010,
{C33:1010,{Sgs- |00, {C34, /100,

{Sea-|000, {Cay—[000, {Ssy+[100, {Cype/100,
{04el000}, [C[010], {0003,

{C4y+|001}1 {S4y—|01q

{C2y|000}v {Uy|001}1 {C22|01(}1 {0'2| 100,
{E[100;, {1010, {C,|00%},

{0,/000, {C4,(|000, {S,,-|00L, {C, |00%,
{S4Z+|OOO}, {C2a| 100}, {‘Tda|010}r

{C25/010, {100

{C3,-1000, {Ss+010, {C55 100}, {Sgs 001,
{C3;-100%, {Sg;4]100}, {C54-|010,

{S64+1000, {Cuyx-1000, {S4[010, {C,4|010},
{044/000}, {Cux+[00L;, {Syy-[100},

{C2 100, {oq45/00%

{Cs3./000, {Sg3-[100, {Ca4.[00L, {Ss,010,
{C3141010, {Sg;-|001, {Cs,|100,

{Ss2-1000, {C5c[000, {oqc/100, {Ssy 100,
{S4y- 100G}, {Cy4y,-[010, {S4y |00},

{C29|001}v {O'de|01q

{C,,000, {0,003}, {E|010}, {1|100}, {C,,|100},
{Uz|01C}v {C2y|001}-

{o,/000, {C4,-[000,, {S4,+/00%, {C,,,|00%,
{S4,-1000}, {C2,|100}, {74,010,

{C2a|01q: {‘Tda| 10@

{C34-1000;, {Ss4:|010;, {C5, |100, {Ssy+|00%,
{Css-|00Y, {Sg3,[100}, {C3p-[010},

{S62:1000, {C,q/000, {og4d|010, {Cu 010,
{S1x+1000}, {C, /003, {oq:100,

{C4x+|10@v {S4x|001}

{C32,|000}, {Ss>-|100}, {Csy,|00%, {Ssy|010},
{C34:1010}, {Sgs-|00%, {Cg3|100},

{S63-1010), {C4|000, {S, 100, {C,|100},
{04000, {C2e|010}, {7001,

{C4y-100%, {S,y|00L

{C22|000}, {Uz|001}1 {C2y|01(}: {O'y| 100,
{C,4100;, {0,010, {E[00Y},

{11000, {C2|000, {0g4pl00L, {C,,/00%,
{Uda|00q1 {C4z—|10q’l {S4z+|01q’v

{C4,+|010;, {S,,-[100

{C33-1000, {Ss3:/010, {C5, |100}, {Se,, 001,
{Ca4-1001}, {Sg4:]100, {C5,|010},

{S61+1000, {C,(/000, {04010, {Cu,|010,
{Sux-1000}, {C54|00L;, {0744/100},

{C4,- 1100, {S4/00Y

{C34:1000;, {Sss[100, {C33.|00L, {Sss-|010},
{C32: 1010}, {Sg,-00Y, {Cs5y,|100},

{S61-1000, {C2|000, {0g¢e.|100, {Cy4y|100,
{S4y1000}, {C4y 010, {Ssy+[00%,

{C2c|003}, {oqc|01G
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TABLE IV. Equivalent domain parik,m,nare positive integers;
k+3m, k+3n+1, k+3n+2 are smaller than 12. The domain

pairs (1,10 and (1,4 are antiphase boundaries studied in Ref. 1

whereag1,2) is the orientational twin boundary.

Domain pair type Domain pairs
(1,10 (2,11, 3,12, (4,7), (5,8), (6,9
(1,9 (k,k+3m) without pairs in type(1,10
1,2 (k,k+3n+1), (k,k+3n+2)

=A(Q+ Q3+ Q5+ Q%) +By(Qi+Q5+Q3+Qp)?
+B(QIQ5+Q5Q5) + BaQ3Q5+ BA(QIQ5+Q5Q%)
+BsQiQ5+ C1(QT+ Q3+ Q5+ Q5%+ Co(QT+ Q3
+Q3+Q5)(QIQ5+Q3Q3) + C3(QF + Q5+ Q3
+QB)Q5Q5+ Ca(QT+ Q5+ Q5+ QR (QIQ5+Q3Q3)
+Cs(Qi+ Q5+ Q5+ Q5 QIQ5+Col (Q+Q3
~ Q9 QIQ5+(QI+Q5-Q3)QIQ3+(Q3- Q5)(QIQ3
—Q3Q8)1+C[Q1(Q3- Q5 Q%) + Q3(QI— Q35— QP)
+(Q3-Q8)(Q—Q%)]1+Cql(Q1-QE)(Q5+ Q%)
+(Q5—Q3)(Q5+Q3) 1+ Col (Q1— Q) (Q5~Q3)
+Q3(Q5—QI-Q%) +Qa(Q5-Q7- Q)1 (3)

€1 .

Cas
Fe=— 1+ C(ested)t o (eitelted), (4

=D;e,(Q3+ Q3+ Q3+ Q%) + Dy[vV3ex(Q3—Q3)
+e3{Q3+ Q23— 2(Q2+Q3)}]+Da[e5(Q3— Q3+2Q2
—2Q3%) —V3c3(Q5+Q3)1+D4CsQ:1Q7, (5)

Fo=01(Q%,+Q3,) +92(Q5,+Q3,+QF,+Q5,) +9a(Q3,
+ Qé,x) +04Q1yQ2xT95Q1xQ2y - (6)

The symmetry-adapted strain tensor componentare
defined in terms of the conventionedeometrically linear
strain sij=%[(aui/&xj)+(auj/&xi)] by the following rela-
tions:

1
e1:7§(8xx+8yy+8xz)v (7a)
1
e2=E(8xx_8yy)a (7b)
1
832%(8XX+8yy—2822), (7¢)

PHYSICAL REVIEW B 65094110

€4= Exy, (7d)
€5=€yz, (7¢)
eGZSXZ. (7f)

and the elastic constanty are given by

C11=C11+2Cyy, (79
C2=C11— C12, (7h)
Cas=4Cyy. (71)

Using the variational technique, one obtains the Euler-
Lagrange equations, which would generally be six coupled
partial differential equations i@; and three more equations
for the elastic strain

E d | dF JF . a
m Xy dQim] dQ; '

S Jd [ dF de, 0 123 re12

2 ox\ ey g5, ) =0 (M=123iA=12,...6.

(8b)

whereg; ., uses the compact Voigt notation. However, two of
the components@,,Qs) of our order parameter are zero.

In the Appendix the coordinate system is rotated 45°
around thez axis and the problem becomes quasi-one-
dimensional (Q1D). With this Q1D approximation and a
space variable’ perpendicular to the OTB, we can write the
lattice normal-mode profile for this OTB asQ
=(Q1(x"),Q2(x"),Q3(x"),0,0Q4(x")). The forms of the
four coupled differential equations resulting from the Euler-
Lagrange variation are indicated in the Appendix. The
boundary conditions for these equations will depend upon
the specific pair of domain states selected.

A twin solution involves two domains of different tetrag-
onal axis. In each of the two domain states, there are two
nonzero components of the order paramésere Table I\

The two nonzero components are identical in amplitude. A
continuum solution for a twin describes a situation for which
the two components with the amplitud@, will vanish
gradually across the domain wall instead of disappearing
abruptly(discontinuous twin pictuteand the other two com-
ponents increase from zero @, at the same time. There-
fore, the selection of parameteitselow) that can reduce the
four coupled equations to two coupled equations is not only
for computational convenience, it actually reflects the sym-
metrical nature of these two nonzero components in each
domain. They are identical in one side of the domain and
gradually decrease inside the domain-wall transition region
at the same rate and eventually vanish to zero on the other
side of the domain wall at the same time. It is, of course,
possible to have the two components vanishing at different
rates inside the domain wall, but due to the symmetric nature
of the two nonzero components, one would need to motivate
where the symmetry-breaking force comes from.
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Based on the above considerations, we assume a symmet-
ric relationship of the parameters within the domain wall.
This seems reasonabféjt conserves the domain wall sym-
metry of the two order-parameter components and also sim-
plifies the computation(The four coupled equations can be
solved in the same fashion as the two coupled equations,
there is not even any new mathematics involvédl essen-
tial physical features of a twin solution are reflected in our
solution.

The specific orientation twin {11,) is chosen to illustrate
the procedure and, for the symmetric relationship of mode
amplitudes within the domain wall, two coupled equations
are then obtained fo®; andQ, (see Appendix

Normalized Order Parameter

2
Normalized Space Variable (&)

-2 0

FIG. 2. Solutions of Eqg9a,h with the boundary conditions of
Egs. (11a,h. The parameters chosen for the calculations &re
=1,=—3, a;=a}=4, andB=5.

(91192
TQLX’X’

=(A+A")Q,+[4(By+B}) +B,4]Q3

5> 91t 02
+(4B1+ B+ B+ B3)QQ3+ 3(4C, + C,) Q5 V=" A
+(12C;+2C,+2C5+Cy)(Q1Q3+2Q3Q)), and
(9:+92) 2 b
Tz Quxx %=30ac,+cy)

=(A+A")Q,+[4(B+ Bi)+B4]Q§ The dimensionless order-parameter amplitugecorre-

sponding toQg is given by

Qo= (31 V1301

&or the |-1 orientational twin, the boundary conditions for

+(4B;+B,+Bj+B3)Q,Q%2+3(4C1+C,)Q3
+(12C;+2C,+2C3+C,)(Q,Q7+2Q%Q3). (10

Using a procedure similar to Refs. 17 and 18 we reduc

these two equations to the dimensionless form

g, andg, are

Op¢6= 7101~ @103~ @0, 05+ 303+ B(2q3a3 + qlq‘z‘)(, Jm (81,02)=(00). (113
9
Qa.ce= 7302~ 3 — @100 + 305+ B(20503 + qzq‘l‘)(. ) Jm (82, 2)=(d0.0)- (119
9
where A solution with the choice ofr=7,= -3, a;=a;=4, and
B=5 is given in Fig. 2. We note that the two values, which
A’ 4[4(B,+B1)+B,] characterize the OIg, andq,, interpenetrate each other in
=7+t A YT b , the domain-wall region as expected. The asymptotic values
¢ of g, andq, in the two domains are given in Eqgglla,b
4(4B,+B,+Bj+By) 12C,+2C,+2C5+C, above. These profiles represent the relative amplitude varia-
ay= b , = IC. 1 C , tions of the lattice displacement near the domain-wall region.
1774 Each lattice will be displaced by an amount determined by
and the two independent valueg andqg,. One may refer to the
discrete lattice displacement pattern given in Fig) % help
T-To 4D7 4 understand the continuous displacement pattern.
T Ty b=48B,+B,— @_11+@_11(D2 Note the above simplification of four equatiofEgs.
(A3a)—(A3d) and Eqs(A13a—(A13d)] to two [Egs.(Al4a,
2 B b? b)] is for the (k,1y) orientational twin. The boundary condi-
+v3Dg)*|, AC_M' tions will change for other orientational twirisee Table Y

We also defined the dimensionless order parameter
=(qg1,0,) and space variablé according to

(Q1,Q2)=0Q¢(d1,02), vé=X',

with

but we can choose an equivalent wall orientation and posi-
tion so that the twin-wall structure is symmetrically and en-
ergetically equivalent. Shown in Fig(a8 is the domain-wall
orientation and position that was considered in the procedure
developed above, i.e., for the twin wall of the domain pajr

2). Notice that the wall passes through the p@it, 3) and
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Domain 3 X
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o e © o

e, 0 o o o
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-0 & o & o
7 e <®  Or <0 O (g
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B «® | B> «® | O
28 o
Or «© OG> «© O» <0
Domain 5

FIG. 3. Lattice displacement patterns for a discontinuous OTBF = A, (T—T,)Q?>+BQ*+CQ® as

betwee

(b)

n(@ domains 3 and 2, ant) domains 3 and 5.
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(3,3.3) and basis vectorf), 0, 2, (2, 2, 0 in terms of the
original cubic group. By rotating this entire structure through
(C,,/0,1,0) we get the structure given in Figbg This do-
main wall passes through the poift3, 3, 3) and will also
exhibit the two-dimensional symmetry @mn?®. This twin
configuration corresponds to the (ll) twin, i.e., the twin
wall of domain pair(3,5. The generating elements of the
diperiodic group of this structure ar&|0,0,0), (@,0,0,1),
(Cal—1,1,1), (@4,—1,1,0) with the origin at—3, 3, 3) and
basis vector0, 0, 2, (2, 2, 0 in terms of the original cubic
group. The order-parameter profile equations will take the
same form if we perform a similar simplification. For ex-
ample, the reduction from four to two differential equations
must use the following conditionsQ,=Q3, and Q;
=—Qg. The equations and form of the OP profile are their
equivalent.

Although we have used dimensionless parameters to illus-
trate the OTB profile, for a specific material, we can obtain
the OTB width and energyusing actual GLFE parameters.
For the effective GLFE we can estimate the width of the
domain wall w since below the phase transitiow
=2.\/GC/|B|. There is insufficient experimental data to es-
timate the coefficienG accurately. Her& denotes an effec-
tive gradient coefficient for the material under consideration
and quantifies the energy cost needed to create an order-
parameter inhomogeneity, an orientational domain wall in
the present case. However, based on the parameter estimates
given below, if we choos&~4.0x10"Jm *kg~* we find
w~27.6 A, which is approximately four times the cubic lat-
tice parameter.

In Ref. 1, using the available structural and phonon
dat£®?! for LaAg;_,In (x~0.2), we estimated the
coefficients of an effective Landau free energy
Ay=7.6587x 107
IJm kg 'K ! Ty=120K, B=3.9455<10° Jm’
(kg)~2, and C=7.622<10""°3m °(kg) 3. Similarly we

this OTB structure will exhibit the two-dimensional twin obtained two combinations of gradient coefficierds:+ g,

symmetry ofCmnR. This is a symmetry group that leaves =1.10715¢< 10°

Jm3kg ! and g,+95=3.96x10

the two domains and the wall invariant, necessarily it is aym 3kg™?.

diperiodic group® with translations parallel to the wall. The
generating elements of this diperiodic group aEQ,0,0),

(0,0,0,1), (C,4/0,0,0), (4,/0,0,0) with the origin at IV. SUMMARY AND CONCLUSIONS

For a cubic to tetragonal transition an orientational twin
consists of two domains that have different tetragonal axes.
Elastic compatibility®'* requires that the domain wall
should lie in particular lattice planes. We have shown that

TABLE V. Boundary conditions for orientational twins with
order-parameter profil®=(Q(x"),Q2(x"),Qs(x"),0,0Q¢(x")).

Twin of X'=—oo X'=o

such OTB's produced in a®i—-Dj/ improper ferroelastic
Lely (0,Q0,Q0,0,0,0) Q0.0.0,0Q0) first-order phase transition iRAg;_, In, (R=La,Ce,Pr) can
Lelly (0.Q0.Q0,0,0,0) Q0.0,0,0,0:-Qo) be described by a Ginzburg-Landau theory with a six-
L1y (0,Q0,Q0.,0,0,0) (+Q0,0,0,0,0Q0) dimensional order parameter. For a general case, one must
I-1Vy (0,Q0,Q0,0,0,0) (—Q0,0,0,0,0-Qg) numerically solve a system of four-nonlinear-coupled differ-
-1l (0,—Qq,Q0,0,0,0) @0.0,0,0,0:- Q) ential equations. This paper provided both the form of the
-1y (0,—Q,Q0,0,0,0) (—Q0,0,0,0,0Q0) coupled differential equations and the related boundary con-
-1V (0,—Qy,Q0,0,0,0) (—Q0,0,0,0,0-Qp) ditions. The solutions reveal the detailed atomic displace-
-y, (0,Q0,—Q0,0,0,0) (—Q0,0,0,0,0Q0) ment pattern inside the domain-wall regions. In order to re-
1V, (0.Q0,—Q,,0,0,0) (- Q0,0,0,0,0-- Qo) duce the complication of so many undefined expansion
IV, 1V, (0, Qp,— Q,,0,0,0) (- Q,,0,0,0,0-- Qp) coefficients, we chose a special set of parameters that re-

duced the four equations to two. The general feature of an
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orientational twin can be seen from this simplified solution. d | oFg
The computed OTB profile can be used to predict the attenu- X | 7000 =(92193)Qex'x’ - (A3d)
ation and phase shift associated with the propagation of an ox

ultrasonic pulse in a crystal with a single OTB and its effect Tne Eyler-Lagrange equations for the elastic displacement
on elastic constantg.It would be highly desirable to observe lead to the following conditions for the components of the

the details of this OTB structure in high-resolution electrong; aqg tensow2 o, + o5+ V6ag=0, or equivalently, in terms

microscopy. L of the symmetry-adapted strain components defined in Egs.
We used the double coset decomposition and the conce?ya)_(m

of crystallographically equivalent domain pair classes to

identify only one class of OTB’s. We gave an example of V2C118,+ V2D 1(Q%+ Q3+ Q2+ Q2) + &x0e
two different domain pairg3, 2 and (3, 5, which were e Pl ez Rs e 2273
crystallographically equivalent. A similar procedure and +D,(Q3+ Q32— 2Q%2—2Q3) —v3D5(Q5+Q3)

analysis can also be applied to describe twin boundaries in (G &

cubic (Pm3m) to orthorhombic(Pmma and cubic to trigo- +V6Cas86 T V6D,4Q1Q2=0. (Ad)

nal (P3) structural transitions observed in the binary AuCdsSimilarly, o,=0, or

and pseudobinary TiNI(M=Fe, Al, Cu) shape memory

a”OyS'sq 1 2 2 2 2 2 2
92:6_22[‘/§D2(Q3_Q6)+D3(Q3+2Q2_Q6_2Q1)],
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elastic compatibility constraints. Using the elastic compat-

ibility relation &,/,,=const=0 we have

APPENDIX: REDUCTION OF VARIATIONAL EQUATIONS y Ey'z
If we make the rotation of the coordinate system around es—e5=0. (A7)

the z axis, the derivatives will be given in terms of the new Thus, from Eqs(A6) and (A7)

coordinates as follows: '

e4:e5:0- (A8)
J 11 + L (Ala) Anoth tibility relati t leads to the fol
— = a nother compatibility relatiore,, = const leads to the fol-
IX 2 X a0y lowing relation:
J 19 1 9 2D;  v2(D,+v3Dy)
—=— =, (Alb) 91:‘063—( ~—t P Q. (A9
ay v2 ox' ooy C11 Co2

) ) The last nontrivial compatibility relatio, . = const gives
For a Q1D solutiong/ 9z’ = dl 9y’ =0, so that the gradient g

energy becomes

V2e, +e;— \/3/2eg

Fo=3(01+02)(Q% . +Q5,)+3(92+9)(Q3,, + Q5.

—3(94195) Q1 Qe » (A2) - \/Es;c/y/z( - 2‘21?1 i (DzszS)) o
and (A10)
g | oFe . I_:rom_ Egs.(A4), (A9), and (A10) we obtain the elastic
W((9(91’)(/) =(091+092)Q1xx —3(94195)Qaxrx » staine, in terms of the order paramet&
(A33) . [ vaby-20, ., .,
e;=e;+ m(Qo_Ql_Qz)

o | oFc )
X =(91+92)Q2x/x = 3(94195) Qix/x’ 5

aQZ,X’ \/2D1+D2_\/§D3 2 2 2
(A3b) + 2611+ 6224' 6644 (QO_ Q3_ QG)
d | dFg \V6D,Q:Q,
W(&Q&X,) =(92193)Qaxx’ » (A3c) T 2Bt Ept 60 (Alla
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V2D, —2D,
, V2D1+D,—v2Dy

V6D,Q.Q,

281+ Coyt 6Cyy)’

e;=e;—Vv2

(Q3-Qi-Q3)

(Q3-Q3-Q3)

(Al1b)

& V2D, 2D,
€6~ VO 28 1+ oot 6Cas
V2D, +D,—v3D5

V6D,4Q:Q;

2841+ Copt 684’

(Q5-QI-Q3)

(Q5-Q3-Q3)

(Al10)

PHYSICAL REVIEW B 65094110

dF.
Q1

=2(D1e;—2D,e3+2D3e,)Q1+D4esQ5,
(Al2a

oF,
Q5

=2(D,e;—2Dye3—2D3€,)Q,+ D4egQy,
(A12b)

F
ﬂQZ =2[D;e;—(V3D,+D3)e;+(D,—Vv3D3)e;3]Qs,
(Al12¢)

Fe

20 =2[D;c,+(v3D,+D3)e,+(D,—v3D3)es]Qg,
6

(Al12d)

wheree] = —(2D4/¢,,) Q3 ande} =[(D,+v3D3)/€,,]Q3.

These relations are used to eliminate the strains in the equi- Now let us consider the Landau part of the equilibrium

librium conditions involving the coupling enerdy,, i.e.,

JF L _
9Q1

condition for all four components

2AQ;+4B;Q;Q,+2B,Q1Q5+2B,Q, Q5+ 2B5Q; Q5+ 6C1Q,Q%+ 2C,Q4(Q7Q5+ Q5Q5

+Q3Q?) +2C3Q;Q5Q5+ 2C,4Q1(Q%Q§ + QQ5+ Q3Q3) +2C5Q41(Q35Q%+ Q7Q%)2C6Q1[ Q5Q3
+2Q2Q3+ Q3Q3+Q3(Q3—2Q3)1+2C,Q1[2Q3(Q3— Q35— Q%) + Q3+ Q4
—Q2]12C4Q1[2Q%(Q5+ Q%) + Q3 — Q3]+ 2CyQ1[ 2Q%(Q5— QF) — Q3+ Qgl, (A133)

JF, -
9Qs

2AQs+4B1QeQ%+ 2B,Q6Q5+ 2B3QsQ5+ 2B,QsQ%+ 6C1QsQ* + 2C,Q6(Q5Q%+ Q1Q5

+Q32Q3)2C4(Q%Q3+ Q3Q3) Qs+ 2C,4Q6( QIQ%+ Q2Q3+ Q3Q3) + 2C5QsQ7Q5+2CQq[ QIQ3
+Q3—2Q7Q5+2Q3Q5— 2Q5Q5]+ 2C;Q¢[ — Q7 — Q3 —2Q5(Q% — Q%) 1+ 2C4Qe[ — 2Q5(Q5+ Q%)
+Q3— Q3]+ 2C4Qe[ Q53— Q1+ Q3+ 2Q3(Q5- Q- QI)1, (A13b)

JF L
Q>

2AQ,+4B;Q,Q%+2B,Q,Q3+2B,Q,Q3+ 2B5Q,7+ 6C;Q,Q%+2C,Q,(Q2Q%+ QIQ3+ Q3Q))

+2C3Q,Q3Q3+ 2C,4Q2(Q3Q%+ Q?2Q2+ Q2Q3) +2CsQ2(Q2Q%+ Q2Q3) +2CQ,(2Q3Q3+ Q2Q?
+QIQ3-2Q3Q5+ Q) +2C,Q,[ Q1 +2Q3(Q— Q5— Q3) — Q3+ Qil+2C4Q[ Q1 — Qg+ 2Q3(QF+Q3)

+2C4Q,[2Q5(Q5— Q%) — Q35— Qal,

dF

(A130)

——=2AQ;+4B,Q3Q%+2B,Q3Q7+2B3Q3Q5+ 2B,Q3Q3+ 6C1Q3Q* + 2C,Q4(QIQ?+ Q7Q3

dQ3

+Q32Q3) +2C5Q3(Q2Q%+ Q3Q3) +2C,Q3(Q3Q%+ QIQ3+ Q3Q3) +2C5Q3Q7Q3+ 2CQ3( — 2Q3Q3
+Q1+Q2Q3-2Q2Q3+2Q%Q3) +2C,Q3(Q1 — Q3+ 2QIQ% - 2Q3Q%) +2CQ43(Q1— Qg — 2Q7Q3
+2Q3Q%) +2CyQ4[ Q1 — Q3+ Q4+2Q5(Q5— QT —Q3)1, (A13d)
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whereQ?=(Qf+Q3+Q35+Qp). F
Substituting Eqs(A3), (A6), (A1l), (A12) and(A13) into E:

Euler’s equilibrium condition, we find four coupled differen-

tial equations for the four nonzero components of the OP.

The boundary conditions, given in Table V, are determined +

for a specific pair of domain states.

2(vV2D,—2D,)?Q3

2 — = =
2C111+Cyrt6Cyy

D,e; —2D,e; —

4(V2D,+2D,)(V2D,—2D,) 48D3
2C11+Copt 6Cyy C22

2
2

These four coupled nonlinear differential equations can 4(v2D;1+2D,)(v2D,—2D,) 48D§ )
only be solved numerically. For the orientation twig (), + 55 1ot Be +t 2 Q1(Q2,
we chooseQ; = Qg andQ,= Q; to illustrate the general fea- 172zt Thad =
tures of an OTB solution. This choice reduces the four (Al4b)

coupled equations to two equations. From Table V, we note

that this condition is always true in a single-domain stateand the equilibrium conditions, EqéA13), are reduced to
i.e., atx’ ==, From Eqs.(A13) we see this can be gener- two-coupled equations fa®, andQ,, given in Sec. Il just
ally true only whenB3;=B;, C3=Cg, and C4=C;=Cgq before Egs(9).

=Cgy=0. In addition, the coupling coefficients must satisfy The corresponding parametgk$’ Bi’ and Bé are given
D,=0 andD3=v3D,, and the gradient coefficients must py

satisfy the following conditionsg,;=g3; and g,+gs=0.

With these conditions Eq$A12) can be simplified to
2(vV2D,—2D,)?

’_ N o “ATEEL O TmTeS 2
. 2| Die; —2Dye;— 2(v2D,~2D)°Qq A'=D1& 2025 2<A311+(A322+6<A344QO' S
dQy e 278 284+ 8yt 6By
+[4(\/2D1+2D2)(\/2D1—2D2) 4803] ., (V2D1+2D,)(V2D;—2D,) 6D} -
2611+ 622+ 6644 622 1 1™ 2(2611"“ 622—1'_ 6644) 622 ' ( )
. 4(V2D,+2D,)(V2D,—2D,) .\ 48D3|
2811+ Eppt 684y Ey | 2 L y 4(D2-2D3)  24Dj (AL5O
=— ~ ~ —. C
(Al4a) 2 281, +8pt 684 Cx
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