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Inverse problems have recently drawn considerable attention from the physics community due to of potential
widespread applicatior{&. Chadan and P. C. Sabatiémyerse Problems in Quantum Scattering The@&@wyd
ed. (Springer Verlag, Berlin, 1989 An inverse emissivity problem that determines the emissiy(ty) from
measurements of only the total radiated poJg€F) has recently been studi¢dao Wen, DengMing Ming,
Xianxi Dai, Jixin Dai, and William E. Evenson, Phys. Rev6E, 045601R) (2001)]. In this paper, a new type
of generalized emissivity and transmissivity inve(&ETI) problem is proposed. The present problem differs
from our previous work on inverse problems by allowing the unkndemissivity) function g(») to be
temperature dependent as well as frequency dependent. Based on published experimental information, we have
developed an exact solution formula for this GETI problem. A universal function set suggested for numerical
calculation is shown to be robust, making this inversion method practical and convenient for realistic calcu-
lations.
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[. INTRODUCTION solving an integral equation. In ETI the emissivity fige-
quency dependerdnly, but, in practice the emissivities of
It is well known that every logical proposition has an many materials can also depend on the temperature of the
inverse. Some inverse propositions have drawn great attemadiators in a complicated wa]. In order to include the
tion in past decades. Inverse problems having unique soluemperature dependence of the emissivity, we present here a
tions have been proposed and studied already, such as, theneralized emissivity and transmissivity inversi@aETI)
inverse black body radiation probleft], the specific heat- problem.
phonon spectrum inversiofi2,3], and inverse scattering The key integral equation is
problems in acoustics and electromagnetics. Most recently
we proposed a new type of inverse problem: emissivity and 27-rhf°cv3g(v,T)dv

transmissivity inversiofETI) [4], which is of potential im- M= 2 (1)

c2 Jo eMkeT_1 °

portance and interest for antiremote sensing.

Howeyer, it is \{veII known that not all inverse problems yere the emissivitg(»,T) is both frequencyand tempera-
have unique solutions. For some problems, it is necessary {ge dependent. Hence this formulation is much closer to
add physical constraints in order to get a meaningful soluseajity, as well as having practical importance. However, the
tion. We call these “generalized inverse problems,” and pro-gpye integral equation is very difficult to solve, and further-
pose one suc.h problem hgre: a ge_nerallzed em|§S|V|ty iNVersgore the key equation is not adequate to deterrgineT).
problem. While the solution to this problem might not be ag 5 first step, one must find additional information that,
unique, it has significant practical importance. We show that,j4ed to Eq(1), will complete the problem. Such additional

by considering a physical model that introduces constraints,qpgitions will be shown to be essential in solving these new
one gets interesting results for this class of generalized ing,erse problems.

verse problem. Empirical models have been developed for many physical
quantities, based on experimental results, to describe compli-
Il. A GENERALIZED EMISSIVITY INVERSE PROBLEM cated real systems. In past decades, many experiments have

o . ) _ been performed investigating the emissivity of various radia-
The emissivityg(v) is defined as a measure of the radia-iors. From those studies, the temperature dependence of

tion capability of a body relative to a black body. If the g(»,T) for many materials is known to be described by the
emissivityg(v) is known, then the total radiated powHiT) following relation[7,8]:

can be written as function of emissivit(») in an integral
expression. In the emissivity and transmissivity inverse prob- Ing(v,T)=ag+boh+Coh2+ - -+, 2)
lem (ETI) [4] one can obtain the emissivity(v) from the
total radiated powed(T) as a function of temperature by where A=c/v (c is the speed of light in vacuumand

ag,bg,Cq, . .. are independent of wavelength, but can vary

with temperature. These constants have the dimensions
*Email: address: xxdai@fudan.ac.cn. AN N2, ... . The formula(2) accurately describes the
TEmail: address: evenson@byu.edu. emissivity behaviors of many materials within a relatively
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wide wavelength region and temperature interval, such as, W x=In(T/Ty), y=In(hv/kgTy), (9)
[9], Mg [10], K, Ta, Ir, Re, NbB, etc.[11,12, and some
highly emitting nonmetals, such as ceramic matrix composgg. (5) becomes

ites[13].
In general, a linear model can be used to describe the [
temperature dependence of the coefficiemjsby, ..., SO Qo(X)= foKﬁl(y_X)FO(y)dy’ (10

that in a suitable temperature and frequency regjéon,T)
may be written as follows, using only the first two terms of where 8, = (h/kg) 8 (for simplicity we later use the symbol

Eq. (2): B, without subscript for thig3;), and
g(v,T)=gg(v)expquT—BT/v), 3 1
—- X\ 4~ SX
where 8>0, and u are constants, ands(v) denotes the Qo(X) ngJ(Toe e (a1
temperature-independent partgifv, T). In many casesy is
very small, and Eq(3) can be simplified further to ksTo
Fo(y)= e(4S)ygB(Tey) , (12)

g(v, T)=gg(v)exp(—BTIv). 4
Materials to which Eq.(4) applies may be calle@-type ey exp( — Be*Y)
materials. We focus oB-type materials in what follows. By Kgly—x)= e -1 (13

inserting this relation into Eq1), the GETI problem can be

rewritten as follows: . .
The Fourier transform of the kern&l,(x) is

21h fwvs exp— BT/v)

I = 2 Jo  ehwkeT_1q

dv. 5 R o eikx+sxe—ﬁlex
gp(v)dv (5 Kﬁ(_k):f i dx
— ee —

1

Here the parametg® manifests the temperature dependence stike 1 ple
of the emissivity, and the above new equation is quite differ- _ J’wg ¢ dé (14)

ent from the previous one we studipdl. 0 ef—1
In some cases, the variation of emissivity with tempera-
ture is accurately represented by expanding(Egin powers By a convolution theorem similar to that for the Fourier
of temperatur¢14-16 transform, one has
BT 1(/pT\? A
g(”’T):gﬁ(”)(l_7+§ 7) +) © oo =2 s
Kp(—k)

In order to solve this new integral equation, we follow our
previous work[4], beginning with the asymptotic behavior Then, taking the inverse Fourier transform, one obtains the
analysis ofJ(T). In general, G=g(»,T)<1, so 0<J(T) following exact solution formula:
<oT% In the limiting case of ideal black-body radiation,

ik—4
g(v,T)=1, andJ(T)= o T*. Furthermore, for many materi- Q (k) )s+'
als, it is only in some finite interval of that the value of 1 (- 0 kgTo
g(v,T) is significantly greater than zero, while for—0 or 9p(v)= 2m ). Rﬁ(—k) dk, (16)

v—ow, ¢g(»,T)—=0 as, for example, g(»,T)

~v°exp(-av), (0<a<wv<b<wx). Inthose cases(T) has  Notice that introducing the parametsris critical for the
the following asymptotic behavior: derivation[2].

WhenB=0, the denominatdf(o(— k) in the solution for-

Tt when T—o
(7) mula (16) becomeg4]

J(T)N[TSZ when T—0,

where 0<s;<s,, and generally £s,<4,4<s,<. Ko(=k)=T'(s+ik){(s+ik), (17

By choosings (s;<s<s,), we have wherel'(z),(z) are the Euler gamma function and the Rie-

mann zeta function, respectively. The following asymptotic
gp(v)dv. (8) behavior control condition is necessary and sufficient to
0 ehkeT—1 guarantee the existence and uniqueness of the soli&jdh

]

ZWhJO"( v3ITS)exp(— BT/v)

IMITe==

C

Then IimrHOJ(T)/T5=O, and lim__J(T)/T*=0. Intro-

ducing a logarithmic transformation of the variablesT)
by defining

Qo(k)=0 . Koo, s>1.

Kks—12 exp{ —ktan !
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FIG. 1. Kg(—k) versusg.

In the general case, there is a weight factof’¢ appear-
ing in the definition ofK 4(—k) in Eq. (14), with 8>0. This  Un(X)
monotone increasing function confines contributions to the
integrand ofkﬁ(— K) primarily to large &, compared to

RO(— k). On the other hand the factgt=exp(k In & oscil-
lates more strongly with increasingy These two properties

imply that|f<ﬁ(—k)| decreases withB. Figure 1 shows the

variation of|RB(—k)| versusB. In order to guarantee the
existence of the solution to E@5) of GETI, one needs at
least condition(18) or some stronger one.

In practice, experimental data could hardly satisfy the
controlling condition(18) for large k, which goes to zero Where
exponentiallyfi.e., faster thad’(s+ik)]. Here we propose a
universal function setUFS method to overcome this diffi-
culty. The key point is to choose a complete orthogonal func-
tion set to guarantee the correct asymptotic behavior in ad-
vance. The Hermite functiorf47] are one such basis,

V \/;Czynn!

then

and
exf — (1/2) a®)?]H ( ax),

(19

Un(X)=

set{Gg
shows
scaled

04 N 1 . 1 . 1 N I . 1

FIG. 2. Universal function se,(y):n=0-7.
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where« is a parameter. One can expa@g(x) in terms of

Qo<x>=n§0 Cpn(X),

(20)
QB(V)ZHZO CiGpn(v), (21)
~ hy s+ik—4
G . un(k)(m) dk (22
ﬁ,n(V)—ZqT . RB(—k)
Up(k)=(—1i)" 2\/;e—<k2/2a2>Hn(k/a). (23)

a2™n!

One notices that the Fourier transform{ef,(x)} is a func-
tion set that is orthogonal ik space. The universal function
n(»)} can be calculated to high precision. Figure 2

some of these functiofjghere the variablev is
intoy through the transformation in Eq9)]. The

temperature-dependent emissivigy»,T) can be obtained
from Eqgs.(21) and(4).

The solution formulas, Eq$16) and(22), depend on the
preestablished paramet@r The key point is that one cannot
determineB from the solution formula itself. One possible
and practical method is to measure the emissivity at two
different temperatures but at the same frequeg€y,,T,),
d(vq,T,). Then according to Eq4)

g(vo,T1)
g(vo,To)

Vo

=1,

(24)

i)
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Another method is by fittingl(T) to obtaing. tion instead of a differential equation. FortunateBxtype

In order to check the exact solution form\le6), we have  materials are found experimentally, and the GETI problem
chosen a known functiogy(v) and a definite parametgt,  can be solved exactly and uniquely by including the condi-
and have obtained the correspondi@) to use as input in  tion (4) for the emissivity. The exact solution formula to the
GETI, as shown in Fig. 3 by the solid curve. By comparingGETI is given by considering the asymptotic behavior con-
the calculatedys(v) with the known functiongy(v), one  trol conditions and introducing the paramegeto eliminate
finds excellent agreement for this test function. divergences. A modified UFS was developed to make prac-

tical calculations possible.

IIl. CONCLUDING REMARKS
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