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Images, Landau expansions, and symmetry changes
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The phase diagrams obtained from the fourth-degree Landau expansions associated with the C4

and C4„ images are compared. While the first image yields a Landau expansion with a four-
dimensional parameter space (a~, a2, P~, Pi), the second yields a potential which is contained in the
three-dimensional subspace with P2 ——0. Within this subspace the phase diagrams of both C4 and

C4„are identical. Two ordered phases (with the order parameter along either an axis or a diagonal,
respectively) are separated by a first-order line. Analysis of symmetry changes involved lead, how-

ever, to different results. In the C4„case the two phases have distinct symmetries. On the other
hand the C4 image implies identical symmetry in the two ordered phases. Physical interpretation of
the phase diagram is thus directly related to the actual image. Experimental consequences are dis-

cussed.

I. INTRODUCTION

The study of phase transitions and the construction of
phase diagrams are articulated around minima of the free
energy. Precise determination of the actual free energy is
therefore of central importance. The phenomenological
approach of mean field' provides a potential which can be
expanded in powers of the order parameters. Landau
theory defines a quantitative framework upon which to
build the free-energy expansion using group theory. The
degree before which such an expansion cannot be stopped
if all possible lower symmetries are to be obtained is deter-
mined by the group structure of the higher-symmetry
phase and the symmetry of the order parameter. Higher-
degree terms are then irrelevant with respect to the list of
possible lower symmetries. '

In this paper it is shown that minimization of the free
energy without a symmetry analysis can be misleading.
The case of C4 and C4„ images is explicitly presented.
%bile the two corresponding phase diagrams are identical
in some subspace of the parameter space, the symmetry
analysis shows drastic differences.

The paper is organized as follows: Sec. II contains a
group theoretical analysis of the C4 and C4„ images; the
fourth-degree free energies are studied in Sec. III and the
phase diagrams are obtained; implementation of the phase
diagrams by a symmetry analysis is presented in Sec. IV;
and a discussion is contained in Sec. V.

II. GROUP THEORY ANALYSIS

on the C4„and C4 images. Both images are sets of ma-
trices in two dimensions, i.e., they correspond to the
transformation properties of a two component order pa-
rameter (n =2).

The symmetry operators (2 X 2 matrices) contained in
the C4, images in an appropriate basis are

E, C2, C4 ~ ox~ Oy~ da~ +dr (2.1)

The various image subgroups allowed from the series (2.1)
are the distinct largest sets of matrices leaving some order
parameter direction invariant. There exist three such im-
age subgroups for C4„, namely

and

(E,cr, ) or (Eoy),
(E,crd, ) or (E,adb ),

(2.2a)

(2.2b)

(E) (2.2c)

The first two correspond respectively to an order parame-
ter ordering along an axis [for example, (0, +a ) or
(+a,0)] or a diagonal (+a, +a). The third one is associat-
ed to some general direction (a,b)

In parallel the C4 image is a subgroup of C4„which
contains the operations

E, C2, C4

From the series (2.3) only one image subgroup can be real-
ized for any order parameter direction, namely

(E) . (2.4)
Starting with a space group associated with a high-

symmetry phase (disordered) an order parameter is an en-
tity transforming under symmetry transformations as a
space-group irreducible representation. The image of this
representation is the complete set of distinct matrices aris-
ing from the representation. In this paper we concentrate and (2.5)

The basic invariants used in building the free energy ex-
pansion associated to C4, are
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Iz ——r cos(48),

where r =x +y, tan8=y/x, and (x,y) are the two com-
ponents of the order parameter. In the C4 case there exist
three invariants"' which are

Disor dered ( ontinuous transitions

I] ——r 2

Iz ——r cos(48), (2.6)

I& ——r sin(48) .
D i a g o na l- l i k e p hase A. xis-i ice p hase

III. FREE ENERGY EXPANSION

Using expressions (2.5) the fourth degree Landau ex-
pansion associated to C4„ is

Fir st-or der transition

Fi a,r +——azr +Piro' cos(48), (3.1) FIG. 1. Projection of the phase diagrams onto (a~, P~).

where ai, az, and P, are Landau coefficients. The free en-

ergy related to C4 is

F, =F, +Pzr4sin(48), (3.2)

with an additional coefficient Pz.
Minimization of I'I with respect to 6I gives two solu-

tions which are

sin(28) =0,

cos(28) =0 .

(3.3)

The first solution represents an order parameter ordering
along an axis while the second one is associated with an
ordering along a diagonal. The corresponding image sub-
groups are respectively (2.2a) and (2.2b). The subgroup
(2.2c) can be obtained from minima only by including
sixth and eighth degree terms in (3.1). '

In parallel, expression Fz (3.2) has only one minimum
defined by

tan(48) = 2
(3.4)

IV. PHASE DIAGRAMS AND SYMMETRY

Implementation of Fig. 1 by symmetry analysis gives
the following results.

The only symmetry operation leaving some order parame-
ter direction invariant is the identity operation in agree-
ment with the result (2.4).

The case Pz ——0 in Eq. (3.4) produces exactly the solu-
tions (3.3). This means that in the plane (ai, az, P, ) the
phase diagram obtained using Eq. (3.2) is identical to the
one given by Eq. (3.1). The projection of the phase dia-
grams onto (ai, Pi) is shown in Fig. 1. For a» 0 there is
a disordered phase. Two ordered phases exist at a& gO.
When Pi ~ 0 the order parameter lies along an axis while
it lies along a diagonal for Pi &0. At Pi ——0 there is a
first-order transition between the above two ordered
phases.

(i) In the C4, case, the phase diagram of Fig. 1

represents a first-order transition between two ordered
phases which have inequivalent image subgroups. The
image subgroups are those in (2.2a) and (2.2b). The
abstract group associated to both image subgroups is
unique however, namely c~I, . The two image subgroups
also yield inequivalent space groups. These space groups
are the set of space group elements which are associated
by the representation to the two image subgroups, respec-
tively.

(ii) In the Cz case with Pz ——0 the phase diagram of Fig.
1 represents a first-order transition between two ordered
phases which have the identical image subgroup (2.4) and
thus identical space groups.

While case (i) presents no difficulty case (ii) needs addi-
tional comment. A first-order transition between identi-
cal phases is well known, in particular for the liquid-gas
transition. However, a first-order line between identical
phases is expected to end at a critical point. A path
should exist to pass from one phase into another without a
transition While it is. indeed the case for the liquid-gas
transition it is not the case here. From the free energy
(3.1) such an event is impossible. Thus the first-order line

P, =0 in Fig. 1 is quite unusual (singular) when associated
to C4 while quite normal (regular) with cq„. It is worth
noticing that a similar situation occurs for C4 at Pz

——0
[from Eq. (3.2}] when Pi ——0. The two identical phases
have then one ordering along 8=m/8 and 8=3m. /g,
respectively. In fact a similar situation occurs whenever
the system passes through the origin (Pi ——Pz ——0) along a
line. Thus the phase diagram is similar for arbitrary P&

and Pz.
It is usually believed that the free energy is entirely re-

sponsible for determining the phase diagram. However in

the present study the very same formal free energy (taking

pz —0 foi C4} leads to different physical situations de-

pending on the image involved. The nature of the singu-

larity obtained in the phase diagram needs to be clarified.
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V. DISCUSSION

The physical interpretation of the result of the last sec-
tion is not complete at this stage. Possible explanations of
the singularity at )(3q ——P~

——0 in Fig. 1 for the Cq image
are the following.

(i) There is nothing contradictory at P&
——0 related to

the C~ image. We get the surprising result, however, of a
first-order transition between two identical phases with no
way to pass from one phase into the other without a tran-
sition. The two phases correspond to the same symmetry
but a discontinuous jurnp in order parameter values,

(ii) The singularity at P&
——0 is so basic that this line be-

comes unphysical —meaning that P~ can indeed never be
null. Such a case would create a very peculiar situation.
While allowed by minimization of the free energy some
regions of the phase diagram would appear to be forbid-
den from symmetry constraints. In the case of terbium
molybdate (TMO), which is associated to the C4 image it

was suggested that the coridition P&
——0 will affect the

transitions from the disordered phase and indeed induces
a fluctuation driven first-order transition from the disor-
dered phase. s

The only way to decide between the two explanations (i)
and (ii) is by performing some experiment which will
determine if it is possible or not to pass the P, =0 line in
the phase diagram of Fig. 1 for a system whose image is
Cq. A possible candidate for such an experiment seems to
be the rare earth TMO. Given some fixed orientation of
the order parameter in an ordered phase the test would be
to apply some non-symmetry-breaking field (perhaps pres-
sure) which alters appropriately P~. In order to select ex-
planation (i) some sudden jump in the orientation would
be sought. In explanation (ii) it would be expected that a
mechanism for its exclusion would be found. In a follow-
ing paper we will show that the results of this analysis are
not unique to C4 and C4, . Similar results are present for
other order parameters, for example, four component pa-
rameters (n =4).
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