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Inversion problems have recently drawn vast amounts of attention from the physics community due to their
potential widespread applications. In this Rapid Communication, a different type of inversion problem in
physics is proposed: an inverse emissivity problem, which aims to determine the emigéijithy mea-
suring only the total radiated powd(T). Like other inverse problems, this one has potential for important
practical applications. An exact solution is obtained for the proposed inverse problem. A unique existence
theorem and techniques for eliminating divergences are also presented. A universal functidhSetug-
gested for numerical calculations is shown to be very useful in a numerical example. The UFS makes this
inversion method practical and convenient for realistic calculations.
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[. INTRODUCTION One effective way to do this is to reduce their emissivity.
Hence, the emissivity problem is potentially important and
Inversion problems are often important in physics andinteresting.
have received much interest and attent{dd. There are In the case of gray-body radiation, if the emissivitf»)
many familiar examples of inverse problems; for instancejs known, then the total radiated pow#(T) can be written
inferring the velocity profile in the earth’s crust from seismic as
signals. In the early 1980’s, Bojarski first proposed a new

inverse probleni2], namely, the black-body radiation inver- 27h (= 3g(v)dw
sion (BRI) problem. For a given or measured total power J(T)= =2 fo hy 1)
spectrum W(v) radiated by a black-body with area- exr{H) -1

B

temperature distributioa(T), the BRI problem is to solve
the integral equation and obtain the area-temperature distr

bution function from the giveiW(»). A series of important Rere we propose the inverse emissivity problem: If the total

apers have been published and some imaginative methor diated power)(T) as a function of temperature can be
bap P 9 easured, the emissivig( ») can be obtained by solving the

have been_proposed o s_olve the_ pr(_)blem_smce 1Beid). integral equation, Eq1). Althoughg(v) can be obtained by
The cohesive energy-pair potential inversion problem was . o .
sepectrum analysis, one usually needs sophisticated instru-

E{tsgr Wg&osfgﬁggsd%veloped in a way that anticipated thments that are suitable for many wave-bands. But in most
Specific heat-phohoh spectrum inversi@P)) is another cases, only the main or global characterg6f) are needed
and only a single frequency-dependent detector is available.

type of interesting inversion problem. In many studies of . ; L
. o . Therefore, an exact solution of the above integral equation is
high T. superconductors, it is often of great importance to_ L
an important advance for a significant problem.

know the phonon spectrum. The SPI problem aims to obtain It should be emphasized here that our proposed inverse

phonon spectra from specific-heat data, which in most Caseesmissivity problem(ETI) is different from the previous

are easier to obtain than direct measurements of phon T ; A
spectra. Much effort has been directed at this problem ovgtr) ack-body radiation inversionBRI) and specific heat-

the past decad7,8]. Most recently, some of us with co- phonon spectrum inversi@®$Pl) problems, since the integral

, ; . Ifernels as well as the unknown functions are totally differ-
workers have been successful in numerical calculations o " . .
ent. In addition, the physics of the three problems is not the

phonon spectra from the inversion of experimental specific
heat datd9]. The numerical inversion results obtained from same.

the exact solutiof8] are in good agreement with the phonon

spectrum from neutron inelastic scattering experimgh@. Il. EXACT SOLUTION FOR THE ETI PROBLEM

In_ this Ratﬁ'd ?Omm“f.‘"?f‘“"”'dw‘f propose a}tdlf.ferent.m- In order to solve the equation exactly, one can use the
\(/E_ﬁ;m;\ pro elink em|ssw|t'y an i ransmissivity 'nv.ers'ontransformationx=In(T/TO) and let Q(x)=[J(T,e¥) c2h¥
- AS 1S WET-KNoWN, antiremote sensing Is a very Impor-ZW(kB To)*]. The following exact solution to Eql) can

tant and interesting problem in practice. It is of great impor- : .
tance for some flyers to hide their figures or images in th%t:2nRt;sn?::]?:nZi?éuwagigh&ZEﬁIer gamma functiz), and

background from(infrared detectors to protect themselves.
= (hy\* % Q(k) dk
oin- | ( ) @

_\kgT) Tk (k)
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whereQ(Kk) is the Fourier transform o®(x). - Qo(k)
But there are some difficulties in this formul@) £(ik) is Fo(k)= T (5+1K) Z(51 1K)’ (8)

not guaranteed to be nonzero in the denominator. Although,

according to the Riemann hypothegld, 12, all the zeros of  ang the exact solution formula of the emissivity inversion

Riemann zeta functiod(z) in the Riemann strip (&Rez  problem can be expressed by an inverse Fourier transform:
=<1) are located on the line Re)=1/2, the Riemann hy-
hy )S+ik4

pothesis has never been proved and has been a famous un- ~
solved problem in mathematics for over 100 yedrs—15; ., Qo(k) KeTo
o= [

(i) Q(k) can be divergent in Eq2). T T(s+iK) £(s11K)

dk

(€)

A. Exact solution formula and technique ) )
for eliminating divergence B. Physical domain ofs

We eliminate possible divergences by asymptotic behav- The next important stgp is to give the conditions which
ior analysis ofQ(x). The fundamental requirement is the guarantee the existence Bf(k). A clue is found by study-
existence of Q(k), so the first task is to control the INg the general asymptotic behavior &T) from physical
asymptotic behavior 0©(x). In generalg(»)<1, soJ(T) considerations, followed by finding suitable constraints on
<o T4 Then assume that the measudd) has the follow- the parametes which is used for eliminating divergences.

ing asymptotic behavior: One can prove the foII(_)wing proposition. _ o
Proposition: In physics, the largest domain of definition
TSt whenT—® of sis 1<s<<e,
J(T)~[T52 whenT—0. () Proof: The main point of the proof is to find lower and
upper bounds 0§, ands, for all possibleg(v) by physical
By choosing analysis of the asymptotic behaviors X(fT). This problem
is rather difficult due to the absence of unified rules. But the
27h (=(3TSg(v)d v following considerations lead in the right directiof@ The
IMITS=—; j — , (4)  integral equation is linear, so there exists a superposition
¢t Jo ex;{ —> -1 principle; (b) g(v) is positive definite and less than or equal
ke T to 1, i.e., O=g(v)=<1.

; s .- A general sourcg(v) can be considered as a superposi-
ling_,oJ(T)/T>—0; . . . . .

tion of point sourcegi.e., g(v) is concentrated at a single
frequency. For a point sourcg(v) of frequencyg, the

with  s;<s<s,, we have:
lim_.J(T)/T°—=0. Introducing the logarithmic transforma-
tion of the dependent variable the basic equation is trans-

formed into total power isJ(T)~(2 Trh/cz)[vg/exp(h volkg T)—1]. Its
asymptotic behavior is
Qo(X)=ﬁwK(y—X) F(y)dy, (5) 2wh , ho| e T0
2 voex KaT when T—
where J(T)~
a
y=In(h v/Kg Tp), (6) ?ngB T~T whenT —oo,
2 K3
Qo(X)= — c’h J(Toe¥)e In this limiting case, we have; =1, s,=«, and 1<s<o.
0 27 (kg To)? 0 ' Another limiting case is that of ideal black-body radiation:
g(v)=1. ThenJ(T)=0 T*. Considering 6g(»)<1 and
-8y kg To y comparing these two limiting cases, we conclude that 1
F(y)=e 9 ¢/ < s,<4, 4<s,<x, and the largest domain of definition ®f
is 1<s<oo,
eSty—x)
Ky—X)=————. C. Exact solution formula and a unique existence theorem
exde¥ *]—-1

_ o If Qo(k) is continuous or has discontinuity points of the
One can prove that the Fourier transformkdi) is given by first kind, is monotonic at largk, and satisfies the following

. 1 e gkersegy . | | asymptotic behavior:
K(—=k)= o Jmm: EF(S'FIK) L(s+ik).

(@)

éo(k) _ O[ks—(llz) ek tan‘lk/s] (10)
whenk— *=o and 1<s. Then the solution of the emissivity
And using a similar convolution theorem in Fourier trans-inversion equation exists uniquely, and the solution formula,
form, one has Eq. (9), is exact.
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Proof: In physics, the emissivity(») must satisfy the can be expressed by a generalized functandistributior)
condition 0sg(v)=<1, and the inversion equations are lin- in the Schwartz-Sobolev sense:

ear. In order to eliminate possible divergenceQotk), one
needs to introduce the parameterfFor all s in the largest
domain of definition, one can guarantéés+ik)#0, i.e.,
the denominator in the exact solution is nonzero. This con-
dition eliminates the divergence naturally and avoids the unAccording to the exact solution formul®), with s=4, we
proven Riemann hypothesis. have

Another important condition is the asymptotic behavior of

Q,(k). Condition(10) is necessary and sufficient to guaran- (i
tee that the solution exists and is unique, by well-known c?hago (= kg T
Fourier transform uniqueness and existence theor@ngs, 9(v)= 2 7K f_m T(s+ik) Z(s+ik)
see Ref[17]). B
The nature of our exact solution formula is different from c2h3
the exact solution of other types of inversion problems. Here = I T (M 24
s cannot be chosen as>0. On the contrary, when s 2mkg I'(4)£(4)
<1, it just falls into the Riemann strip, and zeros could
appear in the denominator. The superiority of this theorem i

: . : ; the limiting cases=4.
to give constraints on the asymptotic behaviorJ¢T) by . . .
considering physical conditions. In the high temperature re- It is necessary to emphasize that even in the black-body

gion of the SPI problem,C,(T)—constant due to the [:adlﬁtlcr)r;rcals?,r;;one;r?otez not w;ltrczlfihuc? ahp?]eilrarm?t(?ne"mi_
Dulong-Petit Law, and in the low temperatre region ngttijnedivirse%cesci ngcesi:rseaﬁd irre1 oer(t:antq'lll'ﬁe(i)ntreoduc-
Cy(T)—TP, whereD is the dimensionality of the system. 9 9 Y P '

Then we have &s<3. In SPI, this condition naturally tion of parametes is also helpful to improve the asymptotic

avoids the Riemann hypothesis and cancels the divergencB(.ahaVIor 0fQo(x) and reduce the amount of detail required

In ETI, however, Ks<o, and at minimums>1 is re- I the temperature data.
quired. This condition naturally guarantees the denominator

to be nonzero, cancels possible divergenceQgfk), and
simultaneously avoids the Riemann hypothesis via Hada- According to the unique existence theorem, the special
mard’s proof[16]. Therefore, based on the previous discus-functionsI'(z) and {(z) must be calculated to high preci-
sion, one can conclude that the natural laws are implicitlysion. Becaus& (s+i k) in the denominator goes to zero ex-
included in our solutions to these various inverse problemsponentially at largé, it is difficult to control the asymptotic

In summary, behavior ofQ,(k) at largek, which goes to zero much faster
thanI'(s+i k). The essence of our suggested UFS method is
to choose a complete orthogonal function set to guarantee
this asymptotic behavior in advance. We suggest choosing
the Hermitian function set as the required basis:

0<s<3, SPI o
Un(X)= (—) e W2y (hx),  (16)
In a limiting case, whed(T)~T*, assume one has a radia- Jm2nn!

tion spectrum, proportional t®*. Then

- 2h3
Qo(k)= Fkg ago 6(—K). (14

s—4+ik

o(—kydk

ag o

=g, (15)

gvhich means that the exact solution formula is still valid for

Ill. UNIVERSAL FUNCTION SET (UFS) METHOD

1<s, ETI

s=0, BRI

wherea is a parameter. One can expaQd(x) in terms of

IT)=agoT4, (11)  un(X):
and -
Qu(x)= 2, CnUn(X)- (17)
c?h® . .
Qo(X)ZmJ(T e) e®*=c*h’ agol(2 mky). Then the emissivity can be obtained as follows:
Blo
(12 *
= C,G , 18
Evidently, the only choice o is 9(v) nZO nGnlv) 18
s=s,=5,=4. (13  where
In order to include the limiting case, conditi¢0) can be ~ hy |stk=4
n()| = d k

relaxed to beQq(k)=o0[ks (2 exp(—ktan) ‘(k/s)]. Al- Gn(V)fo 19

though@’(k) cannot be expressed by a classical function, it —w I'(s+ik) {(s+ik)
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FIG. 1. Universal function seB(y): |=0-7. FIG. 2. Comparison ofy(v) calculated by the UFS method
(open circleg with the known input functior{solid curve.

and

1 K IV. CONCLUSION
Dn(k)=(—i>”\/—e<k2’2a2>Hn(—>. | o |
27 a72"n! @ In this paper a new emissivity inversion problem is pro-

(20) posed that is expected to be useful in antiremote sensing and
related fields. An exact solution formula with unique exis-

tence theorem, and a technique for eliminating divergences
and avoiding the Riemann hypothesis are presented and

In order to check exact solution formulg), we choose a proved. The largest physical definition domain of the param-

known functiong(v) and obtain the correspondidgT) for eter s p'rop(.)sed for eliminating divergences is fouqd. Th_e
input to ETI, as shown in the Fig. 2 by the solid curve. Thengene.rallzatmn'of the ETI problem and spme applications will
we calculateg(») by our UFS method, which is shown by P€ discussed in a subsequent publication.

the sample points in Fig. 2. Comparing the results obtained

from the exact solution formula and from UFS with the input

known functiong(»), we find excellent agreement. The ad- ACKNOWLEDGMENTS
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