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Group-theoretical criteria which determine the possibility of group-subgroup phase transitions
have been implemented on a computer. Lower-symmetry groups are determined by the subduction
and chain criteria. %e list all possible such symmetry-restricted transitions in two dimensions corre-

sponding to k points of symmetry. %'e indicate relative origins and orientations of the prototype
group and subgroup sufficient to obtain a wide class of useful experimental information.

I. INTRODUCTION

Phase transitions in three-dimensional solids have been
investigated theoretically and experimentally for many
years. Mean-field (e.g., Landau theory') and renormal-
ization-group (RG) methods yield a well-developed ap-
proach to the analysis of space-group changes and the
critical phenomena associated with these transitions. The
correspondence between models and physical systems
yields similarity (universality) in critical properties for a
variety of physical systems. For example, a wide class of
ferromagnetic and ferroelectric transitions have the same
critical exponents.

More recently, two-dimensional solids have become
much more accessible to the experimentalist. Physically
and chemically adsorbed atoms and molecules on crystal
surfaces, surface reconstruction, domain growth on sur-
faces, etc. , are being actively investigated with new tech-
niques. In some cases, transitions associated with the
solid surfaces have been investigated and correspondence
made to model systems, ' e.g., the Ising model, the three-
and four-state Potts model, etc. , thus providing a physical
system to realize the theory. Barber has written a review
of phase transitions in two dimensions, discussing recent
developments in theoretical and experimental methods.
Based upon group-theoretical criteria, Rottman has ob-
tained Landau-Ginzburg-Wilson (LGW) Hainiltonians for
the irreducible representations of the two-dimensional
space groups obeying the Lifshitz criterion. Thus univer-
sality classes for these symmetry systems were indicated,
and renormalization-group methods could subsequently be
used for the description of the associated critical phenom-
ena.

Deonarine and Birman and independently Maksimov
et al. classified all possible symmetry changes allowed in
two dimensions under the restriction that- the phase transi-
tion correspond to k points of symmetry. It would be
useful for the experimentalist to know origin and orienta-
tion relationships between the prototype space group and
its lower symmetry phase, the change in cell size, order-
parameter transformation properties, the corresponding
representation of the order parameter which can then be
used to obtain information about microscopic displace-
ments and Orderings, possible rotation and antiphase

domains, etc. The tables listed by Maksimov et al. and
those by Deonarine and Birman do not give sufficient in-
formation for the above properties to be obtained. Both
papers indicate the irreducible representation (irrep) corre-
sponding to the transition but do not give origin and rela-
tive orientations. In addition, both papers contain errors
as well as omissions in their tables.

In the present paper, we list all possible group-subgroup
transitions in two dimensions corresponding to k points
of symmetry. The list is of isotropy subgroups and thus
include both first- and second-order transitions. This
complete list of isotropy groups is helpful in understand-
ing the full phase diagram obtained from terms contribut-
ing to arbitrary order in the LGW Hamiltonian. %'e indi-
cate space-group changes as well as information concern-
ing the relationship of the lower-symmetry space group to
the prototype space group sufficient to obtain the experi-
mental information discussed above.

II. LANDAU THEORY AND DIRECT
GROUP- THEORETICAL METHODS

Classical Landau theory' presents a description of
continuous phase transitions in which possible lower-
symmetry phases can be predicted from the space group
Go. Here Go and the lower-symmetry group 6 are each
one of the 17 two-dimensional space groups. G is a sub-

group of Go with possible changes in cell size (lost
translational symmetry), as well as possible lost local
"point" symmetry.

The classical Landau theory has been reviewed else-
where' "and we indicate only the essential steps of that
theory. Single irreps drive the transition. Only those ir-

reps which satisfy the Landau and Lifshitz criteria can be
active for commensurate transitions. The nonequilibrium
(generalized) free energy N for the system is to be an in-

variant function of the order-parameter components C;
corresponding to irrep D of Go. To lowest order in C;
(usually fourth order) solutions to extrema are obtained
from the equations 8@/BC; =0 and subsequently absolute
minima are retained. The density function

5p(r )= g C; P;(r )
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corresponds to the nonzero order-parameter contribution
in the lower phase, where f; (r ) are basis functions of ir-
rep D . The set of all transformations (of Go) which
leaves 5p(r ) invariant is then the lower-symmetry space
group.

Associated with the above formalism, certain direct
group-theoretical criteria have been introduced which are
necessary conditions for a continuous transition. We only
briefly state them here. See Ref. 11 for a more complete
discussion.

(1) Subduction criterion. The irrep D of Go must sub-
duce into the identity irrep of 6, that is,

i(6)= gg (g)~0,1

where i (G) is the subduction frequency and X (g) is the
character of D for the element g of G. The summation
is taken over all elements g of G.

(2) Chain criterion. If 6 is a subgroup of another sub-

group G' of Go [where i (6') is also nonzero for irrep
D ], then i(6) must be greater than i(6').

(3) Landau criterion The. symmetrized triple Kroneck-
er product of the irrep D of Go does not contain the
identity irrep of Go, that is,

ni —— g I 3X (go)+ 2X (go)X (go)
0 go

+ 6 P' (go)]'l =0

TABLE I. The basis vectors, t~ and t2, of the two-

dimensional Bravais lattices. The vectors are given in terms of
(x,y) Cartesian coordinates. We use the convention of Crack-
nell (Ref. 15).

Lattice

Oblique, p
Rectangular, p
Rectangular, c

Square, p
Hexagonal, p

(a,O)

(a,O)

(2a, 2b)
1 1

(a,0)
(0, —a)

t2

(b cosO, b sin8)

(0, b)

( ——a —b)1 1

(0, a)
{z V3a, &a)

three dimensions, it is not necessary in two dimensions. '

Thus we will not limit our consideration to only those ir-
reps satisfying the Landau criterion. The Lifshitz cri-

terion restricts our considerations to k points of symme-

try only, since our interest here is in commensurate transi-
tions.

We have recently implemented on computer an algo-
rithm for obtaining all isotropy subgroups of space groups
in two and three dimensions 'Th. e details of the method
and the algorithm with the resulting tables for three-
dimensional space groups are to be published elsewhere.
We have also tabulated by computer the Landau and
Lifshitz criteria. We do not impose minimization of the
lowest-order free-energy expansion which, as mentioned
above, would additionally discard possible transitions.

The summation is taken over all elements go of Go.
(4) Lifshitz criterion The .antisymmetrized double

Kronecker product of D does not contain the vector rep-
resentation of Go, that is,

g —,
'

I[X (go)]z—X (go)IX"(go)=0,
IGol „'

where X"(go) is the character of the vector representation
of Go. Note that in the equations above X is the charac-
ter of a physically irreducible representation D of Go.
By physical, we mean that if a representation is complex,
we consider the direct sum of it and its complex conju-
gate.

The subduction and chain criteria are valid in a more
general transition (first order) if we restrict attention to a
group-subgroup transition. These two criteria yield iso-
tropy subgroups of Go corresponding to a vector (order
parameter) of the representation space. The Landau and
Lifshitz criteria in three dimensions are then additional
conditions necessary for continuous commensurate transi-
tions. These criteria select from the list of isotropy
groups and if one then looks at absolute minima of the
free energy a further selection is made. It has been pro-
posed that minimization is equivalent to restricting atten-
tion to maximal isotropy groups, ' i.e, isotropy groups of
a given irrep which are not a subgroup of any other for
that irrep regardless of subduction frequency. However, a
counterexarn. pie to this principle has recently been present-
ed 13

Although the Landau criterion appears to be valid in

III. PHASE TRANSITIONS IN T%'O DIMENSIONS

Irreps of the two-dimensional space groups are obtained

by induction from the irreps of the little group of k. As
stated earlier, we restrict considerations to k points of
symmetry in the first Brillouin zone since others will not
satisfy the Lifshitz criterion and would thus disallow
commensurate continuous transitions. Our labeling and
choice of irreps will follow that of Cracknell. ' The short
symbol of the space groups is used, and k; indicates the
ith irrep of the vector k, e.g., I'2 is the second irrep of
k=0. If an irrep is complex, we take the physically ir-
reducible representation and, for example, indicate
X~+Xq as the physical irrep.

So that this paper may be as self-contained as possible
and include sufficient detail to obtain the experimental
properties listed earlier, we repeat some of the information
contained in Cracknell. ' Tables I and II give the basis
vectors of the two-dimensional Bravais and reciprocal lat-
tices. Table III lists the two-dimensional space groups

Oblique, p
Rectangular, p
Rectangular, c
Square, p
Hexagonal, p

(2m/a)(1, —cotO)
(2m /a)(1, 0)
2m(1/a, 1/b)
(2m /a)(1, 0)
{Zn. /a){ 1/W3, —1)

(2m /b)(0, csc8)
(2m/b)(0, 1 }
2 ( —I/a, 1/b)
(2m. /a )(0, 1)
(2m. /a)(2/V 3,0)

TABLE II. The basis vectors, g~ and g2, of the two-
dimensional reciprocal lattice. The vectors are given in terms of
( x,y) Cartesian coordinates.

Lattice
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TABLE III. The 17 two-dimensional space groups and their generating elements. Vectors are given

in terms of components of t1, t &. %"e use the convection of Cracknell (Ref. 15).

System Number Symbol Generating elements

Oblique

Rectangular

Square

Hexagonal

9
10

11

12

13

14

15

16

17

p1
p2
pm

p8

cm

cmm

p4
p4m

p3
p3m 1

p 31m

p6
p6m

{E
F
00{

{cry (OOJ

f C2. 100I fay I
ool

{C~IooI fay I 2oI

{c„[ooI, {~„]00)

f C4+ [00)
f C4'IOol fa. I

00)

fc4. I00I f~- I
2r'I

{c3+ ~00]

{c+[00]
f c6+ )00), fodg fooI

and their generating elements. Table IV gives the k
points of symmetry for each Brillouin zone. Table V
gives the irreps of the two-dimensional space groups at
the k points of symmetry. This table uses notation simi-
lar to Table 5.7 in Bradley and Cracknell' for the three-
dimensional space groups. The irreps and their reality are
listed in numerical order. For example, the irreps
Xf X2 X3 and X4 of space group pmm (labeling and
numbering follow the convention of Cracknell' ) corre-
spond to the irreps 8&, R3, R2, and R4, respectively, of
the abstract group 64 listed in Table 5.1 of Bradley and
Cracknell. ' They each have reality of type 1.

In Table VI we list the results of the computer calcula-
tion. %e give the high-symmetry space group Go, its ir-
rep, the Landau criterion n ~, the Lifshitz criterion nq, the

number of arms of the star of k, the change in primitive
cell size (volume), the lower-symmetry space group G, its
subduction frequency i (G), the primitive basis vectors of
G in terms of the primitive basis vectors of Go, and the
change of space-group origin (from Go to G) in terms of
the primitive basis vectors of Go. In our tables, we do not
indicate which subgroups are maximal since for real irreps
the maximal subgroups have subduction frequency
i (G) = 1, while for complex irreps, the maximal sub-

groups have subduction frequency i(G)=2. We have
compared our listing of isotropy subgroups with the list-
ing of subgroups given by Sayari et al. ' We find com-
plete agreement since all of our isotropy subgroups are
contained in the appropriate allowed listing as given in
their table.

IV. COMPARISON %'ITH PREVIOUS LISTINGS

Of the many papers written concerning phase transi-
tions in two dimensions, three are notable in that they

seek to classify all possible commensurate transitions con-
sistent with mean-field theory (or RG). These are the pa-
pers by Rottman, Maksimov et al. , and Deonarine and
Birman.

Lattice

Oblique, p

Rectangular, p

Rectangular, c

Square, p

Hexagonal, p

I (00)
X( qo)

F(02 }

A( ——)
1 1

r(oo)
X( 20)

r(o —,
'

)

S(——)
1 1

I'(00)
S( 20)

X(——)
1 1

r(oo)
X( 20)

M(T2)1 1

I (00)
M(02 )

x( ——,
' —', )

TABLE IV. The k points of symmetry for the two-

dimensional lattices. The vectors are given in terms of g1 and

g2. %e use the convention of Cracknell (Ref. 15).
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TABLE V. The irreps of the two-dimensional space groups go at the k points of symmetry. The
abstract groups are given in Table 5.1 of Bradley and Crackne11 (Ref. 16). The generating elements of
the abstract groups are P, Q, R {as needed). The irreps are given in numerical order, using the conven-
tion of Cracknell (Ref. 15). Each pair of numbers i,j refers to the irrep 8; of the abstract group and
reality type equal to j. This table uses notation similar to Table S.7 in Bradley and Cracknell {Ref. 16)
for the three-dimensional space groups.

Abstract

group P, Q, R irreps, reality

p1

p2

pm

pg

p4g

p3

p 31m

r
X
Y
A

F

Y

r

S
r

Y

S

S
X

X

S
r
X
Y

S

X
Y

S
F
S
X
I"
X

I"
X
M
r
X

I

F
M
E
r

gl
61XT,
61XT2
61XT2
g1
62'X T2
62XT,
G2XT2
6'
G2XT2
62'X T,
G2XT2
gl
g1

6,'XT,
gl
g1
6,'XT,
62X T2
62
64X T2
64X T2
G4X T2
62
g4

64XT2
g4
62
g4
g4
62
62
62XT,
64 X T2
61
62X T2
64X T2
g4
64 X T2
GSXT2
g4
g4
g10

16

gl
61XT2
G3 XT3
62
62XT,
63XT3
62

[E fooj
[E I «j
f E foo}

f C2, I 00}
f c„foo}

fo. I«}
foy f00}

—'o
f~. I" 20}
focal zoj
fo„ f

00}

[o, fooj
«j f~. l«}
00},[oy I

00}
00},[o'y

I
00}

c„
—,'o},f~„ I

—,'o}

f C~. I «j f ~. I I ~ }

[~~ I 2 I} [C2 1™j

fo- Ir'2 j [c~f«}

[c„I
oo}

[C2. I»} [~~ l«j
fc+ foo}

[c,+,
I

00}
00},[o'y

I 00}
00},[oy00}
oo},[~, foo}
00} forl 2' 2' j

0 —— 0

[ C4z
I
00} [C~

I
o l j f ~~b I ~ ~ }

[c+ fool

f
C3'

I
«j

[c,+ fooj, [~„,Ioo}

[C3+
f
00}

1,1

1,1

1,1

1,1;2,1
1,1;2,1
1,1;2,1
1,1;2,1
1,1;2,1
1,1;2,1
1,1;2,1
1,1;2,1
1,1;2,1

2,3;4,3

1,1;2,1

I, l

1,1;2,1

1,1;3,1;2,1;4,1
1,1;3,1;2,1;4,1
1,1;3,1;2,1;4,1
1,1;3,1;2,1;4,1
1,1;4,1;2,1;3,1

5, 1

1,1;4,1;2,1;3,1

5, 1

1,1;3,1;2,1;4,1

5, 1

5, 1

6,3;8,3;4,3;2,3

1,1;3,1;2,1;4,1

1,1;2,1

1,1;3,1;2,1;4,1
1,1;3,1;2,3;4,3
1,1;2,1
1,1;3,1;2,3;4,3
1,1;2,1;3,1;4,1;5,1
1,1;3,1;2,1;4,1
1,1;2,1;3,1;4,1;5,1
l, l;2, );3,1;4,1;5,1

S, l

8,3;5,3;6,3;7,3;9,1

1,1;2,3;3,3
1,1
I~ X ~2sX ~3~X

1,1;2,1;3,1
1,1;2,1

1,1;2,1;3,1

1,1;2,1;3,1
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TABLE V. (Continued).

p6m

Abstract

group

G2XT2
G6X T3
G}
G2'X12
G3XT3
G)23

Gy X&2
GgX&3

P, Q, R

{C~' IOO} {~~~ IOO}
{C6+ IOO}

{C~IOO}

{C6+ IOO}, {o„gIOO}

{&~100}{& ~ IOO}

irreps, reality

1,1;2,1

l, l;5,3;3,3;4,1;2,3;6,3
1,1;2,1
1,1;2,3;3,3
l, l;2, 1;4,1;3,1;6,1;5,1
l, l;3,1;2,1;4,1

1,1;2,1;3,1

TABLE VI. Isotropy subgroups G of the 17 two-dimensional space groups Gp for the k points of symmetry. We give the Landau

criterion n), the Lifshitz criterion n2, the number of arms of the star of k, the change in primitive ce11 size (volume}, the subduction

frequency i(G), the primitive basis vectors of G in terms of the primitive basis vectors of Gp, and the change in space-group origin

(from Gp to G) in terms of the primitive basis vectors of Gp.

Gp irrep Size Basis vectors

pl

p2

CP?l

I)
X)
Y)

A)

r,
I2
X)
X2

Y)

Y2

A)

A2

r,
12
X)
X2

Y)

Y2

S}
S2

I)
r2

X) +X2
Y)

Y2

S) +S2

r2
S)

1

0
0
0
1

0
0
0

0

0
0

1

0

0
0

0
0

1

0
0

0
0
1

0
0

0
0
0
0
0
0
0
0

0
0

0
0

0

0
0
0
0

0
0

1

0
0
0

1

1

1

1

1

1

1

1

1

2

2

2

1

1

2

2

pl
pl
pl
pl
p2
pl
p2
p2

p2
p2

PPl
- pl

pal

pg
p/B

CH7

pg
pl
pl
p8

pg

pl

pl
p1
pl
CPl

p 1

2

1

1

1

1

2

10
2,0
1,0
1,T

1,0
1,0
2,0
2,0

1,0
1,0

1,0
1,0
2,0
2,0
1,0
1,0

1, 1

1, 1

1,0
1,0
2,0
10
1,0

1,T

1,0
1,0
1,0
2,0
2,0
2,0

0, 1

0,1

0,2
1,1

0,1

0,1

0,1

0,1

0,2

0,2

0,1

0,1

0,1

0,1

0,2

0,2

0, 1

0,1

0,1

0,2

0,2

1,1

0,1

0, 1

0,2

0,1

0,2

0,2

0,0
0,0
0,0
0,0
0,0
0,0
0,0
—0)

0,0
0—)

7 2

0,0
0,0
0,0
0,0
0,0
0—

S

0,0
1 1

2P 2

0,0
0,0
0,0
0,0
0—
0,0
0,0

0,0
0,0
0,0
0,0
0,0
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TABLE VI. (Continued).

irrep

X1

X2

0
0

0
0

Basis vectors Origin

0,0
1 3
4& 4

pmm

pmg

I
I2
I3
r,
X1

X2

X3

X4

Y1

Y2

Y3

Y4

S1

S2

I1
I2
r3
I4
X1

F2

Y3

F4

S1

I1
12

X1

1

0
0
0
0
0

0
0

0
0

0
0
0
0

0

1

0
0
0

0

0
0

0

1

0

0
0
0
0
0
0

0
0

0
0

0

0

0

0
0
0
0

0
0

0

0
0

0
0

1

1

1

1

I

1

1

1

1

1

2

2

pmm

pm

p2
pm

pmm

pmg

pmm

pmg

pmm

cmm

cmm

cmm

cmm

pmg

pg
p2
pm

pm

p2
p2
pl

pmg

pgg

pgg

pmg

cm

p2
p2
p1
pgg

pg

p2
pg

pg

p2
p2
p1
pg

p2
p2
pl

1

1

1

1

1

1

1

2
, 1

1

1

2

1

1,0
1,0
1,0
0, 1

2,0
2,0

2,0
2,0

1,0
0,2

0,2

1,0

1,0
1,0
1,0
0, 1

0, 1

2,0

2,0
2,0
1,0
1,0

1,0
1,0

1,1

1,1

1,0
1,0

1,0
0, 1

2,0

2,0
2,0
1,0

1,0

1,0
1,0

0,1

0, 1

0, 1

1,0
O, l

0, 1

0, 1

0, 1

0,2

1,0

1,0
0,2

0,1

0,1

0,1

1,0

2,0

0,1

0,1

0,1

0,2

0,2

0,2

0,2

1,1

1,1

0,1

0, 1

0, 1

1,0

2,0

0, 1

0, 1

0,1

0,2

0,2

0,2
0,2

0,0
0,0
0,0

0,0
0,0
—01

2 ~

0,0
—01

0,0
0—1

7 2

0,0
—01

2 ~

1 I
27 2

0—1
~ 2

0,0
0,0
0,0
—01

—01

4&

—01

0,0
0,0
0,0
0—1

~ 2

0,0
0—1

~ 2

1 1

4&4
—01

7

0,0
0,0
0,0
0—1

4

0,0
—01
4 7

—01

—01

2 ~

0,0
0,0
0—1

7 4

0—1

7 2

0,0
0,0
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TABLE VI. (Continued. )

irrep Size Basis vectors Origi

cmm

p4

S) +S2

S3+S4
I )

Ip

l"4

Si

X2

X3

Xg

I )

I2
I 3+I 4

X)

X2

M3+M4

I2
I3
I4

5

0
1

0
0
0
0

0

0

0
0
0

1

0

0

0

0
0

0

1

0
0
0
0

0

0

0

0
0
0
0
0
0

0

0

0

0

0

0
0

0
0
0
0
0

0

0

0

1

1

1

2

1

1.

2

4

2

2

p2
p2

cm

p2
cm

p2
p2

cmm

p2
p2

cmm

pmm

P gg

pmg

p4
p2
p1
p2
p4
p2
p2

p4

p2

p4
p4

p2
p4m
p4

pmm

cm

pm

p1
pmm

p4m
pmm

pmm

pmg

p4g
pgg

1

1

1

1

2

1

1

1

1

1

1

2

1

1

2

1

1, 1

1, 1

1,0
0, 1

1,0
1,0
1,0
2,0
2,0
2,0

1,0

2,0

2,0

2,0

1,0
1,0
1,0
2,0'

2,0
2,0

2,0

2,0

2,0

1,0
1,0
1,0
0, 1

0,1

0, 1

1,0
2,0
2,0
2,0
2,0

2,0

2,0

2,0
2,0
2,0

1,1

0,1

T,0
0,1

0,1

0,2
0,1

0,2

0,2

0,2

0, 1

0,2

0,2

0,1

0,1

0,1

0,1

0,2
0,2

0, 1

0,2

0,2

0, 1

0,1

0,1

1,0
1,0
1,0
0,1

0,1

0,2
0,2

0, 1

0,2

0,2

0,1

0,2
0,2

O,G

0,0

0,0

0,0
0,0
0,0
0,0
0,0
0,0
0—1

~ 2

—(1

2 ~

1

2&2
1 1

2 0 2

0,0

0,0
0,0
0,0
0,0
0,0
0,0
—0I
2~
1 1

27 2

1 1
2& 2

0,0
1 1

2& 2

—01

2 ~

0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
—01

2P
1 1
272
1 1

0,0
0,0
0,0
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Go irrep n1

TABLE VI. (Continued) .

Size Basis vectors

p4g

p3

p3m 1

X4

M1

M2

M3

I1
I2
r,
r,

M1+M4

M2+M3

r,
r2+I 3

M1

E1+E1
Z2+re'2

X3+E3

I2

0

0
0
0

0

0
0

0

0

0

0

0

1

1

0

0

0
0
0

0

0

0
0
0
0

0

0

0

0
0
0

0
0

0

0
0

pmg

p4g

pgg

p4m

p4g
p4g

p4m

cmm

pmg

p2

p4g
p4
pgf

cmm

cm

pg

pl
p8'

p2

pl
p4
p4

chelm

p2

p2
p2
pl

pmm

p4
pmg

p2
p3
p1
pl
p3
pl
p3
p3
p3

+3m 1

p3

2

1-

2,0

2,0

2,0

1,1

1,1

I, l

1,0
),0
1,0
0,1

0, 1

0, 1

1,0
0, 1

2,0

2,0

2,0
2,0

2,0
0,2

0,2

2,0

2,0

2,0
2,0
1,1

l, l

1,1

1, 1

1,0
1,0
1,0
2,0
2,0
2, 1

2, 1

21
1,0
1,0

0,1

0,2

0,2

1, 1

1, 1

1, 1

0,1

0,1

0,1

1,0

E,O

1,0

0, 1

2,0

0, 1

0,1

0, 1

0,2

0,2

2,0

2,0

0,2

0,2
0,2

1, 1

1, 1

1, 1

11
0,1

0,1

0,2

0,2
0,2
1, 1

1, 1

0, 1

0,1

—01

2~
1 1

2& 2

1 1
2~ 2

0,0
0,0
1 1
2' 2

1 1

2&2
—01

2 ~

—01

—01
2P

0,0
0,0
0,0
0—1

& 2

0—1

& 2

—01
4s

0,0
—01

4u

—01

2 ~

0,0

0,0
0—1

~ 2

0—1
~ 2

1 1

2~ 2

0—1
~ 2

0,0
0,0
0—1

~ 2

0—1
~ 2

1 1

2&2

0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
1 2
3& 3

2 1

3& 3

0,0
0,0
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TABLE VI. (Continued).

Gp irrep

0

0

0

0

0

0

Size

2

4

cm

p1
pm

p3m1

p1
ps

p3
cm

p1
p31m .

p3
p 31m

p3

p 31m

1

2

1

1

2
3

I

1

1

Basis vectors

1,1

1,0
1,2

2,0
22
2,0
1,2

2,0
22
2,0

2,1

2, 1

2, 1

21
2, 1

0,1

0, 1

1,0
0,2

0,2
0,2

1,0

0,2
0,2
0,2
1, 1

1, 1

T, 1

Origin

0,0
0,0
0,0

0,0
0,0
0,0
—01

4 ~

0,0
0,0
0,0
0,0
0,0
1 2
3~ 3

1 2
3&3
2 1

3~ 3

p6

r2

KI +K i

K2+K2
Kg+Kg

I(
I 2+rg

rg
r, +r,

M)

1

0
1

0

2

0
2

1

2

0
0
1

0
0
0

0

0

0
0
1

0
0
0
0
0

1

1

1

1

1

1

2

4

p3

p 31m

p3
cm

p1
pm

p 31m

cm

pl
pg

p3
cm

p1
p3m 1

p3
p3

p1
p6
p2
p3
pl
p2
p6
p2
p2
p3
p2

p1
p6
p3
p3

2

4
1

2

2
1

1

3

1

1

2

3

1

2

2

2, 1

1,0
1,0
0, 1

1,0
1,0
2,0
0;2
2,0
1,0

2,0
0,2

2,0

2, 1

2,1

2, 1

2, 1

1, 1

1,1

1,0
1,0
1,0
1,0
1,0
2,0
2,0
1,0

2,0
2,0

2,0
21
21
2, 1

0,1

0,1

1, 1

0, 1

12
0,2

2, 2

0,2

1,2

0,2
2,2

0,2

1, 1

1, 1

1, 1

2, 1

2, 1

0,1

0,1

0, 1

0,1

0,2
0,2
0,2

0,2

0,2

0,2

0,2
1,1

1, 1

1, 1

2 1

3~ 3

0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
1 1

4P 2

0,0
0,0
0,0

0,0
0,0
2 1

3 7 3

1 2
3&3

0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0—1

7 2

0,0
0—1

0,0
0,0
0,0
1 2
3& 3



30 SYMMETRY-RESTRICTED PHASE TRANSITIONS IN TWO- ~ ~ ~ 5165

TABLE VI. (Conti nued).

Go 1rrep n1 n2 Arms Size i(G) Basis vectors Origin

I1
I2
I3
I4
I5

M3

1

0
0
0
0

0

0

0

0
0
0
0
0

0

0

0

0

p2
p1

p6m
p6

p 31m

p3m1
cm

cm

pl
cmm

p2
pmm

p6m
cmm

p2
pmg

p3m 1

cm

p1
pgg

p6
cmm

p2
pmg

p 31m

cmm

p2

pl
p6m

p3m 1

p6

p 31m

p3
p 31m

cmm

p3
cm

cm

p2
p1

4
1

1

1

1

1

1

1

2

1

1

3

1

2

2

4

1, 1

1, 1

1,0
1,0
1,0
1,0
1,1

0,1

1,0
1,1

1,0
1,0
2.,0
22
2,0
1,0

2,0
22
22
2,0

2,0
1,0
2,0
22
2,0
1,2

2,0
22
0,2

2,0

2,0
2, 1

2,1

2, 1

2, 1

2, 1

21
2, 1

2, 1

21
1, 1

1, 1

1, 1

2, 1

2, 1

0,1

0,1

0,1

0,1

0,1

1, 1

0,1

0,1

0,1

1,2

0,2
0,2
0,2

1,2

0,2

0,2

0,2

0,2

0,2
12
0,2
0,2
0,2

T,O

0,2

0,2

0,2

0,2
1, 1

1,1

1,1

1,1

1,1

1, 1

1, 1

21
2, 1

21

0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0 .

0,0
0,0
1 1

2& 2

0,0
—01

2 ~

0,0
0—1

7 2

0,0
0,0
0,0
0,0
0,0
0—1

~ 2

0,0
0,0
0,0
0,0

0,0
0,0
2 1

3&3

0,0
1 2
3& 3

0,0
0,0
0,0
0,0

Rottman lists the irreps which satisfy the Lifshitz cri-
terion (n2 —0) and gives their associated LOW Hamil-
tonians. (He does not list the low-symmetry space
groups. ) We compared his list with our results and found

three differences. He lists two irreps for each of the fol-
lowing k points: p4gm(j), p3(l), and p3ml(m), which
correspond to our k points p 4g (M), p 3(E), and
p 3m (K). In our Table VI, we list three different physical
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irreps for each of these k points.
Maksimov et a/. list the lower-symmetry space groups

which arise from irreps which satisfy both the Landau
and Lifshitz criteria (n& ——0 and nz ——0). Their results
correspond to listing only maximal subgroups for a given
irrep. In our list these are the isotropy subgroups for
which the subduction frequency i (G)=1 if the irrep is
real and i (G)=2 if the irrep is complex. We compared
their result with ours and found several differences. For
example, p(v 2X~2)45' of space group p4 should give
rise to space groups p2,p4, not p l,p4 as they list. As a
second example, p (1X1)of space group p6 does not give
rise to p2 as they list. (Actually, one irrep, I'z+ I 3 of p 6,
does give rise to p2, but this irrep fails the Landau cri-
terion. )

Deonarine and Birman list all the isotropy subgroups

allowed by the subduction and chain criterion. Again, we
find many differences with our results. These differences
include omissions of points of symmetry (e.g., I', X, and
S points of pg), incorrect calculations of the Landau and
Lifshitz criteria (e.g., irreps E& and Ez of the I point of
p6m), and incorrect results of the subduction and chain
criteria (e.g. , incorrect isotropy subgroups arising from the

irreps Bt and Bz of the k*=[—,',0] point of p2mm).
The calculations for finding isotropy subgroups are

very prone to error as we have seen in the listings of
Deonarine and Birman7 and also in those of Maksimov
et al. s Computers are particularly well suited for these
kinds of calculations, and up to the present time, we have
found our computer-generated tables to be free of any er-
rors.
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