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The calcite-CaCO;(II) phase transition is described within the framework of the Landau cri-
teria for continuous phase transitions. The F point is chosen to construct the irreducible

L ke
representation driving the transition. All Landau conditions are satisfied by the D¢ F+3)

a4
representation and the three-component order parameter of D F-3) is shown to correspond to

the observed rotations of the CO; groups.

I. INTRODUCTION

Single crystals of the mineral calcite undergo a
pressure-induced transformation at 15 kbar by a
displacive mechanism in which the single-crystal na-
ture of small samples is preserved. The transition is
observed to be first order at room temperature. The
crystal structure of CaCQO;(II), the high-pressure
phase of calcite, was solved by Merrill and Bassett'
from single-crystal x-ray data collected with a minia-
ture diamond-anvil pressure cell. A trigonal space
group R 3¢ with two molecules per unit cell describes
the calcite phase while CaCO;(1II) is a monoclinic
space group P2,/c with four molecules per unit cell.
The essential features of the CaCO;(1II) structure can
be obtained mechanistically from the calcite structure
by an ordered rotation of the CO; groups around the
trigonal axis. In a single carbonate layer the CO;
groups in a row parallel to a hexagonal 7 axis [same
as monoclinic T, axis of CaCO;(II)] all undergo the
same rotational displacement, while CO; groups of
adjacent rows undergo the opposite displacements
(see Fig. 1). In the appropriate domain,? rotations of
CO; groups in adjacent layers are such as to preserve
the t, (T, or t; in other domains) rhombohedral
lattice translation vector in the monoclinic cell of
CaCO;(II). In correlation with the ordered rotations
of the COj; groups, two subsets of the calcium atoms
undergo antiparallel displacements from their posi-
tions of 3 trigonal site symmetry. The above model
of carbonate and calcium displacements fits well the
X-ray positional parameters and the necessary sym-
metry features of the new phase.

The phase boundary for the calcite-CaCO;(II)
transition was measured to temperatures above
500°C by Kondo et al.® In the region of 250 °C they
report that the slope of the phase boundary changes
from negative to positive. This behavior may be tied
to a change of the transition from first to second or-
der as one increases temperature through 200 °C.
Such a point has been shown by Griffiths* to be
characterized by the intersection of three lines of

second-order transitions (or critical lines) and hence
is called a tricritical point. Recently, Barnett ez al. 5
have indicated a possibility of critical phenomena at
temperatures near 180 °C giving credibility to a
change in order of the transition. If such a change in
order took place then we would expect descriptions of
the structure and its phase changes to be somewhat
analogous to that of other materials. For example,
perovskite structures and their associated multicriti-
cality have been thoroughly studied. BaTiO; is a
structure with a zone-center soft-mode cubic-to-
tetragonal phase transition. Clark and Benguigui®
have indicated a change in the order of the transition
at 32 kbar and room temperature. SrTiOj; is an ex-
ample of a zone-boundary soft-mode cubic-to-
tetragonal transition. When a strain order-parameter

FIG. 1. Essential features of CaCO;(II) structure ob-
tained from the calcite structure. (a) View along the calcite
trigonal axis. (b) View along a calcite hexagonal @ axis.
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coupling is considered then SrTiO; exhibits a rich
structure consisting of a bicritical point and a “‘spin-
flop line”’ in the uniaxial stress—temperature di-
agram.” There is significant theoretical and experi-
mental interest in the nature of such multicritical
point phenomena and calcite, due to its noncubic
phase, would allow the possibility of a greater range
of experimental and formalistic investigation.

In terms of the original calcite rhombohedral basis,
the periodicity of the previously described’displacive
pattern is t;= t, ta=—ty+ t3, and T3= t,

- —t'z - —f; which describes the basis for the mono-
clinic unit cell. Figure 2 shows the correspondence
between the original rhombohedral unit cell and the
monoclinic CaCO;3(II) unit cell. This new basis cor-
responds to a cell doubling of the primitive lattice.
The transition mechanism will be described in terms
of a Brillouin-zone boundary vibrational mode of the
crystal which becomes unstable at the transition pres-
sure and temperature. Motivated by the above infer-
ence of a change in order of the transition with tem-
perature we will show that within the formalism of
Landau (mean field) that it is possible for the R 3c-
to-P2,/c transition to be continuous. A comparison
of the rhombohedral and monoclinic space lattices
will enable us to identify the wave vector at the F
point of the rhombohedral Brillouin zone as the one
driving the transition. As a result it is antiferroelec-

FIG. 2. Correspondence between calcite rhombohedral
unit cell and the monoclinic CaCO;(II) unit cell.

tric and from the change in space groups would be
classified as a pure ferroelastic of the Aizu species
3mF2/m8 A single component of the three-
component order parameter obtained from the Lan-
dau description is associated with a vibrational mode
of the structure. By group-theoretical techniques we
calculate sets of vibrational modes for each of the ir-

‘reducible representations of the point group (2/m) of

the wave vector F. From an irreducible representa-
tion of the point group a set of modes can be identi-
fied which characterizes the displacements of the
transition. Thus we describe a noncubic structure for
which there is the possibility of observing a tricritical
point as well as strain-induced bicritical properties.
We stress that experimentally a continuous transition
at higher temperatures has not been observed as far
as we know.

II. LANDAU FORMALISM

The most direct mean-field description of phase
transitions was.formulated by Landau some forty
years ago.’ It is a phenomenological thermodynamic
description which has a shortcoming in that it
neglects consideration of fluctuations. Necessarily, it
often yields incorrect predictions of critical exponents
and the continuous nature of the transition may be
changed as fluctuations are considered, e.g., renor-
malization-group methods. However, the symmetry
considerations and the possible nature of the transi-
tion are reliable for wide classes of systems. More-
over, iQ is felt by some that the group-symmetry con-
siderations when appropriately applied have a reliabil-
ity beyond the framework of the Landau theory.

The classical formulation of the Landau theory re-
sides in the following conditions:

(a) Near T, there exists a single ‘‘generalized
Gibbs potential’” ®(P,T,n). Here T is temperature,
P is pressure, and 7 an initially unconstrained order
parameter. The Gibbs potential as well as a probabil-
ity density fucntion po(x,y,z) is invariant under all
symmetry operations of the higher-symmetry group
GO,

(b) The order parameter m corresponds to the basis
of a single irreducible representation of G°. It is zero
in the high-symmetry phase varying from zero con-
tinuously into the lower-symmetry phase. The sym~
metry is therefore changed through an additional
contribution to the density function py(x,y,z) of the
form

dp=3c,0,(x) .

Here the c, are components of the order parameter
and the ¢,(x) are basis functions of the single ir-
reducible representation of G°. As a result
p(x.y,z) = po+38, is invariant under a symmetry
group G, which is a subgroup of G°.
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(c) The order-parameter components are obtained
through a minimization of

DO(P,T,m)=0y(P,T)+A4,(P,T)n*+A4,(P,T)n*+ - - -

with respect to 7.

Birman!? has clarified the Landau formalism by
stating some necessary group-theoretical criteria for
the transition to be of second order. Strengthening
of Birman’s original formulation!' has led to the fol-
lowing conditions: (A) G, is a subgroup of G°. (B)
The symmetrized triple Kronecker product of the ir-
reducible representation D of G° shall not contain the
identity representation I't of G, i.e.,

(IDPITF(G* ) =0 .

(C) The antisymmetrized double Kronecker product
of D shall not contain the representation of a polar
vector, i.e.,

(D 2IV(Gy)) =0 .

(D) D of G° must subduce into I't (the identity
representation) of G,. (D') If G°C G, C G|, and D
of G° subduces into I'f of G, i (G,) times, and D of
G subduces into I'f of G{ i (G{)=i(G;) times,
then the transition Go— G| is eliminated as being
second order. (Chain-subduction criterion as extend-
ed by Jaric.) (E) D of G° corresponds to a physical
tensor field.

In the typical application of the above conditions an
irreducible representation of G° is selected and condi-
tions (B), (C), and (E) are then applied to determine
the acceptable representations. These representations
can be determined with little or no reference to the
symmetry group G;. One then needs to determine
the subgroups [condition (A)] corresponding to each
acceptable representation and apply conditions (D)
and (D’). Jaric has rigorously proven the equivalence
of conditions (D) and (D’) to the Landau necessary
condition.'!”> The actual subgroup selection corre-
sponding to a given physical transition is selected
through minimization of ®(P,T, n) and as a result of
knowing the coefficients 4, 4,, etc., for that struc-
ture. Thus this selection cannot be contained within
the general symmetry description but only the set of
possible representations and transitions.

If we need only decide whether a given symmetry
change is possible, i.e., we know G° and G, such that
condition (A) is satisfied, we can select the K vector
corresponding to G, and test conditions (B), (C), and
(E) to determine that a representation of G° is active.
We then check the subduction criterion (D). Finally
we form an invariant free energy without the specific
functional nature of 4,(P,T), and perform the
minimization. There should exist a set of coefficients
A;(P,T) which yield a minimum corresponding to G,.
If all is compatible it is possible within the Landau
formalism for the transition to be continuous. This

is the process we pursue for the R 3c-to-P2,/c transi-
tion in calcite.

IIIl. APPLICATION TO CALCITE

The symmetry group G° of the high-symmetry
phase of calcite is R 3¢. The origin of the interna-
tional tables for x-ray crystallography'? is at 3 and
corresponds to the point of the calcium atom. R 3cis
a nonsymmorphic space group whose isogonal point
group is 3m (D3,). We can then express R3c as a
coset sum with respect to the translations (7) in the
form

6 12
£y 111
G°(R3c)=‘§ (R,-IOOO}T+1§ (Ril5 5517
with the numbering in the sum corresponding to the
ordering of the symmetry operations of the interna-
tional tables.

To construct representations of G° we must have a
specific K vector of the Brillouin zone in mind. The
lattice constants for calcite correspond to a Brillouin
zone as shown in Fig. 3 where we have taken the
forms ’ ‘

T=—aj +ck ,
T,=(al3/2)i +(a/2)j +ck ,
—(al3/2)7 +(a/2)j +ck

t;
for our primitive translation vectors and

g =27[—(2/3a)k, + (1/3c)k,] ,

B=27[(1/13a)k, + (1/3c)k;] ,

27 [—(1/13a) ke + (1/3a )k, + (1/3¢ )k, ]

are the resulting forms of our reciprocal-lattice vec-
tors. A more complete motivation for our selection

FIG. 3. Brillouin zone for the calcite structure with F
. |
point and -38 indicated.
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of a K vector will be apparent as this work is
developed but here we point out that the transition is
a cell doubling (as seen from x-ray analysis) with the
monoclinic phase possessing alternating rows of car-
bonate groups. The K vector must then be a zone-
boundary vector and correspond to the monoclinic
primitive lattice. We consider then the F point
F= %E’l + % g, as the K vector for the description of
the transition. -

The point group of F is 2/m (C,,) having elements

GF =(ECil 043)

There are three vectors in the star *F= (F, F',F"'}.
The little group is then written in coset form as

GF=(E[000}T +(71000)T +(C3 |55 31T
+{0'd3‘%%%]r .

Consideration of the factor system corresponding to
these coset representa_tjves reduces to the regular
representations for G'. Among the four representa-
tions obtained of the space group we select the
representation DCT+? indicated below which arises
from the one-dimensional representation of
GT,ie., 1(E),—1(I), 1(C3;), —=1(o). We indicate
DUF3 for those essential elements of R 3¢ from
which we can obtain the others:

e T T 0 0
- - —-ic}F.- T
DUFNEITH=[ 0o 7" o |,
0 0 e—iC;?'T
-1 0 0
*
DEEI((IIOD=[0 -1 o,
0 0 -1
. -10 0
DUFI(culE+ s =0 o -1f,
0 -1 0

‘ 0
DUEI((ctlon =
0

—_—0 O
SO -

In checking the antisymmetric square condition we
need to consider all possible vectors in *F of the
form k + k, for which the sum is equivalent to the
vector K =0. Note that there are three such contri-
butions,

F+F=0, FF+F'=0, F"+F'=0 .

The antisymmetric square representation then splits
into two portions, for example, Ty and T,. T, corre-
sponds to that portion with wave vector equivalent to
K =0. Following the development of Lyubarskii'4

can pick the basis of the representation T as
= — | <
pjmn’ ejm()'jlm; ejlm,(rj,,, (I \jl)

Here j, is the label of the vector in star K which is
equivalent to —k and m the basis vector of the
representation correspondmg toGF (m =1 for our
case). For *F each vector k, is equivalent to —E,, SO
Jj1=Jj and j takes on 3 values.

In order that Ty have a representation in common
with the vector representation,

a"=% §x0<g)x(g>

should be greater than zero. In this sum N is the or-
der of the isogonal point group 2/m, f is a rotational
element corresponding to the isogonal point group,
g=t,f €G° and t, is a fractional translation. The
calculauon shows that the antisymmetric square of
DCF.3 (and all four representations of the space
group corresponding to F) does not contain the vec-
tor representation of R 3c.

Similarly for the symmetric cube condition we look
for triple products of basis vectors of D" F+3) which
are equivalent to the vector K=0. The only possibil-
ityis FE+F +F. Asabove, T, corresponds to that
subspace of the symmetric triple product correspond-
ing to K=0. Checking the character condition

2 Xo(g)

fGF

we see that [DCF 913 does not contain the identity
representation (D% also satisfies this condition).

The components of the order-parameter transform
irreducibly under DCF3, each component corre-
sponding to one arm of the star. From condition (E)
the order-parameter components are to correspond to
the components of a physical tensor. We wish to in-
terpret an order-parameter component as an eigen-
vector of the dynamical matrix and thus specify a
normal mode of oscillation. As we show in Sec. IV,
our representation D¢ F.3) corresponds to a normal
mode of oscillation whose pattern of oscillation is
that of the rotation pattern described by the x-ray
data. We thus assume for now that the condition of
““physical tensor”’ is satisfied.

Next we wish to consider conditions (A) and (D),
the subgroup and subduction criteria, respectively. A
general form for a character of the F point represen-
tation D'F-¥ is

X=(=1)"""2 4 (=1)""3x, + (=1)"1"3x,

where (—1)() arises from lattice translations and X;

_considers the rotational coset forms of G (R 3¢).

The cell doubling to a primitive lattice occurs only if
one arm of the star contributes to the character con-
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siderations. We make such a restriction and consider
as an example the F’ arm. For nonzero contributions
to the subduction character sum we obtain primitive
lattice vectors of the form

— — — e —
ti= 1ty t2="l2+t3

with a new cell of twice the volume as well as satlsfy-
mg the monoclinic relationships between tl, tz, and
‘3

Within this selection of lattice translations we can
check the correspondence of the symmetry elements
of P2,/c with those of R3c. Another selection of a
single-arm contribution will yield equivalent results
and will correspond to a different domain of the
structure. Picking the origin of symmetries at

( i ; i ) of the international tables we see that P2,/c

is a subgroup of R 3¢ with coset representatives of
P2,/c corresponding to transformations

{El0}, {I]-1,+1,0}

as expressed in R 3c. We wish to use the character
condition as formulated by Lavrenci¢ and Shigenari'?

s heT-e
€6 ' ee

where C is a coset representative of 7 in G| and ®is
a positive integer and

o
X\ P (g") = Sexpl—ik (To+ @ +ha V- a")]

=]

KD oo (=10 (1)
XShT('i'T('i Xp ((g'V)thg')

In this last expression
g=Ihla) of GYT®
g =(n'la'} of G/T|
={nla+1,) of G°,
To(h)=&(h) —&(h) —hS+S ,
and
“’I"( "} for g VK, =K .

We only sum over the one-arm contribution F'. The
above character condition yields the subduction in-
teger 1, so the identity representation of P2,/c is con-
tained once in DCFY of R 3c.

The final necessary condition for a continuous
phase transition is that ®(P,T, n) have a minimum

corresponding to the above order-parameter selection.
Up to fourth order in the order parameter symmetry
considerations determine the form for ®(P, T, n) to
be

O (P,T,7)=A(P,T) 3,m7+B,(P.T)

2
2 71f2
i

+B,(P,T) 3,9}

Minimization of ® yields n; =0 in the paraphase and
a form in the antiferrophase of 7;=753;=0, (7,)?
=—A/4(B,+ B,). This form corresponds to the
above assumption of one arm of the star contributing
for the new phase.

IV. PHYSICAL PROPERTY OF ORDER PARAMETER

One of the above conditions for a continuous
phase transition was that the order parameter n cor-
respond to a physical tensor field of G° In the soft-
mode formulation n corresponds to a normal mode
of the crystal. In this section we will identify a mode
of the crystal which corresponds to the above order-
parameter transformation properties.

The lattice modes of a crystal are a direct conse-
quence of its space-group symmetry and its disper-
sion relations. The calculations of lattice modes can
be carried out by a systematic procedure using group
theory. A complete description of the normal modes
of a crystal must consider (1) the motion of the lat-
tice and (2) motion within a unit cell. According to
the soft-mode picture of phase transitions, the eigen-
vectors of the soft mode are preserved in the lattice
of the low-symmetry phase and provide information
on the identification of the soft mode and its wave
vector.

The wave vector of the soft mode can be identified
by an analysis of the atomic displacements ﬁs(?, 1)
and corresponds with the low-symmetry phase. The
displacements are given by

—

T,(K, ©)=T{E|T }u,(k,0)

Here T{E|T }=exp(iK- 1), u;(X,0) is the displace-
ment of the sth atom at an arbitrary origin, X is the
wave vector, and t =n,t,+n,t,+n;t;. Phase fac-
tors of the Bloch relation I'{ £|T } have been calcu-
lated in terms of the K vectors for each of the sym-
‘metry points of the rhombohedral Brillouin zone and
the three primitive rhombohedral lattice translation
vectors. Comparison of these data leads to the con-
clusion that a wave vector at the l—f'point of the
rhombohedral Brillouin zone drives the transition.
By starting with the wave vector F we can obtain
all the unique sublattices of the calcite lattice and see
that one of them, T, corresponds to the monoclinic
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lattice of CaCO;(II), namely,
Tra=T\+(E|T,)T,

In the description of the calcite-CaCO;(II) transi-
tion the most prominent displacive feature is the ro-
tations of COj; groups suggesting the possibility that
the soft mode may be composed of COj; rotations
about the rhombohedral ¢ axis. Since the transition
involves a zone-boundary mode it will be necessary
to classify the normal modes of calcite according to
the irreducible representations of the group of the
wave vector. The procedure followed is that of
Maradudin and Vosco.!®

A representation of the symmetry properties of the
crystal is constructed in terms of the (3n X 3n) ma-
trix

75 (F,R) =8k, Fo(',R))

xexp{iF-[X(k) —RX(«')]}R,p -

The T matrix in general forms a multiplier represen-
tation of the point group of the wave vector K. As
previously indicated considerations of the F point of
R 3¢ lead to regular representations of 5?.

The normal modes of vibration are then classified
by assigning them to an irreducible representation of
the GF. The reducible representation D7 can be
decomposed by the usual relation

a,=— 3 XT(Nx?(f)
feﬁ?

from which we obtain
DT=5DW +7DP +10D® +8DW .

Using the projection operator techniques a set of
basis functions or symmetry vectors can be calculated
for each irreducible representation. For each set of
symmetry vectors ¢(F, p, u) we have constructed
possible zone-boundary modes of oscillation.

From the set of symmetry vectors corresponding to
the DCF-3 irreducible representation (see Table I)
we have selected a mode corresponding to the CO;
rotational displacive pattern of the transition. Isolat-
ing the rotational displacive pattern, which is a result
of the major displacements of the transition, ¢, can
be represented by a linear combination of the sym-
metry vectors,

Vo F 3, ) =Ay(F,3,8) +By(F, 3,9 ,

where 4 and B are nonzero constants. Finally, if one
considers the zone-center modes of the CaCO;(II)
phase, ¥, is found in the identity representation of
G, thus the y,,, mode is Raman active and satisfies
the necessary conditions for a zone-boundary soft
mode. The translational mode

"’trans(-ﬁ: 3, ll-) = lel(ﬁ, 3, 1)

TABLE I. Symmetry vectors w(?, 3; u) of the unit-cell
*
group of CaCOj; for the D! F.3) irreducible representation.

D Xcay=—Xca2)

() Yeay=Yca2)

3 Zeay=Zca2)

@ Yeay=Zcw)

() Zcay=Zcr

6) Yociy="Yo(

(M Zoay=Zo2)

(8) Xoi3)=Xow)=—Xos5)=—Xo(6)
9 Yoiy="Yow ="Yois)= Yo
(10) Zo3)=Zo(9)=Zo(5)=Zo(s)

corresponds to another important displacement of the
transition also satisfying the above conditions. What
linear combination of Yo, and Y,,s CcOnstitutes the
soft mode is not known. We do know that they are
the only zone-boundary modes of the D"F-? irredu-
cible representation corresponding to the identity
representation of G,(C,,). These modes cannot be
constructed from the symmetry vectors correspond-
ing to any of the other three irreducible representa-
tions of the point group of F.

V. CONCLUSIONS

The R3¢ to P2,/c transition has been described
within the framework of the Landau criteria for con-
tinuous phase transitions. Motivated by some experi-
mental evidence of x-ray considerations and critical
phenomena at temperatures of —180°C and 15 kbar
the question was formulated as to whether the above
transition could be continuous.

The F point was chosen to label the irreducible
representation of the transition. It leads to a cell-
doubling primitive monoclinic lattice. All Landau
conditions are satisfied by the pCF.Y representation.
In the analysis of the physical property of the order
parameter the observed alternating rotations are seen
to arise only from the normal mode corresponding to
this DCF3 representation.

Thus within a Landau formulation it is possible for
the transition to be continuous. No experiments
have to this date evidenced such a continuous transi-
tion at higher termperature, however.
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