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Phase transitions in solids of diperiodic symmetry
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All isotropy subgroups (and thus all quasicontinuous symmetry changes) corresponding to k
points of symmetry have been obtained for the 80 diperiodic space groups. The detailed information

for such phase transitions is given here for the diperiodic space group I'———.Only two distinct

images (sets of representation matrices) occur for this example yielding Landau-Ginzburg-Wilson
(LGW) Hamiltonians corresponding to the Ising and XY models, respectively. Minimization of the
LGW Hamiltonians yields those transitions which are continuous in the mean-field description.

I. INTRODUCTION

A widely used initial approach to the description of
phase transitions is the phenomenological Landau theory. '

The theory has been well used in three-dimensional sys-
tems and extensions of the original formulation have
made it possible to distinguish a set of general direct
group-theoretical necessary conditions as well as the usual
condition which minimizes the free energy. The group-
theoretical conditions lead to the selection of isotropy sub-
groups by means of the subduction and chain criteria
from which the Landau and Lifshitz conditions further
select. Recently a systematic method for obtaining isotro-

py groups of a space group Go was discussed and then
used to obtain all isotropy groups of the 230 three-
dimensional space groups.

The listing of isotropy subgroups provides a complete
list of all possible broken-symmetry phases that can occur
as a result of minimization of a general invariant thermo-
dynamic free energy. We need not restrict attention to
lower-order expansions in terms of the vector order pa-
rameter (as in the original Landau description) but may
also consider first-order transitions corresponding to a
more general free-energy and thus "quasicontinuous"
first-order transitions. All such resulting lower-symmetry
phases are the isotropy subgroups corresponding to the ir-
reducible representation of the order parameter in which
the free energy is expressed. Thus, first-order or mul-
ticritical transitions to lower phases are given by the iso-
tropy subgroup listing.

Order-disorder transitions in physisorbed and chem-
isorbed surfaces as well as structural surface transitions
in clean metals have caused a great deal of attention to be
focused on two-dimensional transitions in the last several
years. Recent detailed experiments [low-energy electron
diffraction (LEED), Auger-electron spectroscopy, etc.]
have justified a significant amount of previous theoretical
modeling for two-dimensional systems and have prom-
ised significant contributions for the future. With the
need apparent, several authors classified transitions in
two-dimensional systems. Our algorithm for obtaining
isotropy groups was applied to the 17 two-dimensional
space groups and the complete listing of quasicontinuous

phase transitions published.
Of the transitions associated with surfaces many are re-

versible with temperature' and correspond to continuous
transitions. The symmetry of a surface system is that of
the surface layer and the substrate (or semi-infinite bulk).
The symmetry group would then be one of the 17 two-
dimensional space groups. Our previous listing classifies
the possibilities of such transitions. However, for a layer
weakly coupled to the bulk, the symmetry can include
more symmetry than allowed by the 17 two-dimensional
space groups. It has been shown" in the layer structure
As2S3 that pressure affects the interlayer coupling causing
a change from more-free layers to more interbonded
layers. The more-free-layer spectra were seen to corre-
spond to diperiodic symmetry. This change from di-
periodic space-group symmetry to three-dimensional sym-
metry is evidence of the need to use diperiodic space
groups for the correct description of the symmetry in
nearly free layers. The diperiodic symmetry is of course
approximate for a bonded layer but becomes exact as the
layer becomes isolated. The resulting 80 diperiodic space
groups have been listed' and necessarily contain. the two-
dimensional space groups as a subset.

Changes in translational symmetry for the diperiodics
have been reported' as well as a listing of transitions
which conserve the number .,of atoms per unit cell. '

However, general symmetry transitions which allow
translational and point changes have not been published.
We report here that all space group changes for quasi
continuous transitions (corresponding to k points of sym-
metry) in the diperiodic space groups have nota been ob
tained. Below we outline the method for obtaining isotro-

py subgroups of space groups and then list as an example
the symmetry chan~es corresponding to the diperiodic
space group P ——(which is —not one of the 17 two-
dimensional space groups). The results for all the di-
periodics is a lengthy table and will be published else-
where. We construct Landau-Ginzburg-Wilson (LGW)
Hamiltonians for all representations which satisfy the
Lifshitz condition for this space group and as a result, the
universality classes are indicated. Minimization of these
fourth-order LGW Hamiltonians then selects those transi-
tions which could be second-order within Landau theory.
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Renormalization-group methods have the more definitive
word as to whether the transitions remain continuous
when fluctuations are included.

II. ISOTROPY SUBGROUPS, MINIMIZATION

For the space group G0 ——P——' —', transitions will be
determined by the multicomponent order parameter
(basis) of each irreducible representation of GQ. Consider-
ing one representation of GD, say D'*"' ', an isotropy sub-
group G will be the largest subgroup of GD leaving a sub-
space (call it Fix G) of the representation space fixed, i.e.,
gtfi=tP for g in G, and f in the subspace Fix G. The
dimensionality of the subspace Fix G and its correspond-
ing isotropy subgroup for all such subspaces of D'*~'~'
can be obtained group theoretically from the characters of
the representation through the subduction and chain cri-
teria. The selection of isotropy groups becomes systemat-
ic as translation subgroups TG ( TG C: TD) and point
groups PG (PG &Pa) are selected such that they satisfy
the subduction condition, the selection forms an extension
of TG by PG, and the chain criterion is satisfied. A non-
trivial part of the isotropy subgroup listing is to identify
the subgroup in standard form' and to indicate relative
origin and orientation selection. This last information is
of crucial importance in detailed microscopic considera-
tions associated with experiments (x-ray, NMR, LEED,
etc.).

In Table I we list for the diperiodic group P—"—' —' the
irreducible representation, Landau frequency (number of
third-order invariants), Lifshitz frequency (number of
two-dimensional vector representations in the antisym-
metric square), subduction frequency, isotropy subgroup,
new lattice basis, and new origin selection. The lattice
basis and origin selection are given in terms of the original
primitive vectors. This information was determined as
outlined above. We follow the notation of Ref. 16 in la-
beling representations and use the spacegroup designations
of Ref. 12.

Methods which take into account fluctuations have
shown that the Landau condition (Landau frequency
equal to zero) is not a necessary condition in two-
dimensional systems' ' but that the Liftshitz condition
(Lifshitz frequency equal to zero) is necessary when con-
sidering commensurate transitions. Restricting our atten-
tion to those representations which do satisfy the Lifshitz
condition all resulting representations are of one or two
dimensions for our example. The dimensionality of a par-
ticular representation can be obtained from the highest
subduction frequency appearing in Table I for that repre-
sentation.

All one-dimensional representations (other than the
identity representation I+l which causes no symmetry
breaking) yield the LGW Hamiltonian

3F=gu I (1)
a=i

with I, =g, I2 I i, and I3 Ii. We have——restri——cted the
expansion to sixth order since we are primarily interested
in continuous transitions from the high-symmetry phase
within this mean-field description. Usual minimization
procedures' yield a continuous transition from P—' —' —' at

u i ——0 and for u 2 & 0. Only one lower-symmetry phase is
possible corresponding to those group elements which
leave 1t fixed. The equilibrium Hamiltonian goes as
F = —u i/4u2 as ui~O with f = —ui/2u2. Thus this
continuous transition could occur along a line in pressure,
temperature (P, T) variables. The LGW Hamiltonian is in

'
the Ising universality class and has been well studied by
renormalization-group methods yielding exponents P= —,,
p = 4, v= 1, and (x=0.

A11 two-dimensional representations of P———' have
the same image, i.e., the same set of distinct representa-
tion matrices. The set of representation matrices (eight
matrices for this example) are isomorphic to the point
group in two dimensions C4, . The resulting LGW Hamil-
tonian is thus the same for each of these representations
as well as the minimization process and universality clas-
sification. We need only consider isotropy subgroups of
the image C4„ in determining isotropy space subgroups.
The corresponding space groups will be obtained from the
inverse images of the matrix isotropy subgroups. For ex-
ample, the two-dimensional representation corresponding
to I

& has three matrix isotropy subgroups of Cq„, namely
the subgroups m (y), m (d), and I. (Here the letters y and
d indicate the orientation of the mirror planes in represen-
tation space. ) The isotropy subgroup m(y) leaves the
one-dimensional subspace (1(i&0,$2——0) fixed and its in-
verse image yields phase P 1 1—'. Isotropy subgroup m (d)
leaves fixed the one-dimensional subspace (fi ——gz&0)
and yields phase C11—'. The third isotropy subgroup 1,
corresponds to the two-dimensional subs pace (generic
points) (1(»it2, with pi&0, fz&0) and yields phase Pl.
Corresponding to each of the two-dimensional representa-
tions of P ' —' —' we w—ill obtain three isotropy subgroups
Gi, G2, and G3 from inverse images of m (y), m (d), and
I, respectively. The inverse images will of course depend
upon the specific representation considered, as can be seen
from Table I.

The LGW Hamiltonian for the two-dimensional repre-
sentations of P ' ' —' is of the—f—orm

3 2F=g u~I~+QU J (2)
a=1 P=l

with Ii g, +$2, I2 ——Ii, Ii =I i, ——I, =pi+ 1t2, and
J2 ——IlJl. This Hamiltonian is the XY model with cubic
anisotropy.

Using a method introduced in the analysis of the Higgs
potential, ' the minimization of this Hamiltonian can be
easily obtained. Defining pi+ g2 ——g and A, = (1( i

+ itjz)/1(t, we obtain

F =uig +upitj +uqP

with u2 ——u2+A, Ul and u3 ——u3+XU2. The above Hamil-
tonian is formally the same as for the above Ising model
except the coefficients u2 and u3 are now functions of k.
Thus along a direction specified by A. we can obtain a
directional minimum' by setting BF/BQ=O and requir-
ing B F/8 P)0. In order to find the absolute minimum
of F we look for the lowest minimum among the direc-
tional minima (which are a function of A, ), i.e., we also
consider
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TABLE I. Isotropy subgroups G of the diperiodic space group P ——. —Wegive the Landau frequency [D ], the Lifshitz fre-

quency [D I „, the subduction frequency i (6), the primitive basis vectors, t~ and tq, in terms of the primitive basis vectors of Go, and

the change r in space-group origin (from Go to G) in terms of the primitive basis vectors of Go.

irrep 1'(G) t2

I4

M+

Ml

M2

M3

M4

M5

Xl

X2

X3+

0

0

0

0
0
0
0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0
0
0
0

0

0

0

0

0

0

0

0

0

0

2

I

1

1

1

1

1

1

4 2 2P———
m m m

2 2 2P———
m m m

P—4
m

2 2 2C———
C11—
P11—

P1
P 422

P42m

P4mm

P4m 2

Cmm 2

Pmm 2

Pm 11
4 2 2P———
m m m

4, 21 2P———
m b m

4 21 2P———
m b m

4 2 2P———
m m m

2 2 2C———
a m m

2 2 21P———
n m a

Pb 11
4 2 2P———
n b m

4 21 2P———
n m m

4 21 2P———
n m m

4 2 2P———
n b m

2 2 2C———
m m m

2 21 2P———
m m a

P—11
2 2 2P———
m m m

4 2 2P———
m m m

2 2 2P———
m m m

2 21 2P———
m m a

4 21 2P———
m b m

2 21 21P———
m b a

2 21 2P———
a m m

4 21 2P———
n m m

21 21P———
n m m

2 2 2P———
a m a
4 2 2P———
n b m

2 2 2P———
n b a

1,0

1,0

1,0

0, 1

1,0

0, 1

1,0
1,0
1,0
1,0
1,0
0, 1

1,0
1,0
1,1

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

2,0

0, 1

0, 1

0, 1

—1,0

0, 1

—1,0

0,1

0, 1

0,1

0,1

0, 1

—1,0
0, 1

0, 1

—1 1

—1,1

—1,1

—1,1

—1,1

0,2
—1,1

—1,1

—11
—11
—1,1

0, 1

0,2

0,2

0, 1

0,2

0,2

0, 1

0,2

0,2

0, 1

0,2

0,2

0„0

0,0

0,0

0,0

0,0

0,0

0,0

0,0
0,0

0,0
0,0
0,0
0,0
0,0

0,0
1 1

2~2

0,0
1 1

2&2
I 1

2~2

0,0

0,0

0,0

0,0
1

2~ 2

1 1

27 2

—01

2 &

—01

2 7

0—1

7 2

0,0

0,0

0,0

0,0

0,0

0,0

0,0
1 1

272
1 1

2&2

0,0
1 1

2~2
1 1

272
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irrep

X1

X2

X3

TABLE I. ( Continued 1.

& (G)

2 2 2p———
a m a
4 2 2p———
n b m

2 2 2p———
n b a

2 21 2p———
a m m

4 21 2p———
n m m

21 21p———
n m m

2 21 2p———
m m a

2,0

2,0

2,0

2,0

2,0

2,0

2,0

0,1

0,2

0,2

0, 1

0,2

0,2

0,1

—02 7

0,0

0,0

—01

2 7

0,0

0,0

X4

4 21 2p———
m b m

21 21p———
m b a
2 2 2p———
m m m

4 2 2p———mmm
2 2 2p———mmm

2,0

2,0

2,0

2,0

2,0

0,2

0,2

0,2

0,2

1 1

27 2

1 1

2&2
—01

2 7

1 1

2~2
1 1

27 2

4

&&
=ui4 +uzi (4) A, = —(I/2iui)(ui/Q +u2/Q +wi)

We see from Eq. (4) that minima of F will correspond
to boundary values of A, . The range of values of A, is
called the orbit space. For C4„, the orbit space consists of
the interval —, (A. (1, with A, =1 corresponding to phase
m (y), A, = —,

' to m (d), and —,
'

& A, & 1 to the generic phase
2. For continuous transitions as u i goes through zero, the
lower-symmetry phase will be determined by the
minimum of F~—u i /4u2 or equivalently by the sign of
ui in uz ——u2+Aui. Thus, for ui)0, phase m(d) (G2) is
stable while for ui &0, phase m(y) (Gi) is stable. Notice
that phase 1 ( G3) cannot be selected by a continuous tran-
sition from the high-symmetry phase. Considering F to
eighth order gives the additional terms u4I4, uII iJi, and
iupJi. For the extrema of F, we impose BF/BQ=O and
BF/BA, =O. This second condition yields

Vg

Go
ordered

U)

U2

FIG. 1. Phase diagram associated with the XY model Hamil-
tonian. Only the region near the disordered phase is shown.
For v1) 0, a continuous transition from Go to G2 can occur if
u2+v1/2&0. For v1~0, a continuous transition to G1 can
occur if u2+v1~0. The transition between G1 and G2 is
discontinuous.

and we again see that f cannot go to zero for —,
'

& A, & 1

unless U& ——U2 ——0, which imposes three equations to be sa-
tisfied by P and T, namely u i(P, T) =ui(P, T)
=uz(P, T)=0. Thus no continuous transition to 1 is al-
lowed (even at a point in P, T). The above results for the
mean-field XF model is compatible with the results of
Refs. 19 and 20. We thus have the transition surface as
indicated in Fig. 1 near the high-symmetry phase.

Renormalization-group methods near two dimensions
determine if transitions corresponding to phases m (y) and
m(d) remain continuous as fluctuations are included.
The critical behavior of the XF model has been extensive-
ly studied and in particular it is known ' that in two di-
mensions the critical behavior depends on the interaction
(nonuniversality is evidenced). The exponents are con-
tinuous functions of the anisotropy coefficient ui. Thus,
no specific predictions wi11 be made in this case in regards
to exponents, etc.

In conclusion, we have obtained all symmetry changes
corresponding to k points of symmetry associated with
quasicontinuous transitions for the diperiodic space
groups. The detailed information of such phase transi-
tions was given here only for the diperiodic space group
P ' „' For r—epr—es—en.tations of this group satisfying the
Lifshitz condition we have indicated the resulting LGW
Hamiltonians and have obtained for this example two
Hamiltonian forms, namely the Ising and XY' models.
Within the mean-field description, the phase diagram for
the XY model was indicated for continuous transitions
from the high-symmetry phase. Similar results for all 80
diperiodic space groups will be published elsewhere.
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