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Orientational twins in an improper ferroelastic phase transition driven by the M 5
À zone-boundary

phonon in RAg1ÀxIn x
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Orientational twins involve two domain states that exhibit rotational symmetry relationships between them.
For an improper ferroelastic cubic to tetragonal first-order phase transition driven by theM5

2 zone-boundary
phonon in the CsCl structure, there are three possible directions for the tetragonal axis of the low-temperature
phases. The existence of four antiphase-related-domain states for each given tetragonal orientation introduces
additional possible pairing schemes for the twins. We obtain only three distinct domain pair classes: two

antiphase boundary classes and one orientational boundary class. For thisOh
1-D4h

17 (Pm3̄m-I4/mmm) transi-
tion we derive the general governing equations for the orientational twins based on a Ginzburg-Landau theory,
which constitute a system of four coupled nonlinear differential equations. General features of the orientational
twin solutions are demonstrated through a special choice of the parameters for which the four coupled equa-
tions can be reduced to two. The orientational twin boundaries have relatively large elastic energy and,
therefore, they are strongly restricted to preferred lattice planes.

DOI: 10.1103/PhysRevB.65.094110 PACS number~s!: 64.70.Kb, 02.20.2a, 61.50.Ah, 61.50.Ks
in

d
a
a
te
re
u
n
o
i

d
b
id
te
t

m
re

n
de
ce
au
lls
nc
s

p
th

s in
ials

r-
try
e-

ter

f
ion
lloy

he
the

hear

to
an-
-

e

re-

sive
on-

to
I. INTRODUCTION

The Oh
1 (Pm3̄m) to D4h

17 (I4/mmm) cubic to tetragonal
improper ferroelastic first-order phase transition
RAg12xInx ~whereR5La, Ce, and Pr! results in 12 different
domain states with three independent tetragonal axes. As
cussed in Ref. 1 there are four different displacement p
terns for each tetragonal axis, which differ by a fraction
translation of the parent unit cell. These four domain sta
with the same tetragonal axis can form antiphase structu
An antiphase pair is a domain pair relationship where a p
lattice translation is lost from the parent symmetry group a
transforms the first domain into the second. Another imp
tant type of domain structure is an orientational pair, which
commonly referred to as a ‘‘twin.’’ An orientational twin
boundary~OTB! is formed by two domains that are relate
by a lost rotation from the parent group but that cannot
related by a pure translation. The orientational twins cons
ered here consist of two domain states having different
tragonal axes. The domain walls tend to be planar since
elastic energy is high for wall bending. In addition, the nu
ber of orientations for the twin domain pair walls are mo
limited than for antiphase boundaries.

The study of various types of domain walls and their e
ergetics in the context of both the first- and second-or
structural phase transitions has been carried out in re
years for a variety of materials. Within the Ginzburg-Land
formalism a few analytic solutions for these domain wa
have been obtained for relatively simple free energy fu
tionals. However, it becomes an increasingly unwieldy ta
to classify and study all possible domain walls when~i! the
primary and/or secondary order parameters are multicom
nent, and~ii ! there are several independent invariants in
gradient~Ginzburg! part of the free energy.
0163-1829/2002/65~9!/094110~11!/$20.00 65 0941
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We illustrate a general approach to these consideration
the context of ferroic phase transitions occurring in mater

with CsCl structure~space groupOh
1,Pm3̄m! induced by

M5
2 mode softening, specifically, a first order, improper fe

roelastic transition to a tetragonally distorted low symme
phase (D4h

17,I4/mmm), such as in the pseudobinary rar
earth alloy LaAg12xInx (x;0.2) ~Fig. 1~a!!. We have previ-
ously identified the six-component primary order parame
~OP!, nineteen secondary OP’s~including strain!, and pre-
sented the Landau free energy.2 In addition, we found five
gradient invariants3 for theM5

2 distortion mode. The class o
OP directions consistent with this irreducible representat
and the observed atomic displacements of the rare-earth a
is denoted asP10 in the notation of Stokes and Hatch4 and
contains 12 equivalent directions~or domains!.

Note that the scientific and technological interest in t
CsCl structure materials is related to the tendency of
transverse acoustic~TA! phonon mode to soften at theM
point of the Brillouin zone. For LaAg12xInx (x50.2) the
structure has been determined and softening of both the s
modulus and the TA (S2) phonon mode at theM point have
been observed. In addition toRAg12xInx , there are related
materials, e.g., YCu and LaCd, that undergo similar cubic
tetragonal transformations. The cubic to orthorhombic tr
sition caused by a relatedM-point phonon softening ob
served in the shape memory alloys AuCd and NiTi-M (M
5Fe, Al, Cu) ~Refs. 5–7! can be understood within th
present Ginzburg-Landau free-energy~GLFE! framework.
Therefore, the results on the orientational twin boundary p
sented here have a wide applicability.

In this paper we present a systematic and comprehen
group-theoretic treatment of domain walls based on the c
cepts of thedirectionof the OP and theisotropy groupof the
OP.4 For a given phase transition, this technique allows us
©2002 The American Physical Society10-1
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~a! construct all independent~Landau! free-energy and gra
dient invariants,~b! classify possible homogeneous phas
~c! classify all crystallographically equivalent domains a
domain pairs,~d! obtain criteria for the stability, merging
and splitting of domain walls,~e! determine secondary OP
and their effect on the domain walls, and finally~f! calculate
the continuous OP profiles for~antiphase and! orientational
twin structures. This procedure could be widely applied
ferromagnetic, ferroelectric, ferroelastic, magnetoelas
~perovskite based! high-Tc superconductors and colossa

FIG. 1. Three different domain states of CsCl structure w
displacements ofM5

2 symmetry that lead forRAg12xInx to a D4h
17

tetragonal low-temperature structure.
09411
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magnetoresistance materials, pseudobinary rare earth a
~e.g.,RAg12xInx , R5La, Ce, Pr! and many other materials

Based on the same model as in Ref. 1, in the follow
two sections, we address in detail the problem of dom
pairs and orientational twins, respectively, from a grou
theoretical perspective. In Sec. II we analyze domain pa
We findonly onecrystallographically distinct class of OTB’
andtwo distinct classes of antiphase boundaries~APB! out of

( 1
2 )(12)(13)578 possible boundaries. The APB’s were stu

ied in detail in Ref. 1. Here we emphasize OTB’s. In Sec.
the ~solitonlike! OP profiles for a twin domain are compute
and the constraints on the free-energy coefficients are de
mined for the specific OTB. For more general cases,
present a set of four coupled nonlinear differential equati
and look at some special twin solutions and correspond
lattice displacements. We summarize the main results in S
IV. The details of the variational equations are given in t
Appendix.

II. DOMAIN PAIRS

Possible homogeneous crystal structures are obtaine
minimization of the Landau part of the GLFE. From the
solutions one finds the values of the order parameters, w
are then used as boundary conditions for the heterogen
problems. In our case, the high symmetry isOh

1 (Pm3̄m),
and the lower symmetry isD4h

17 (I4/mmm). TheM5
2 irreduc-

ible representation of theOh
1 cubic space group is the repre

sentation of interest here. This representation defines t
arms of the star, corresponding to the points (2p/a)

3( 1
2 , 1

2 ,0), (2p/a)( 1
2 ,0,12 ) and (2p/a)(0,1

2 , 1
2 ) in the Bril-

louin zone and two-dimensional small representations.8 The
class of OP directionsP10 defined in Ref. 4 gives us the
correct distortions at the transition and the representative
pression for the OP~domain 1! is h5(a,a,0,0,a,2a),
wherea is an arbitrary lattice mode displacement amplitud
Thus the P10 direction combines contributions from tw
arms of the star, arms 1 and 3 for this domain. The eleme
of the isotropy subgroupD4h

17 for this order-parameter direc
tion are listed in Table I, and have a point group of order

This is not the most general orientation of the OP. Cor
sponding to the most general direction, 6D14, the triclinic
subgroupC1

1 (P1) with a cell size change of 4 is obtaine
Nor is this the highest possible symmetry for this IR, sin
the direction (a,0,0,0,0,0), corresponding to one arm of t
star, gives the orthorhombic space groupD2h

5 (Pmma) with
only a size change of 2. However, the particular transition
interest here defines the choice of the order-parameter d
tion P10.

There are 12 equivalent domains~or directions! for the
P10 class4,9 that correspond to the minimization of th
GLFE. Each domain can be obtained from another dom
by a lost high-symmetry operation.10 We denote these direc
tions asP10( i ) with i 51,...,12. Any domain can be chosen
a representative for the class. These crystallographic
equivalent domains constitute a distinct orbit11 with respect
to the space groupG0 ~Oh

1 for our specific considerations!.
Two domains arecrystallographically equivalent, i.e., they
0-2
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TABLE I. Elements of isotropy subgroup I4/mmm, domain 1.

Basis vectors Origin Elements

~2,0,0!, ~0,2,0!, ~0,0,2! ~1
2,

1
2,0! (Eu0,0,0), (C2xu0,1,0), (C2yu1,0,0), (C2zu1,1,0),

(C2bu1,1,0), (C4z1u1,0,0), (C4z
2 u0,1,0), (C2au0,0,0),

~Iu1,1,0!, (sxu1,0,0), (syu0,1,0), (sxu0,0,0),

(sdbu0,0,0),(S4z
2 u0,1,0), (S4z

1 u1,0,0), (sdau1,1,0)
os

y
r
a

th
f

he

II
we
nd-

le

the
di-

e

have the same structure but different orientations or p
tions, if there is an element,g in G0 , that can transform one
domain into the other. For our case this means, ifg is in Oh

1

thengP10( i )5P10( j ). All such domains can be obtained b
acting with the operations ofOh

1 on the OP expression fo
any one domain, sayP10(1). Theresulting set constitutes
classof crystallographically equivalent domains.

The group elements that do not change~i.e., leave invari-
ant! the order parameter, for a particular domain, form
isotropy group Fof OP direction.F must be a subgroup o
Oh

1. For directionP10, domain one, the subgroup isD4h
17 with

the specific symmetry elements listed in Table I. The ot
09411
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equivalent order-parameter directions are listed in Table
and are denoted 1 through 12 in column two. In Table II
give the OP directions in the equivalent labeling correspo
ing to lattice normal modesQ.1,2 The normal-mode basisQ
is related to the order-parameter basis~denoted by h!
through an orthogonal transformation. In column 5 of Tab
II we list the displacements arising from theM5

2 mode in-
ducing the transition to the subgroupD4h

17 . We have listed the
displacements of the atoms, which are in equivalent in
body-centered tetragonal subgroup. Their positions and
rections are indicated with respect to the cubicOh

1 axes. All
other atoms in theD4h

17 structure can be obtained by lattic
TABLE II. Order parameter directions: Homogeneous solutions.

Tetragonal axis Label State
Order parameter

Q, h

Displacement atx,y,z5@0,0,0#, @1,0,0#, @0,1,0#,
@0,0,1#

at x,y,z,51/2@1,1,1#, 1/2@3,1,1#, 1/2@1,3,1#,
1/2@1,1,3#

x 3 Ix (0,Q0 ,Q0,0,0,0)
(a,2a,a,a,0,0)

@011#, @011#, @01̄1#, @011̄#

@100#, @ 1̄00#, @000#, @000#
6 IIx (0,2Q0 ,Q0,0,0,0)

(a,2a,2a,2a,0,0)
@01̄1#, @011̄#, @011#, @011#

@000#, @000#, @100#, @ 1̄00#

9 III x (0,Q0 ,2Q0,0,0,0)
(2a,a,a,a,0,0)

@011#, @01̄1#, @011#, @011#

@000#, @000#, @ 1̄00#, @100#
12 IVx (0,2Q0 ,2Q0,0,0,0)

(2a,a,2a,2a,0,0)
@011#, @011#, @011̄#, @01̄1#

@ 1̄00#, @100#, @000#, @000#
y 2 Iy (Q0,0,0,0,0,Q0)

(0,0,a,2a,a,a)
@101#, @ 1̄01#, @ 1̄,0,1̄#, @101̄#

@010#, @000#, @01̄0#, @000#
5 IIy (Q0,0,0,0,0,2Q0)

(0,0,a,2a,2a,2a)
@101̄#, @ 1̄01̄#, @ 1̄01#, @010#

@000#, @01̄0#, @000#, @010#
8 III y (2Q0,0,0,0,0,Q0)

(0,0,2a,a,a,a)
@101#, @101#, @101̄#, @ 1̄01̄#

@000#, @010#, @000#, @01̄0#

11 IVy (2Q0,0,0,0,0,2Q0)
(0,0,2a,a,2a,2a)

@ 1̄01̄#, @101̄#, @101#, @ 1̄01#

@01̄0#, @000#, @010#, @000#
z 1 Iz (0,0,0,Q0 ,Q0,0)

(a,a,0,0,a,2a)
@110#, @ 1̄10#, @11̄,0,#, @110#

@001#, @000#, @000#, @001̄#

4 IIz (0,0,0,2Q0 ,Q0,0)
(2a,2a,0,0,a,2a)

@ 1̄10#, @110#, @110#, @11̄0#

@000#, @001#, @001̄#, @000#
7 III z (0,0,0,Q0 ,2Q0,0)

(a,a,0,0,2a,a)
@110#, @110#, @110#, @ 1̄10#

@000#, @001̄#, @001#, @000#
10 IVz (0,0,0,2Q0 ,2Q0,0)

(2a,2a,0,0,2a,a)
@100#, @11̄0#, @ 1̄10#, @110#

@001̄#, @000#, @000#, @001#
0-3



.g

n
et

re

n

is

th

ly

n
ro
nc
iva
i-
n

th

al
hi

a
rm

on

d

e
di-
by
ree
up-
ffec-
air

n-
o-

of
he

of

ical
sec-

In a

to
for

ach
sent
la-

-
ui-
se

di-
er-

all
au

o-
are

n

DORIAN M. HATCH, WENWU CAO, AND AVADH SAXENA PHYSICAL REVIEW B 65 094110
translations and body centering within the subgroup, e
lattice translations~2,0,0,!, ~0,2,0!, ~0,0,2! and body center-
ing position~1

2,
1
2,

1
2! for domain 1.

If a group operationt i1 transforms domain 1 into domai
i, t i1d(1)5d( i ), then all the elements of the left cos
t i1F (1) also transform domain one into domaini

t i1F ~1!d~1!5t i1d~1!5d~ i !,

whereF (1) is the isotropy group of domain one. There a
twelve sets of distinct elementst i1F (1) that will transform
d(1) into d( i ), i 51,2,3,...,12, respectively. In fact the pare
groupOh

1 can be decomposed into left cosets:11

G05EF~1!1t2,1F
~1!1¯1t12,1F

~1!. ~1!

The i th left coset transforms domain 1 into domaini. Eleven
left cosets are listed in Table III while the first left coset
just the isotropy groupF (1), or D4h

17 , with the elements listed
in Table I.

An ordered pair of domains is written as„P( i ),P( j )….
The set of transformationst j i such thatt j i P( i )5P( j ) is la-
beled Tji . The two domain pairs „P( i ),P( j )…, and
„P(k),P( l )… are said to becrystallographically equivalentto
each other if there exists an element ofOh

1 such thatgP( i )
5P(k), and simultaneouslygP( j )5P( l ). We denote this
equivalency as„P( i ),P( j )…;„P(k),P( l )…. All such equiva-
lent domain pairs form adomain pair class. Domain pair
classes can be determined by the decomposition ofOh

1 into
disjoint double cosets.11–13

G05F ~ i !cF~ i !1F ~ i !t2iF
i1¯1F ~ i !t r1F ~ i !.

Each double coset corresponds to the following action:
left cosett ri F

( i ) above transforms domainP( i ) into P(r ). If
we then act with an elementg of F ( i ) on the domain pair
„P( i ),P(r )… an equivalent domain pair is obtained, name
„P( i ),gP(r )…5„P( i ),gtri F

( i )P( i )…. All such pairs forg in
F ( i ) are crystallographically equivalent to„P( i ),P(r )…. Thus
the number of inequivalent domain pairs is in one-to-o
correspondence with the usual double coset process of g
theory. The concept of a domain pair class is important si
domain pairs belonging to the same class will have equ
lent relative symmetry properties, differing only in their or
entation relative to the parent group. Therefore, we need o
consider a representative domain pair that belongs to
class. We pick the representative pair so thatP(1) is always
in the first position, i.e., of the form„P(1),P( j )…. This rep-
resentative domain pair then yields the types of domain w
to be investigated, which are common to all pairs in t
class.

Antiphasedomains imply a domain relationship where
pure translation can be found in the left coset that transfo
the first domain into the second.Twin domains cannot be
related by a pure translation, but by~proper or improper!
rotations or, for nonsymmorphic space groups, by rotati
together with translations. For theOh

1 to D4h
17 transition we

obtain two distinct classes of antiphase pairs represente
the pairs~1,4! and ~1,10!, which were studied in detail in
Ref. 1 and we will not consider them further here.~We have
09411
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dropped theP10 notation from the domain labeling since w
are now restricting our attention to just this class of OP
rections.! We obtain only one class of OTB’s represented
~1,2!. Other equivalently related domain pairs in these th
classes are given in Table IV. We stress that the gro
theoretical methods used here are systematic and have e
tively reduced our considerations to only three domain p
types represented by the domain pairs~1,4! ~1,10!, and~1,2!
rather than the 78 possible pairs that might initially be co
sidered. We dropped consideration of the trivial fourth d
main pair class corresponding to the pair~1,1!.

Every domain has definite values forsecondaryOP’s,Oj .
A secondary OP is a parameter direction from another IR
the high symmetry group, which is also invariant under t
symmetry group of the primary OP, i.e.,F ( i )Oj5Oj . Since
the symmetry of the lower symmetry phase is a subgroup
the parent phase, the isotropy group ofOj can be a super-
group of F ( i ) ~and must be a subgroup ofG0!. From these
group symmetries we can find the corresponding phys
distortions that can be chosen as secondary OP’s. The
ondary OP of interest here is the spontaneous strain.
ferroelastic crystal, the domain wall direction~s! is~are! along
some specific direction~s!.14,15 e.g., y56z defines the do-
main walls for domains 1 and 2.

III. ORIENTATIONAL TWINS

We have collected the 12 domains, listed in Table II, in
three sets corresponding to the three possible directions
the tetragonal orientation. The four domain states in e
tetragonal orientation are antiphase related and we repre
them by Roman numerals I–IV. The tetragonal axis is
beled by a subscriptx, y, or z. For example, Ix represents
domain state I with tetragonal axis in thex direction. We
choose domain states Ix and Iy , corresponding to an orienta
tional twin, as an example to derive the equations for eq
librium configurations. The displacement patterns for the
two domains are shown in Figs. 1~b! and 1~c!. This orienta-
tional twin is equivalent to the~1,2! twin representative.

From the results of Sapriel15 the wall orientations for fer-
roelastic twins are determined by strain compatibility con
tions. These wall orientations minimize elastic strain en
gies. For the twins between domain states Ix and Iy , one of
the allowed domain walls has its normal in@11̄0#. In the
discussion presented below, we will assume this domain w
orientation to illustrate the use of the Ginzburg-Land
theory to derive the OTB structure profile.

The order-parameter ‘‘vector’’ has four nonzero comp
nents.~For an antiphase boundary, only two components
nonzero, see Ref. 1!. The free energy for the Ix-Iy orienta-
tional twin can be written as follows:

F5FL1Fel1Fc1FG , ~2!

where~setting,Q45Q550 in the free-energy expression i
Refs. 1 and 2!.
0-4
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TABLE III. Left cosets relative toD4h
17 of domain 1.

T1,I Operations

T2,1 $C312u000%, $S611u010%, $C342u100%, $S641u001%,
$C322u001%, $S621u100%, $C332u010%,
$S632u000%, $C4x1u000%, $S4x2u010%, $C2 f u010%,
$sd fu000%, $C4x2u001%, $S4x1u100%,
$C2du100%, $sddu001%

T3,1 $C311u000%, $S612u100%, $C321u001%, $S622u010%,
$C331u010%,$S632u001%, $C341u100%,
$S642u000%, $C4y2u000%, $S4y1u100%, $C2eu100%,
$sdeu000%, @C2cu010#, $sdcu001%,
$C4y1u001%, $S4y2u010%

T4,1 $C2yu000%, $syu001%, $C2zu010%, $szu100%,
$Eu100%, $I u010%, $C2x2u001%,
$szu000%, $C4z1u000%, $S4z2u001%, $C4z2u001%,
$S4z1u000%, $C2au100%, $sdau010%,
$C2bu010%, $sdbu100%

T5,1 $C322u000%, $S621u010%, $C332u100%, $S631u001%,
$C312u001%, $S611u100%, $C342u010%,
$S641u000%, $C4x2u000%, $S4x1u010%, $C2du010%,
$sddu000%, $C4x1u001%, $S4x2u100%,
$C2 f u100%, $sd fu001%

T6,1 $C331u000%, $S632u100%, $C341u001%, $S64u010%,
$C311u010%, $S612u001%, $C321u100%,
$S622u000%, $C2cu000%, $sdcu100%, $S4y1u100%,
$S4y2u000%, $C4y2u010%, $S4y1u001%,
$C2eu001%, $sdeu010%

T7,1 $C2xu000%, $sxu001%, $Eu010%, $I u100%, $C2xu100%,
$szu010%, $C2yu001%,
$syu000%, $C4z2u000%, $S4z1u001%, $C4z1u001%,
$S4z2u000%, $C2bu100%, $sdbu010%,
$C2au010%, $sdau100%

T8,1 $C342u000%, $S641u010%, $C312u100%, $S611u001%,
$C332u001%, $S631u100%, $C322u010%,
$S621u000%, $C2du000%, $sddu010%, $C4x2u010%,
$S4x1u000%, $C2 f u001%, $sd fu100%,
$C4x1u100%, $S4xu001%

T9,1 $C321u000%, $S622u100%, $C311u001%, $S612u010%,
$C341u010%, $S642u001%, $C331u100%,
$S632u010%, $C4yu000%, $S4y2u100%, $C2cu100%,
$sdcu000%, $C2eu010%, $sdeu001%,
$C4y2u001%, $S4y1u001%

T10,1 $C2zu000%, $szu001%, $C2yu010%, $syu100%,
$C2xu100%, $sxu010%, $Eu001%,
$I u000%, $C2bu000%, $sdbu001%, $C2au001%,
$sdau000%, $C4z2u100%, $S4z1u010%,
$C4z1u010%, $S4z2u100%

T11,1 $C332u000%, $S631u010%, $C322u100%, $S621u001%,
$C342u001%, $S641u100%, $C312u010%,
$S611u000%, $C2 f u000%, $sd fu010%, $C4x1u010%,
$S4x2u000%, $C2du001%, $sddu100%,
$C4z2u100%, $S4xu001%

T12,1 $C341u000%, $S642u100%, $C331u001%, $S632u010%,
$C321u010%, $S622u001%, $C311u100%,
$S612u000%, $C2eu000%, $sde1u100%, $C4y2u100%,
$S4yu000%, $C4y1u010%, $S4y1u001%,
$C2cu001%, $sdcu010%
094110-5
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FL5A~Q1
21Q2

21Q3
21Q6

2!1B1~Q1
21Q2

21Q3
21Q6

2!2

1B2~Q1
2Q3

21Q2
2Q6

2!1B3Q3
2Q6

21B4~Q1
2Q6

21Q2
2Q3

2!

1B5Q1
2Q2

21C1~Q1
21Q2

21Q3
21Q6

2!31C2~Q1
21Q2

2

1Q3
21Q6

2!~Q1
2Q3

21Q2
2Q6

2!1C3~Q1
21Q2

21Q3
2

1Q6
2!Q3

2Q6
21C4~Q1

21Q2
21Q3

21Q6
2!~Q1

2Q6
21Q2

2Q3
2!

1C5~Q1
21Q2

21Q3
21Q6

2!Q1
2Q2

21C6@~Q1
21Q2

2

2Q3
2!Q2

2Q6
21~Q1

21Q2
22Q6

2!Q1
2Q3

21~Q3
22Q6

2!~Q1
2Q3

2

2Q2
2Q6

2!#1C7@Q1
4~Q2

22Q3
22Q6

2!1Q2
4~Q1

22Q3
22Q6

2!

1~Q3
42Q6

4!~Q1
22Q2

2!#1C8@~Q1
42Q6

4!~Q2
21Q3

2!

1~Q2
42Q3

4!~Q1
21Q6

2!#1C9@~Q1
42Q2

4!~Q3
22Q6

2!

1Q3
4~Q6

22Q1
22Q2

2!1Q6
4~Q3

22Q1
22Q2

2!#, ~3!

Fel5
ĉ11

2
e1

21
ĉ22

2
~e2

21e3
2!1

ĉ44

2
~e4

21e5
21e6

2!, ~4!

Fc5D1e1~Q1
21Q2

21Q3
21Q6

2!1D2@)e2~Q6
22Q3

2!

1e3$Q3
21Q6

222~Q1
21Q2

2!%#1D3@e2~Q6
22Q3

212Q1
2

22Q2
2!2)c3~Q3

21Q6
2!#1D4c6Q1Q2 , ~5!

FG5g1~Q1,x
2 1Q2,y

2 !1g2~Q3,x
2 1Q2,x

2 1Q1,y
2 1Q6,y

2 !1g3~Q3,y
2

1Q6,x
2 !1g4Q1,yQ2,x1g5Q1,xQ2,y . ~6!

The symmetry-adapted strain tensor componentsei are
defined in terms of the conventional~geometrically linear!
strain « i j 5

1
2 @(]ui /]xj )1(]uj /]xi)# by the following rela-

tions:

e15
1

)
~«xx1«yy1«xz!, ~7a!

e25
1

&
~«xx2«yy!, ~7b!

e35
1

A6
~«xx1«yy22«zz!, ~7c!

TABLE IV. Equivalent domain paris.k,m,nare positive integers
k13m, k13n11, k13n12 are smaller than 12. The doma
pairs ~1,10! and ~1,4! are antiphase boundaries studied in Ref
whereas~1,2! is the orientational twin boundary.

Domain pair type Domain pairs

~1,10! ~2,11!, ~3,12!, ~4,7!, ~5,8!, ~6,9!
~1,4! (k,k13m) without pairs in type~1,10!
~1,2! (k,k13n11), (k,k13n12)
09411
e45«xy , ~7d!

e55«yz , ~7e!

e65«xz . ~7f!

and the elastic constantsĉi j are given by

ĉ115c1112c12, ~7g!

ĉ225c112c12, ~7h!

ĉ4454c44. ~7i!

Using the variational technique, one obtains the Eu
Lagrange equations, which would generally be six coup
partial differential equations inQi and three more equation
for the elastic strain

(
m

]

]xm
F ]F

]Qi ,m
G2

]F

]Qi
50; ~8a!

(
m,l

]

]xm
S ]F

]el

]el

]« i ,m
D50 ~m51,2,3;i ,l51,2,... ,6!.

~8b!

where« i ,m uses the compact Voigt notation. However, two
the components (Q4 ,Q5) of our order parameter are zero.

In the Appendix the coordinate system is rotated 4
around thez axis and the problem becomes quasi-on
dimensional~Q1D!. With this Q1D approximation and a
space variablex8 perpendicular to the OTB, we can write th
lattice normal-mode profile for this OTB asQ
5(Q1(x8),Q2(x8),Q3(x8),0,0,Q6(x8)…. The forms of the
four coupled differential equations resulting from the Eule
Lagrange variation are indicated in the Appendix. T
boundary conditions for these equations will depend up
the specific pair of domain states selected.

A twin solution involves two domains of different tetrag
onal axis. In each of the two domain states, there are
nonzero components of the order parameter~see Table II!.
The two nonzero components are identical in amplitude
continuum solution for a twin describes a situation for whi
the two components with the amplitudeQ0 will vanish
gradually across the domain wall instead of disappear
abruptly~discontinuous twin picture! and the other two com-
ponents increase from zero toQ0 at the same time. There
fore, the selection of parameters~below! that can reduce the
four coupled equations to two coupled equations is not o
for computational convenience, it actually reflects the sy
metrical nature of these two nonzero components in e
domain. They are identical in one side of the domain a
gradually decrease inside the domain-wall transition reg
at the same rate and eventually vanish to zero on the o
side of the domain wall at the same time. It is, of cour
possible to have the two components vanishing at differ
rates inside the domain wall, but due to the symmetric nat
of the two nonzero components, one would need to motiv
where the symmetry-breaking force comes from.
0-6
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ORIENTATIONAL TWINS IN AN IMPROPER . . . PHYSICAL REVIEW B 65 094110
Based on the above considerations, we assume a sym
ric relationship of the parameters within the domain wa
This seems reasonable,16 it conserves the domain wall sym
metry of the two order-parameter components and also s
plifies the computation.~The four coupled equations can b
solved in the same fashion as the two coupled equati
there is not even any new mathematics involved!. All essen-
tial physical features of a twin solution are reflected in o
solution.

The specific orientation twin (Ix ,Iy) is chosen to illustrate
the procedure and, for the symmetric relationship of mo
amplitudes within the domain wall, two coupled equatio
are then obtained forQ1 andQ2 ~see Appendix!,

~g11g2!

2
Q1,x8x8

5~A1A8!Q11@4~B11B18!1B4#Q1
3

1~4B11B21B281B3!Q1Q2
213~4C11C4!Q1

5

1~12C112C212C31C4!~Q1Q2
412Q2

2Q1
3!,

~g11g2!

2
Q2,x8x8

5~A1A8!Q21@4~B11B18!1B4#Q2
3

1~4B11B21B281B3!Q2Q1
213~4C11C4!Q2

5

1~12C112C212C31C4!~Q2Q1
412Q1

2Q2
3!.

Using a procedure similar to Refs. 17 and 18 we red
these two equations to the dimensionless form

q1,jj5t1q12a1q1
32a18q1q2

213q1
51b~2q1

3q2
21q1q2

4!,
~9a!

q2,jj5t1q22a1q2
32a18q2q1

213q2
51b~2q2

3q1
21q2q1

4!,
~9b!

where

t15t1
A8

Ac
, a15

4@4~B11B18!1B4#

b
,

a185
4~4B11B21B281B3!

b
, b5

12C112C212C31C4

4C11C4
,

and

t5
T2T0

Tc2T0
, b54B11B42F4D1

2

ĉ11
1

4

ĉ11
~D2

1)D3!2G , Ac5
b2

16~4C11C4!
.

We also defined the dimensionless order parameteq
5(q1 ,q2) and space variablej according to

~Q1 ,Q2!5Qc~q1 ,q2!, gj5x8,

with
09411
et-
.

-

s,

r

e
s

e

g25
g11g2

2
Ac ,

and

Qc
25

b

4~4C11C4!
.

The dimensionless order-parameter amplitudeq0 corre-
sponding toQ0 is given by

q05@ 2
3 ~11A12 3

4 t!#1/2. ~10!

For the Ix-Iy orientational twin, the boundary conditions fo
q1 andq2 are

lim
j→`

~q1 ,q2!5~0,q0!, ~11a!

lim
j→`

~q1 ,q2!5~q0,0!. ~11b!

A solution with the choice oft15t2523, a15a1854, and
b55 is given in Fig. 2. We note that the two values, whi
characterize the OP,q1 andq2 , interpenetrate each other i
the domain-wall region as expected. The asymptotic val
of q1 and q2 in the two domains are given in Eqs.~11a,b!
above. These profiles represent the relative amplitude va
tions of the lattice displacement near the domain-wall regi
Each lattice will be displaced by an amount determined
the two independent valuesq1 andq2 . One may refer to the
discrete lattice displacement pattern given in Fig. 3~a! to help
understand the continuous displacement pattern.

Note the above simplification of four equations@Eqs.
~A3a!–~A3d! and Eqs.~A13a!–~A13d!# to two @Eqs.~A14a,
b!# is for the (Ix ,Iy) orientational twin. The boundary cond
tions will change for other orientational twins~see Table V!
but we can choose an equivalent wall orientation and p
tion so that the twin-wall structure is symmetrically and e
ergetically equivalent. Shown in Fig. 3~a! is the domain-wall
orientation and position that was considered in the proced
developed above, i.e., for the twin wall of the domain pair~3,
2!. Notice that the wall passes through the point~1

2,
1
2,

1
2! and

FIG. 2. Solutions of Eqs.~9a,b! with the boundary conditions o
Eqs. ~11a,b!. The parameters chosen for the calculations aret1

5t2523, a15a1854, andb55.
0-7
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this OTB structure will exhibit the two-dimensional twi
symmetry ofCmm2. This is a symmetry group that leave
the two domains and the wall invariant, necessarily it is
diperiodic group19 with translations parallel to the wall. Th
generating elements of this diperiodic group are (Eu0,0,0),
(szu0,0,1), (C2au0,0,0), (sdbu0,0,0) with the origin at

FIG. 3. Lattice displacement patterns for a discontinuous O
between~a! domains 3 and 2, and~b! domains 3 and 5.

TABLE V. Boundary conditions for orientational twins with
order-parameter profileQ5(Q1(x8),Q2(x8),Q3(x8),0,0,Q6(x8)).

Twin of x852` x85`

Ix-Iy (0,Q0 ,Q0,0,0,0) (Q0,0,0,0,Q0)
Ix-II y (0,Q0 ,Q0,0,0,0) (Q0,0,0,0,0,2Q0)
Ix-III y (0,Q0 ,Q0,0,0,0) (2Q0,0,0,0,0,Q0)
Ix-IV y (0,Q0 ,Q0,0,0,0) (2Q0,0,0,0,0,2Q0)
II x-II y (0,2Q0 ,Q0,0,0,0) (Q0,0,0,0,0,2Q0)
II x-III y (0,2Q0 ,Q0,0,0,0) (2Q0,0,0,0,0,Q0)
II x-IV y (0,2Q0 ,Q0,0,0,0) (2Q0,0,0,0,0,2Q0)
III x-III y (0,Q0 ,2Q0,0,0,0) (2Q0,0,0,0,0,Q0)
III x-IV y (0,Q0 ,2Q0,0,0,0) (2Q0,0,0,0,0,2Q0)
IV x-IV y (0,2Q0 ,2Q0,0,0,0) (2Q0,0,0,0,0,2Q0)
09411
a

( 1
2 , 1

2 , 1
2 ) and basis vectors~0, 0, 2!, ~2, 2, 0! in terms of the

original cubic group. By rotating this entire structure throu
(C2zu0,1,0) we get the structure given in Fig. 3~b!. This do-
main wall passes through the point~21

2,
1
2,

1
2! and will also

exhibit the two-dimensional symmetry ofCmm2. This twin
configuration corresponds to the (Ix ,IIy) twin, i.e., the twin
wall of domain pair~3,5!. The generating elements of th
diperiodic group of this structure are (Eu0,0,0), (szu0,0,1),
(C2au21,1,1), (sdb21,1,0) with the origin at~21

2,
1
2,

1
2! and

basis vectors~0, 0, 2!, ~2, 2, 0! in terms of the original cubic
group. The order-parameter profile equations will take
same form if we perform a similar simplification. For ex
ample, the reduction from four to two differential equatio
must use the following conditions:Q25Q3 , and Q1
52Q6 . The equations and form of the OP profile are th
equivalent.

Although we have used dimensionless parameters to il
trate the OTB profile, for a specific material, we can obta
the OTB width and energyusing actual GLFE parameters
For the effective GLFE we can estimate the width of t
domain wall w since below the phase transitionw
.2AGC/uBu. There is insufficient experimental data to e
timate the coefficientG accurately. HereG denotes an effec-
tive gradient coefficient for the material under considerat
and quantifies the energy cost needed to create an o
parameter inhomogeneity, an orientational domain wall
the present case. However, based on the parameter estim
given below, if we chooseG;4.03107 J m23 kg21 we find
w;27.6 Å, which is approximately four times the cubic la
tice parameter.

In Ref. 1, using the available structural and phon
data20,21 for LaAg12x lnx (x;0.2), we estimated the
coefficients of an effective Landau free ener
FL5A0(T2T0)Q21BQ41CQ6 as A057.658731023

J m25 kg21 K21 T05120 K, B53.945531070 J m27

(kg)22, and C57.622310115J m29 (kg)23. Similarly we
obtained two combinations of gradient coefficients:g11g2
51.107153108 J m23 kg21 and g41g553.963107

J m23 kg21.

IV. SUMMARY AND CONCLUSIONS

For a cubic to tetragonal transition an orientational tw
consists of two domains that have different tetragonal ax
Elastic compatibility15,14 requires that the domain wa
should lie in particular lattice planes. We have shown t
such OTB’s produced in anOh

1–D4h
17 improper ferroelastic

first-order phase transition inRAg12x lnx (R5La,Ce,Pr) can
be described by a Ginzburg-Landau theory with a s
dimensional order parameter. For a general case, one
numerically solve a system of four-nonlinear-coupled diffe
ential equations. This paper provided both the form of
coupled differential equations and the related boundary c
ditions. The solutions reveal the detailed atomic displa
ment pattern inside the domain-wall regions. In order to
duce the complication of so many undefined expans
coefficients, we chose a special set of parameters tha
duced the four equations to two. The general feature of

B

0-8
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orientational twin can be seen from this simplified solutio
The computed OTB profile can be used to predict the atte
ation and phase shift associated with the propagation o
ultrasonic pulse in a crystal with a single OTB and its effe
on elastic constants.22 It would be highly desirable to observ
the details of this OTB structure in high-resolution electr
microscopy.

We used the double coset decomposition and the con
of crystallographically equivalent domain pair classes
identify only one class of OTB’s. We gave an example
two different domain pairs~3, 2! and ~3, 5!, which were
crystallographically equivalent. A similar procedure a
analysis can also be applied to describe twin boundarie
cubic (Pm3̄m) to orthorhombic~Pmma! and cubic to trigo-
nal (P3) structural transitions observed in the binary AuC
and pseudobinary TiNiM (M5Fe, Al, Cu) shape memory
alloys.5–7
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APPENDIX: REDUCTION OF VARIATIONAL EQUATIONS

If we make the rotation of the coordinate system arou
the z axis, the derivatives will be given in terms of the ne
coordinates as follows:

]

]x
5

1

&

1

]x8
1

1

&

]

]y8
, ~A1a!

]

]y
52

1

&

]

]x8
1

1

&

]

]y8
. ~A1b!

For a Q1D solution,]/]z85]/]y850, so that the gradien
energy becomes

FG5 1
2 ~g11g2!~Q1,x8

2
1Q2,x8

2
!1 1

2 ~g21g3!~Q3,x8
2

1Q6,x8
2

!

2 1
2 ~g41g5!Q1,x8Q2,x8 , ~A2!

and

]

]x8 S ]FC

]Q1,x8
D5~g11g2!Q1,x8x82

1
2 ~g41g5!Q2,x8x8 ,

~A3a!

]

]x8 S ]FC

]Q2,x8
D5~g11g2!Q2,x8x82

1
2 ~g41g5!Q1,x8x8 ,

~A3b!

]

]x8 S ]FG

]Q3,x8
D5~g21g3!Q3,x8x8 , ~A3c!
09411
.
u-
n

t

pt
o
f

in

s
p-
y
-

d

]

]x8 S ]FG

]Q6,x8
D5~g21g3!Q6,x8x8 . ~A3d!

The Euler-Lagrange equations for the elastic displacem
lead to the following conditions for the components of t
stress tensor:&s11s31A6s650, or equivalently, in terms
of the symmetry-adapted strain components defined in E
~7a!–~7f!

& ċ11e11&D1~Q1
21Q2

21Q3
21Q6

2!1 ĉ22e3

1D2~Q3
21Q6

222Q1
222Q2

2!2)D3~Q3
21Q6

2!

1A6ċ44e61A6D4Q1Q250. ~A4!

Similarly, s250, or

e25
1

ĉ22
@)D2~Q3

22Q6
2!1D3~Q3

212Q2
22Q6

222Q1
2!#,

~A5!

ands41s550, or

e452e5 . ~A6!

The OTB’s ~without interface dislocations! must satisfy
elastic compatibility constraints. Using the elastic comp
ibility relation «y8z85const50 we have

e42e550. ~A7!

Thus, from Eqs.~A6! and ~A7!

e45e550. ~A8!

Another compatibility relation«z8z85const leads to the fol-
lowing relation:

e15&e32S 2D1

ĉ11
1
&~D21)D3!

ĉ22
DQ0

2. ~A9!

The last nontrivial compatibility relationey8y85const gives
us

A2e11e32A3/2e6

5A6«y8y8
`

5S 2
2&D1

ĉ11
1

~D21)D3!

ĉ22
DQ0

2.

~A10!

From Eqs.~A4!, ~A9!, and ~A10! we obtain the elastic
stainez in terms of the order parameterQ

e35e3
`1F &D122D2

2ĉ111 ĉ2216ĉ44
~Q0

22Q1
22Q2

2!

1
&D11D22)D3

2ĉ111 ĉ2216ĉ44
~Q0

22Q3
22Q6

2!

2
A6D4Q1Q2

2ĉ111 ĉ2216ĉ44
G , ~A11a!
0-9
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e15e1
`2&F &D122D2

2ĉ111 ĉ2216ĉ44
~Q0

22Q1
22Q2

2!

1
&D11D22&D3

2ĉ111 ĉ2216ĉ44
~Q0

22Q3
22Q6

2!

2
A6D4Q1Q2

2ĉ111 ĉ2216ĉ44
G , ~A11b!

e65A6F &D122D2

2ĉ111 ĉ2216ĉ44
~Q0

22Q1
22Q2

2!

1
&D11D22)D3

2ĉ111 ĉ2216ĉ44
~Q0

22Q3
22Q6

2!

2
A6D4Q1Q2

2ĉ111 ĉ2216ĉ44
G . ~A11c!

These relations are used to eliminate the strains in the e
librium conditions involving the coupling energyFc , i.e.,
09411
ui-

]Fc

]Q1
52~D1e122D2e312D3e2!Q11D4e6Q2 ,

~A12a!

]Fc

]Q2
52~D1e122D2e322D3e2!Q21D4e6Q1 ,

~A12b!

]Fc

]Q3
52@D1e12~)D21D3!e21~D22)D3!e3#Q3 ,

~A12c!

]Fc

]Q6
52@D1c11~)D21D3!e21~D22)D3!e3#Q6 ,

~A12d!

wheree1
`52(2D1 / ĉ11)Q0

2 ande3
`5@(D21)D3)/ ĉ22#Q0

2.
Now let us consider the Landau part of the equilibriu

condition for all four components
]FL

]Q1
52AQ114B1Q1Q212B2Q1Q3

212B4Q1Q6
212B5Q1Q2

216C1Q1Q412C2Q1~Q1
2Q3

21Q2
2Q6

2

1Q3
2Q2!12C3Q1Q3

2Q6
212C4Q1~Q2Q6

21Q1
2Q6

21Q2
2Q3

2!12C5Q1~Q2
2Q21Q1

2Q2
2!2C6Q1@Q2

2Q6
2

12Q1
2Q3

21Q2
2Q3

21Q3
2~Q3

222Q6
2!#12C7Q1@2Q1

2~Q2
22Q3

22Q6
2!1Q2

41Q3
4

2Q6
4#2C8Q1@2Q1

2~Q2
21Q3

2!1Q2
42Q3

4#12C9Q1@2Q1
2~Q3

22Q6
2!2Q3

41Q6
4#, ~A13a!

]FL

]Q6
52AQ614B1Q6Q212B2Q6Q2

212B3Q6Q3
212B4Q6Q1

216C1Q6Q412C2Q6~Q2
2Q21Q1

2Q3
2

1Q2
2Q6

2!2C3~Q2Q6
21Q3

2Q6
2!Q612C4Q6~Q1

2Q21Q1
2Q6

21Q2
2Q3

2!12C5Q6Q1
2Q2

212C6Q6@Q1
2Q2

2

1Q2
422Q1

2Q3
212Q2

2Q6
222Q2

2Q3
2#12C7Q6@2Q1

42Q2
422Q6

2~Q1
22Q2

2!#12C8Q6@22Q6
2~Q2

21Q3
2!

1Q2
42Q3

4#12C9Q6@Q2
42Q1

41Q3
412Q6

2~Q3
22Q1

22Q2
2!#, ~A13b!

]FL

]Q2
52AQ214B1Q2Q212B2Q2Q6

212B4Q2Q3
212B5Q21

216C1Q2Q412C2Q2~Q6
2Q21Q1

2Q3
21Q2

2Q6
2!

12C3Q2Q3
2Q6

212C4Q2~Q3
2Q21Q1

2Q6
21Q2

2Q3
2!12C5Q2~Q1

2Q21Q1
2Q2

2!12C6Q2~2Q2
2Q6

21Q6
2Q1

2

1Q1
2Q3

222Q3
2Q6

21Q6
4!12C7Q2@Q̇1

412Q2
2~Q1

22Q3
22Q6

2!2Q3
41Q6

4#12C8Q2@Q1
42Q6

412Q̇2
2~Q1

21Q6
2!

12C9Q2@2Q2
2~Q6

22Q3
2!2Q3

42Q6
4#, ~A13c!

]FL

]Q3
52AQ314B1Q3Q212B2Q3Q1

212B3Q3Q6
212B4Q3Q2

216C1Q3Q412C2Q3~Q1
2Q21Q1

2Q3
2

1Q2
2Q6

2!12C3Q3~Q6
2Q21Q3

2Q6
2!12C4Q3~Q2

2Q21Q1
2Q6

21Q2
2Q3

2!12C5Q3Q1
2Q2

212C6Q3~22Q2
2Q6

2

1Q1
41Q1

2Q2
222Q1

2Q6
212Q1

2Q3
2!12C7Q3~Q1

42Q2
412Q1

2Q3
222Q2

2Q3
2!12C8Q3~Q1

42Q6
422Q1

2Q3
2

12Q3
2Q6

2!12C9Q3@Q1
42Q2

41Q6
412Q3

2~Q6
22Q1

22Q2
2!#, ~A13d!
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whereQ25(Q1
21Q2

21Q3
21Q6

2).
Substituting Eqs.~A3!, ~A6!, ~A11!, ~A12! and~A13! into

Euler’s equilibrium condition, we find four coupled differen
tial equations for the four nonzero components of the O
The boundary conditions, given in Table V, are determin
for a specific pair of domain states.

These four coupled nonlinear differential equations c
only be solved numerically. For the orientation twin (Ix ,Iy),
we chooseQ15Q6 andQ25Q3 to illustrate the general fea
tures of an OTB solution. This choice reduces the fo
coupled equations to two equations. From Table V, we n
that this condition is always true in a single-domain sta
i.e., atx856`. From Eqs.~A13! we see this can be gene
ally true only whenB35B5 , C35C5 , and C65C75C8
5C950. In addition, the coupling coefficients must satis
D450 and D35)D2 , and the gradient coefficients mu
satisfy the following conditions:g15g3 and g41g550.
With these conditions Eqs.~A12! can be simplified to

]Fc

]Q1
5H 2FD1e1

`22D2e3
`2

2~&D122D2!2Q0
2

2ĉ111 ĉ2216ĉ44
G

1F4~&D112D2!~&D122D2!

2ĉ111 ĉ2216ĉ44
2

48D2
2

ĉ22
GQ1

2

1F4~&D112D2!~&D122D2!

2ĉ111 ĉ2216ĉ44
1

48D2
2

ĉ22
GQ2

2J Q1 ,

~A14a!
of

e

0
,

s.

, A

f

r.

09411
.
d

n

r
te
,

]Fc

]Q2
5H 2FD1e1

`22D2e3
`2

2~&D122D2!2Q0
2

2ĉ111 ĉ2216ĉ44
G

1F4~&D112D2!~&D122D2!

2ĉ111 ĉ2216ĉ44
2

48D2
2

ĉ22
GQ2

2

1F4~&D112D2!~&D122D2!

2ĉ111 ĉ2216ĉ44
1

48D2
2

ĉ22
GQ1

2J Q2 ,

~A14b!

and the equilibrium conditions, Eqs.~A13!, are reduced to
two-coupled equations forQ1 andQ2 , given in Sec. III just
before Eqs.~9!.

The corresponding parametersA18 , B18 , andB28 are given
by

A85D1e1
`22D2e3

`2
2~&D122D2!2

2ĉ111 ĉ2216ĉ44
Q0

2, ~A15a!

B185
~&D112D2!~&D122D2!

2~2ĉ111 ĉ2216ĉ44!
2

6D2
2

ĉ22
, ~A15b!

B285
4~D1

222D2
2!

2ĉ111 ĉ2216ĉ44
1

24D2
2

ĉ22
. ~A15c!
rro-
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