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Functional integral approach: A third formulation of quantum statistical mechanics
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Quantum statistical mechanics has developed primarily through two approaches, pioneered by Gibbs and
Feynman, respectively. In Gibbs’ method one calculates partition functions from phase-space integrations or
sums over stationary states. Alternatively, in Feynman’s approach, the focus is on the path-integral formulation.
The Hubbard-Stratonovich transformation leads to a functional-integral formulation for calculating partition
functions. We outline here the functional integral approach to quantum statistical mechanics, including gener-
alizations and improvements to Hubbard’s formulation. We show how the dimensionality of the integrals is
reduced exactly, how the problem of assuming an unknown canonical transformation is avoided, how the
reality of the partition function in the complex representation is guaranteed, and how the extremum conditions
are simplified. This formulation can be applied to general systems, including superconductors.
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| INTRODUCTION where the HamiltonianH, can be written in terms of a
In 1959 Hubbard 1] developed a functional-integral ap- single-particle operatokfo, and a many-body term:
proach(FIA) to calculate the grand partition function of sta- A=Ay+V
tistical mechanics. This approach is the third general ap- ’
proach to many-body statistical mechanics, and it gives rise 1
to many interesting approximation schemes for many-body V= 7 s Viiid a0 . 3
physics. The first two approaches to many-body quantum :
statistical mechanics are the configuration integral or SUM i the followina notation
over stationary states approach that goes back to Gibbs and 9 9
the path-integral approach of Feynman. 1 )
The FIA has not been developed as fully as the first two B= T y=(0,0),§,;=§,=4"4,
approaches to statistical mechanics because of mathematical B
complexities and difficulties in generalizing the fundamental
formulation. These matters are addressed in this paper after K=Y, ea'a, N=2 a'a, (4)
we first review Hubbard’s functional-integral method. i

then
A. Hubbard’s method

.1 N
Hubbard’s approach was based on the Stratonovich iden- V= > V, 5&,€s, (5)
tity [2]:
w ) R a2 where the Hermitian property of the Hamiltonian ensures
ﬁw exf — mx*—2/mxAldx=e"" 1) thatV* ;=V, . Assuming that one can diagonalizeby a
canonical transformatio8,

Using this identity, the partition function can be transformed (S'VS),, =\,8, ., (6)
exactly from a many-body partition function to a functional

integral over single-particle problems in a fictitious “time”- then

dependent external field. Begin with the usual definition of

" ) o )

the partition function V= 52 o @
ZE=Ti e(m:l*?WkBT], 2) where

l3k,|:i2j S i =0, 8
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Making use of the ordering label technique of Feynmidh  where
and the Stratonovich identity of E¢l), Hubbard obtained

z=x+1iy. (13
EZJ e sl dx, g, 9 (i) When A and B commute and are Hermitian, thei
v,S A .
andB possess a common complete orthonormal set of eigen-
where functions that can be taken as the representation basis. The

identity can then be proven with numbers.
(ii) Often (in fact, for the general case in statistical me-

_ 2 - N
L[Xv,s]—WVES X5 st BIX, s, (10) chanics A and B are not Hermitian. Nevertheless, since
A and B commute by hypothesis, one can expand
andf is the thermodynamic potential of an ideal gas movingexd —+/7(Az+Bz*)] in a power series in andy, and carry

in a time-dependent external field: out the integration to prove the operator identity.
The Stratonovich identity, Eq1), is a special case of this
e Bl sl =Ty exp( —Re—2ym D /—Mxy,sf?y,s”- operator identity, Eq(12), whenA=B.
v,S
(11 I1l. FUNCTIONAL-INTEGRAL FORMULATION

OF QUANTUM STATISTICAL MECHANICS

B. Difficulties To have a practical functional-integral formulation, we

There are some interesting problems with this formulatiomeed to reduce the dimensionality of the integrals and avoid

as it stands: the unknown transformatiod and operatop, . Therefore,

(i) It is difficult, and not always possible, to obtain the e prove the following general theorem without explicit use
canonical transformation operat8r of Sor py.

(i) Even knowingS, the operatorg = p | are still very Theorem A general statistical equilibrium problem with
complicated. _ Hamiltonian of the formH = IiloﬂL Hi, Where

(i) Is there a way to proceed without explicit forms ®r
andpy |? N A

(iv) Can we reduce the dimensionality of the integrals? Ho_kgg w3 U 0%k | 808k

(v) How can we simplify the extremum conditions of the o
Lagrangian for the method of steepest descents? 1

(vi) How can we generalize the functional-integral formu- Hint= _VE > z U(Q)akr+q J-h 4,08k 08K’ o
lation of quantum statistical mechanics to include supercon- a ke, (14)

ductivity?

These problems are discussed below. Previous appliczan be transformed exactly into a problem of an ideal gas
tions of the functional-integral approach include the Ander-moving in a fictitious complex time-dependent external field.
son mode[4], the Kondo effecf5], valence fluctuations, and The price to be paid is the introduction of a functional inte-
the Hubbard mod€l6—-18]. In the previous work, many ap- gral. [Note thatU, is the potential at the origin and(q)

proximation methods(e.g., static approximation, random is taken to be positive, with the sign introduced explicitly
phase approximation, independent harmonic approximatiorpy + ]

quartic approximation, systematic diagrammatic analysis, Proof We first write

single cross approximation, the time-domain approach) etc.

have been developed. The results of the [F14,16 have 0 _+2 AB (15
been compared with those of renormalization-group theory o4 e

[19]. The present paper focuses only on the general problem

of the formulation of a practical functional-integral ap- where

proach.

Ay, 16
II. AN OPERATOR IDENTITY q ko 2V “kta.oko (16

In order to generalize and improve the Hubbard theoryjntroducing the Feynman-Dyson expansion and the time-

we start from the following operator identity ordering operatoil, we can write the grand partition func-
Identity : When linear operatoré and B commute, one tion as

has[12] .. .
= =T TefN-Hog=IGHn(ndr], 17

+AB_ 2_ A B o R
J dxf dy expl — |z| \/;(AZt Bz*)], whereH,(7) is the interaction representation form.
(12 Now, using the Fourier expansion for an operaixrr),

026118-2



FUNCTIONAL INTEGRAL APPROACH: ATHIRD . ..

O(n)= E Ore2mvis, (18)
where

. 1 (B, _

Or=— f O(r)e?™""Fdr, (19

BJo
we have
B- ” AVR—V
foHim(T)dT=iﬂ% :E_ AlB, (20)

Then applying the operator identity of E(.2), one obtains

== [ (1 11 e
xex;{—wz |zq”|2}Tr
q,v

Texp| =i

- Jw_ﬁqu [Aszq”xéq%zq”)*]”. (21)
Now return to the time domain where
o, 1 B
% |Zq |2=E§q: fo|zq(7)|2d71
and
S Az ;V=—2 [Amzman. @2
SinceA] =B, one hasB;"=(A?)*. Then
. 1 *
qZV By (25" _ﬁ% Uo 7)zg(T)d7 (23)
Now write
U<T>=wﬁ§ {Ag(zg( ) F[Ag(1)Zg(1)] T},
and
H,(7)=Ho+AU(7). (24)
Then we define
2, (2) =T TelrN-IEH(dr), (25)

which allows one to write, using E¢21),

o (B
| _—— 2
= szex;{ ﬁfo Eq |zq(7)|°d7

E1(2)=(E=1-

(26)
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Aq(r) is a quadratic form, anEl)\(r) is like the Hamiltonian
of an ideal gas moving in an external field,(7), as is

evident on rewritingd in the form

U
\fﬁ SN o) 2 (80D, (7)24(7)

F 8 ()81 ,0( )24 (1)}

(27)

So the theorem is proven.

Comparing this approach with Hubbard’s theory, we see
the following advantages of this formulation:

(i) It avoids the difficulties of finding the canonical trans-
formation$ .« andpy ;=3 ;S k184 .

(i) The dimensionality of the integrals here is much less
than in the Hubbard formulation, because in our formulation
the functional integral is expressed Bl ,dxq(7) dyg(7),
whereas in the Hubbard formulation it is expressed as
JIIII;dx (7). This reduction of dimensionality is impor-
tant in applying the theory.

(i) In the BCS theory of superconductivityy=
— 3k Vi Ce 1€l €k, Chr 1 » Which cannot be diagonal-
ized in the form of Eq(7) to apply the Stratonovich identity.
But using the operator identity Eq12), which only needs

A,=B; and their commutativity under th& operator, the
present FIA can also be applied to the theory of supercon-
ductivity.

IV. PROPERTIES OF THE PARTITION FUNCTION

Only real partition functions are physically meaningful.
Furthermore, within a single-phase region, the partition func-
tion must be analytic and positive. Positivity &f is a nec-
essary condition for reality of the thermodynamic variables.
Analyticity ensures that the thermodynamic variables and
their derivatives do not have any singular points, which
would be associated with a phase transition.

However, physical systems do undergo phase transitions,
and physical systems that are experimentally realizable are
not single phase systems. The most interesting theoretical
model systems also include phase-transition points. At such
points the partition function, in the thermodynamic limit, can
go to zero[20] or contain some more subtle nonanalyticity.

In this section we explore these properties of the partition
function in the functional-integral approach.

A. Reality and method of steepest descents

We note thatl is Hermitian or anti-Hermitian as the two-
body interaction is attractive or repulsivié:" = = U accord-
ing to =+ in H,,,. WhenH, is Hermitian,=,(z) and hence
=, are manifestly real.

On the other hand, whef, is non-HermitianZ, can be
complex valued. We prove here ttiatis nevertheless always
real.

TakeU* = —U by hypothesis. Then to take the complex
conjugate=*, we takeU—U*=-0U, and the rest of the
operators are Hermitian. By symmetry we have

026118-3



XIAN XI DAI AND WILLIAM E. EVENSON PHYSICAL REVIEW E 65026118

U0--0, points. Z,, while real, can be negative whed is anti-
when Hermitian. This is so because we can wridg 7)=iU o( 7)

whereUy(7) is Hermitian. Then Eqg(30) can be rewritten as
Z4(7)——24(7). (28

~ R -~ B
ElzTr[Teﬂ(“NHo)cos{f Ug(7r)dr
0

} . (36)

Since definite integrals are invariant under transformations of
(dummy) integration variables, it is easy to prove that all the

imaginary parts of the expression e, cancel exactly: The cosine function, of course, allov, to be negative.
—E*=(2,),_,=(R&E,)) :(E ) 29 Since =, appears as the argument of a logarithm in Eq.
= VTl TNN=1TAEL (32), L[z(7)] can be complex, allowin@ to become zero.

Furthermore, even wheld is Hermitian,Z could have sin-
gular points or other nonanalytic points. It is, in fact, the

I

For convenience, we have defingd as follows:

~ . SN B richness of the theory, that certainly includes the possibility
E,= Re(E)\)|>\—1:Tr[ TefkN-Ho) COSV{f U(rndr ] of phase transitions, that allows these possibly troublesome
0 points.
B S guR—fig) B In most cases, even whéh is anti-Hermitian,= will be
=T Te o co f o Uo(n)dr|f, (B0 positive definite as guaranteed by two factors: First, the

Gaussian factor eXp- TrEqm|z;”|2], which is maximum at the
zero point, and decreases quickly at lagge’. Second, the
cosine function is positive in the first quadrant. At large ar-
gument, the cosine function oscillates quickly and mostly
cancels, while the amplitude of the integrand is decaying
very quickly anyway due to the Gaussian factor. These fac-

tors make= ; likely to be positive. As a rough estimate, since

Uy is linear inz, ", we see from the Poisson formula that
is positive:

whereU,=—iU is Hermitian. This definition of, differs

from that in the Hubbard theory, and he%q is manifestly
real.

As long as the Lagrangiah has an extremum, one can
use the method of steepest descents. So we write

E:f Dz e A7, (31)

here >
W j e ™ cog ax)dx=e~ o?lam= (. (37)

Lz(M]= %S |z(nlP-nEsfz(n]). (32 3
Ba It is interesting to see, however, that may take negative
values in the functional-integral approach, especially in the
vicinity of a phase transition. In these cases, steepest de-
( m ) scents in the complex domain could be used to study such a
, =0,
0

L has an extremum at the poifi] .,y ¢ where

( aL
IXq,s

with s now standing in for the time variable. We expand the

LagrangianL in the vicinity of the extremum, and define a Mateé as above, assuming a linear functitfe), gives
matrix L, with matrix elements

0

(33)  phase transition.

When the interaction is attractive, with no hard cddeis
Hermitian and=, is positive definite. The same rough esti-

&yq,s

J e ™ cosiax)dx=e*t(@4m> 1, (38)

L ! —&ZL 34
( 2)q,s;q’,s’_ﬁ 0"Zq S&Zq/ o) (34 _ _ .
' : As expected= cannot have any zeros in this case. So how

Considering a suitable canonical transformation and the inc@n models like BCS theory of superconductivity or Bose-
variance of the determinant under canonical transformation&instein condensation have a phase transition? All that is
the functional-integral calculation can now be carried outréquired for a phase transition is some nonanalytic point or

The method of steepest descents gives the following expre§ingularity, not a zero in the partition function. A zero in the
sion for the partition function: partition function is the case that was studied by Yang and

Lee[20], but this is associated with a hard core in the inter-

_ T o2 = oy, L action. In Bose-Einstein condensation, on the other hand
InE=— EE |zgl?+InEy[zg]+ 5 IndefL]o. (35
q

INE=—In(1—ze0*sT)— > In(1—zew'keT), (39)
B. Positivity and analyticity of the partition function p#0

We expect nonanalytic points, possible zeros, and possiblhich goes totoe at the critical point. A similar argument is
singularities in the partition function at phase-transitionpossible for BCS theory.
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Although there is not yet a complete quantum theory ofE, could in principle be complex. But we have proven that
phase transitions, it appears that many cases are possik&eanda

: : ! ; ; - E . are always real. Reality is thus guaranteed for all
with different nonanalytic behaviors in the partition func- o . Y .y ~ . d _ )
tions. partition functions. The expression fat, is also interesting,

even including the possibility of phase transitions.
V. DISCUSSION (iv) The extremum condition and the meth@bproxima-
tion) of steepest descents are much simpler than in Hub-
Starting from the operator identity E¢12), the general pard's theory.
partition function can be expressed by a Gaussian average of
an ideal gas partition function.See Eqgs.(24)—(26),(29),
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