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Generalized emissivity inverse problem
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Inverse problems have recently drawn considerable attention from the physics community due to of potential
widespread applications@K. Chadan and P. C. Sabatier,Inverse Problems in Quantum Scattering Theory, 2nd
ed. ~Springer Verlag, Berlin, 1989!#. An inverse emissivity problem that determines the emissivityg(n) from
measurements of only the total radiated powerJ(T) has recently been studied@Tao Wen, DengMing Ming,
Xianxi Dai, Jixin Dai, and William E. Evenson, Phys. Rev. E63, 045601~R! ~2001!#. In this paper, a new type
of generalized emissivity and transmissivity inverse~GETI! problem is proposed. The present problem differs
from our previous work on inverse problems by allowing the unknown~emissivity! function g(n) to be
temperature dependent as well as frequency dependent. Based on published experimental information, we have
developed an exact solution formula for this GETI problem. A universal function set suggested for numerical
calculation is shown to be robust, making this inversion method practical and convenient for realistic calcu-
lations.
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I. INTRODUCTION

It is well known that every logical proposition has a
inverse. Some inverse propositions have drawn great a
tion in past decades. Inverse problems having unique s
tions have been proposed and studied already, such as
inverse black body radiation problem@1#, the specific heat-
phonon spectrum inversion@2,3#, and inverse scattering
problems in acoustics and electromagnetics. Most rece
we proposed a new type of inverse problem: emissivity a
transmissivity inversion~ETI! @4#, which is of potential im-
portance and interest for antiremote sensing.

However, it is well known that not all inverse problem
have unique solutions. For some problems, it is necessa
add physical constraints in order to get a meaningful so
tion. We call these ‘‘generalized inverse problems,’’ and p
pose one such problem here: a generalized emissivity inv
problem. While the solution to this problem might not b
unique, it has significant practical importance. We show t
by considering a physical model that introduces constrai
one gets interesting results for this class of generalized
verse problem.

II. A GENERALIZED EMISSIVITY INVERSE PROBLEM

The emissivityg(n) is defined as a measure of the rad
tion capability of a body relative to a black body. If th
emissivityg(n) is known, then the total radiated powerJ(T)
can be written as function of emissivityg(n) in an integral
expression. In the emissivity and transmissivity inverse pr
lem ~ETI! @4# one can obtain the emissivityg(n) from the
total radiated powerJ(T) as a function of temperature b
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solving an integral equation. In ETI the emissivity isfre-
quency dependentonly, but, in practice the emissivities o
many materials can also depend on the temperature of
radiators in a complicated way@6#. In order to include the
temperature dependence of the emissivity, we present he
generalized emissivity and transmissivity inversion~GETI!
problem.

The key integral equation is

J~T!5
2ph

c2 E
0

`n3g~n,T!dn

ehn/kBT21
. ~1!

Here the emissivityg(n,T) is both frequencyand tempera-
ture dependent. Hence this formulation is much closer
reality, as well as having practical importance. However,
above integral equation is very difficult to solve, and furth
more the key equation is not adequate to determineg(n,T).
As a first step, one must find additional information th
added to Eq.~1!, will complete the problem. Such additiona
conditions will be shown to be essential in solving these n
inverse problems.

Empirical models have been developed for many phys
quantities, based on experimental results, to describe com
cated real systems. In past decades, many experiments
been performed investigating the emissivity of various rad
tors. From those studies, the temperature dependenc
g(n,T) for many materials is known to be described by t
following relation @7,8#:

ln g~n,T!5a01b0l1c0l21 ¯, ~2!

where l5c/n (c is the speed of light in vacuum!, and
a0 ,b0 ,c0 , . . . are independent of wavelength, but can va
with temperature. These constants have the dimens
1,l21,l22, . . . . The formula~2! accurately describes th
emissivity behaviors of many materials within a relative
©2002 The American Physical Society01-1
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wide wavelength region and temperature interval, such as
@9#, Mg @10#, K, Ta, Ir, Re, NbB2, etc. @11,12#, and some
highly emitting nonmetals, such as ceramic matrix comp
ites @13#.

In general, a linear model can be used to describe
temperature dependence of the coefficientsa0 ,b0 , . . . , so
that in a suitable temperature and frequency regiong(n,T)
may be written as follows, using only the first two terms
Eq. ~2!:

g~n,T!5gb~n!exp~mT2bT/n!, ~3!

where b.0, and m are constants, andgb(n) denotes the
temperature-independent part ofg(n,T). In many cases,m is
very small, and Eq.~3! can be simplified further to

g~n,T!5gb~n!exp~2bT/n!. ~4!

Materials to which Eq.~4! applies may be calledb-type
materials. We focus onb-type materials in what follows. By
inserting this relation into Eq.~1!, the GETI problem can be
rewritten as follows:

J~T!5
2ph

c2 E
0

`n3 exp~2bT/n!

ehn/kBT21
gb~n!dn. ~5!

Here the parameterb manifests the temperature dependen
of the emissivity, and the above new equation is quite diff
ent from the previous one we studied@4#.

In some cases, the variation of emissivity with tempe
ture is accurately represented by expanding Eq.~4! in powers
of temperature@14–16#

g~n,T!5gb~n!S 12
bT

n
1

1

2 S bT

n D 2

1••• D . ~6!

In order to solve this new integral equation, we follow o
previous work@4#, beginning with the asymptotic behavio
analysis of J(T). In general, 0<g(n,T)<1, so 0<J(T)
<sT4. In the limiting case of ideal black-body radiatio
g(n,T)[1, andJ(T)5sT4. Furthermore, for many materi
als, it is only in some finite interval ofn that the value of
g(n,T) is significantly greater than zero, while forn→0 or
n→`, g(n,T)→0 as, for example, g(n,T)
;ns exp(2an), (0,a,n,b,`). In those cases,J(T) has
the following asymptotic behavior:

J~T!;H Ts1 when T→`

Ts2 when T→0,
~7!

where 0,s1,s2, and generally 1<s1<4,4<s2<`.
By choosings (s1,s,s2), we have

J~T!/Ts5
2ph

c2 E
0

`~n3/Ts!exp~2bT/n!

ehn/kBT21
gb~n!dn. ~8!

Then lim
T→0

J(T)/Ts50, and lim
T→`

J(T)/Ts50. Intro-

ducing a logarithmic transformation of the variables (n,T)
by defining
04560
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x5 ln~T/T0!, y5 ln~hn/kBT0!, ~9!

Eq. ~5! becomes

Q0~x!5E
2`

`

Kb1
~y2x!F0~y!dy, ~10!

whereb15(h/kB)b ~for simplicity we later use the symbo
b, without subscript for thisb1), and

Q0~x!5
1

sT0
4

J~T0ex!e2sx, ~11!

F0~y!5e(42s)yg
bS kBT0

h
eyD , ~12!

Kb~y2x!5
es(y2x) exp~2bex2y!

exp~ey2x!21
. ~13!

The Fourier transform of the kernelKb(x) is

K̂b~2k!5E
2`

` eikx1sxe2b/ex

eex
21

dx

5E
0

`js1 ik21e2b/j

ej21
dj. ~14!

By a convolution theorem similar to that for the Fouri
transform, one has

F̂0~k!5
Q̂0~k!

K̂b~2k!
. ~15!

Then, taking the inverse Fourier transform, one obtains
following exact solution formula:

gb~n!5
1

2pE2`

`
Q̂0~k!S hn

kBT0
D s1 ik24

K̂b~2k!
dk, ~16!

Notice that introducing the parameters is critical for the
derivation@2#.

Whenb50, the denominatorK̂0(2k) in the solution for-
mula ~16! becomes@4#

K̂0~2k!5G~s1 ik !z~s1 ik !, ~17!

whereG(z),z(z) are the Euler gamma function and the Ri
mann zeta function, respectively. The following asympto
behavior control condition is necessary and sufficient
guarantee the existence and uniqueness of the solution@5,4#:

Q̂0~k!5oFks21/2expH 2k tan21S k

sD J G , k→6`, s.1.

~18!
1-2
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In the general case, there is a weight factore2b/j appear-
ing in the definition ofK̂b(2k) in Eq. ~14!, with b.0. This
monotone increasing function confines contributions to
integrand of K̂b(2k) primarily to large j, compared to
K̂0(2k). On the other hand the factorj ik5exp(ik ln j) oscil-
lates more strongly with increasingj. These two properties
imply that uK̂b(2k)u decreases withb. Figure 1 shows the
variation of uK̂b(2k)u versusb. In order to guarantee th
existence of the solution to Eq.~5! of GETI, one needs a
least condition~18! or some stronger one.

In practice, experimental data could hardly satisfy t
controlling condition~18! for large k, which goes to zero
exponentially@i.e., faster thanG(s1 ik)#. Here we propose a
universal function set~UFS! method to overcome this diffi
culty. The key point is to choose a complete orthogonal fu
tion set to guarantee the correct asymptotic behavior in
vance. The Hermite functions@17# are one such basis,

un~x!5A a

Ap2nn!
exp@2~1/2!a2x2#Hn~ax!, ~19!

FIG. 1. K̂b(2k) versusb.

FIG. 2. Universal function setGn(y):n5027.
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wherea is a parameter. One can expandQ0(x) in terms of
un(x)

Q0~x!5 (
n50

`

Cnun~x!, ~20!

then

gb~n!5 (
n50

`

CnGb,n~n!, ~21!

where

Gb,n~n!5
1

2pE2`

`
ũn~k!S hn

kBT0
D s1 ik24

K̂b~2k!
dk ~22!

and

ũn~k!5~2 i !nA 2Ap

a2nn!
e2(k2/2a2)Hn~k/a!. ~23!

One notices that the Fourier transform of$un(x)% is a func-
tion set that is orthogonal ink space. The universal functio
set $Gb,n(n)% can be calculated to high precision. Figure
shows some of these functions@where the variablen is
scaled intoy through the transformation in Eq.~9!#. The
temperature-dependent emissivityg(n,T) can be obtained
from Eqs.~21! and ~4!.

The solution formulas, Eqs.~16! and ~22!, depend on the
preestablished parameterb. The key point is that one canno
determineb from the solution formula itself. One possibl
and practical method is to measure the emissivity at t
different temperatures but at the same frequency,g(n0 ,T1),
g(n0 ,T2). Then according to Eq.~4!

b5
n0

T22T1
lnS g~n0 ,T1!

g~n0 ,T2! D . ~24!

FIG. 3. Comparison ofg(n) calculated by the UFS~open
circles! with the known input function~solid curve!.
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Another method is by fittingJ(T) to obtainb.
In order to check the exact solution formula~16!, we have

chosen a known functiong0(n) and a definite parameterb,
and have obtained the correspondingJ(T) to use as input in
GETI, as shown in Fig. 3 by the solid curve. By compari
the calculatedgb(n) with the known functiong0(n), one
finds excellent agreement for this test function.

III. CONCLUDING REMARKS

In this paper a generalized inversion problem is presen
in which the defining integral equation does not determ
the solution uniquely. There are many such inverse proble
in practice, including noisy data cases, which are of poten
importance. In order to solve such problems, one must
additional conditions from physical considerations. In ma
ematics this procedure is analogous to adding suita
boundary conditions to a differential equation, but the m
difference here is that the key equation is an integral eq
tt.

s

04560
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tion instead of a differential equation. Fortunately,b-type
materials are found experimentally, and the GETI probl
can be solved exactly and uniquely by including the con
tion ~4! for the emissivity. The exact solution formula to th
GETI is given by considering the asymptotic behavior co
trol conditions and introducing the parameters to eliminate
divergences. A modified UFS was developed to make pr
tical calculations possible.
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