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The application of the Moius inversion formula to the specific-heat—phonon spectrum inversion problem
(SP) initially appeared promisingN .X. Chen, Phys. Rev. Let64, 1193(1990; J. Maddox, NaturéLondon
344, 377 (1990]. However, no one has previously been able to obtain the exact Debye spectrum with the
correct cut-off factor and frequency dependence from theioformula. The main difficulty arises from the
fact that the Mbius functionu(n) is not completely known for large in practice. In this paper, some exact
solutions of SPI are obtained by using thé iles inversion formula, most importantly the Debye spectrum as
a special case, and the problem of the unknowibide functionu(n) for largen is avoided. It is shown that
the Mabius inversion formula can be useful for exact solutions to spectral inversion problems.

PACS numbes): 02.10.Lh, 05.90tm, 65.40+g

[. INTRODUCTION In 1989, Dai, Xu, and Dai introduced techniques for
eliminating divergences and used the Fourier transform to
The lattice specific heat,(T) can be expressed by obtain an exact solution formula with a paramesdrl,2].
Existence and uniqueness theorems were also proved. The
o/ hp\2  ehv/keT formulas of Montroll[3] and Lifshitz[4] are special cases for
CV(T)=ka —) —————9g(v)dv, (1.1 s=1. Another special case is given by Carlsson, Gelatt, and
o \KgT/ (e"/aT—1)? Ehrenreich[5]. ° ? g

A class of exact solutions for concrete systems in SPI
(including the Einstein and Debye spegtaad in the related
* black-body radiation inverse problem were obtained by Dai’'s
exact solution formul@l,2,6,7. Recently, the exact solution
o formula[2] was also applied to carry out specific heat inver-
f g(v)dv=3Nr, (1.2 sion for a real system such as YBC8). The parametes for
0 eliminating divergence is shown to be very important for

wherer is the number of degrees of freedom per moleculeasympmtic behavior control. Most of the above work fo-
The i blem is to d ? . f th P d cused on an exact solution in closed form: an integral repre-
e inverse problem is to determigév) from the measure sentation of the exact solution.

lattice specific heaC,/(T). This problem has received inten- In 1990, Chen(9] introduced a modified Maus inver-

sive theoretical study due to the importance of the phonorgion formula which stated that B(w) satisfies a common

density of states for the thermodynamic properties of SOI'dSCOndition,

lattice dynamics, electron-phonon interactions, the micro-
scopic mechanism of superconductivity, etc. [B(w)|<cw!™® (0>0), 1.3

where h and kg represent the Planck and Boltzmann con-
stants, respectively, argfv), the phonon density of states
is normalized to 8ir:

1063-651X/2000/6@3)/30194)/$15.00 PRE 62 R3019 ©2000 The American Physical Society



RAPID COMMUNICATIONS

R3020 MING, WEN, DAI, DAI, AND EVENSON PRE 62
wherec ande are two positive constants, and NXo hve
. Cu(T)=3Nrkg| (n+1)Dy(X0) — oo_1)" XOZKB_T’
A(w)= 2, B(w/n), (1.9
n=1 n=12.3..., (2.2
then : . L .
where v, is the cut-off frequency of lattice vibration8l is
o the number of molecules,is the number of degrees of free-
B(w):nZl w(NA(w/n). (1.5 dom per molecule, anB,(x) is the integral
n(x z"
The Mabius functionu(n) is equal to zero when includes Dn(x)= ;fo o1 dz. (2.2

repeated factors, or equal te-(L)" whenn is a product ofr
distinct primes. Specifically(1)=1. By using this inver-
sion formula and denoting=h/kgT, he obtained a formal
solution of the integral equatiofi.1),

Formula(2.1) is the well-known Debye specific heat inter-
polation formula of dimensiom [16].

We evaluateD ,(x) in a series of exponential functions as
1 follows:

kBV2

Cv(h/kBu) 14

u? n

9(v)=

> wnLt .
n=1 n X
(1.6) Dy(x)=— >, fo z"e ¥4z

X" k=1
where £ ! stands for inverse Laplace transform. Chen’s
method received much attentidd0-12, since he intro- =nn!
duced methods from number theory, including théhids
inversion formuld 13], to study inverse problems in physics.
It is important to notice that Chen’s formal solution for-
mula (1.6) involves an infinite number of inverse Laplace
transforms. This makes it rather difficult to apply in practice.
(See, for example, the work of Berteeb al.[14], who have =
carefully studied the instability problems of inverse Laplace L2)=> —mz>1. (2.4)
transforms). Furthermore, to determine the values of the-Mo n=1 n?
bius functionw(n) for largen is an extremely difficult and
unsolved problem, seriously complicating any attempt to disThe reciprocal of(z) is [17]
cuss the convergence of the solution and existence and
uniqueness theorems. 1 w(n)
In Ref.[15], the Einstein spectrum was obtained using the G Z — Rz>1 (2.9
Mobius inversion formula. Chen and Rong also used a n=ton
“standard” low-temperature expansion of the specific heat . L .
to find the phonon spectrum by Chen’s formula. They ob-WNerex(n) is the Mdius function.
tained a spectrum of the forg(») ~ »? but with no cut-off Denotingu=h/kgT= Xo/vo, One has
factor and Debye frequency, which implied that one still can-
not obtain the complete Debye spectrum with a correct cut-Cv(h/kgu) — 3Nrkg [ n(n+ 1)1 ( {(n+1)

(n+l) & 1 G Ke ™

X" &1 kn+1|:0” vl !

(2.3

where{(z) is the Riemann zeta-function,

o

off factor and Debye frequency from the Mias inversion U2 U2
formula in SPIL. A question then arises as to whether the
Mobius formula can be used in practice to produce exact
solutions for nontrivial physical models other than the Ein- ->
stein spectrum. In fact, to our knowledge no one has previ- B
ously obtained exact solutions for any concrete physical

models in SPI by using the Mxus inversion formula. = 3Nrks n( )! ( fn+1)
This Rapid Communication uses the bos inversion vy n+2
formula to derive the exact solution for SPI for a general . n1 -
model, in which the Debye spectrum is included as a special 1 (k)" e "ot 26
case. A correct phonon density of states will be derived from = = (26

the complete expression of the specific heat.

) Noting that[18]
Il. EXACT SOLUTION FOR SPI FROM MO BIUS
INVERSION FORMULA [ e ap (x—a)""10(x— a)
E -1

pn s pHX] = (n—l)! y (27)

Considering the historic importance of Debye’s work
[16], we start from the following specific he@,(T), which
includes the Debye specific heat as a special case: wheref(x) is the Heaviside step function which is defined as
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0 x<O which gives the phonon spectrum. As a special case of this
0(x)=[1 «>0 (2.8 result, letn=3 andvy=vp in formula(2.1), then the Debye
' spectrum is recovered:
Thus, 2
14
Cy(1) o( V)=9NV—30(VD— V). (2.149
e e ’
u SupposingCy(T) is a superposition of the forrf2.1),
Vn+1
=3Nrkgr2n! (n+1)!1¢(n+1)—— nx
5o |( H )r( n+2)pi*? Cu(T)=3Nrkg>, A, (n+1)Dp(Xon)— - 0'“1 ,
n e’0—
i (n+1)' K (v—kpg) " O(v—Kg) A
Gk ST Tnr2- 1) Xon=o, (2.15
o kgT
3Nrk “ 0(v—kv
N {n+1)nti=> (n—+1°) (2.9 V:Vhlerzes O<21}0}61\<:V%21V0'3<cj'”.t' " and IAnf>0,n ]
) =1k 12,3 ..., Z,A,=1. According to the principle of super
position, the exact solutions are
S (N DIk (ko) -1
“h H(n+1-1)! g(v)= 3N2 Ap——0(von— ). (2.16
O,n
* 1
_ 3Nrkgn ) tio S O(v—kvo) " One can now obtain the complete Debye spectrum and the
A k=1 kn+1 related general spectf@.16) by the Mdius inversion for-
mula exactly.
3Nrkgn N1 It is interesting to note that the smooth Debye specific
= n {Z(n+1)»"" " =H(»)}, (2.10 heat(differentiable infinitely many timescan produce a dis-
0 continuous outpufthe Debye spectrumfrom the integral

equation. However, according to the theory of Xie and Chen
[19], a smooth inpuAA should produce a smooth outditIs
o N+l there a contradiction between the two theories? No, because
2 ( ) g(__ ,,0) (2.1 in the Mabius inversion solution, there are two independent
k steps: One is the Laplace transformation, which transforms
) the integral equation into a summation equation. The other is
and where the relatiord(v—kwvo) = 6(v/k—vo) has been the modified Mobius inversion, which is used to solve this
used. It is obvious that the above seri@sl) is absolutely  gigepraic equation. What Xie and Chen showed is that the
convergent. According to the Mbis inversion formula  smooth inputA in the second step, will produce a smooth
(1.5), replacingB(w) by »"**6(v—wo) [which obviously  outputB. This is the same in our work. The key point is that
satisfies the condition1.3)], and replacingA(v) by H(»),  in our work, the inputA, which is the inverse Laplace trans-
one finds that form of the Debye specific heat, is already discontinuous.
Then the outpuB is discontinuous too. So these two theories
net are consistent.
,Zl #HIK)=v"20(v = vo). (212 In conclusion, with the aid of some summation techniques
and the Mius inversion formula itself, the Mous inver-
Inserting Eq.(2.10 into Chen’s solution formuld1.6) and  sion formula in SPI is shown to be useful in finding concrete
using Eq.(2.12, one obtains exact solutions for physical models. One of the key contri-
butions here is that the unknown Miais functiongu(n) for

whereH(v) is defined as

H(v)=

©

1 3Nrkgn <

n+1 v large n was avoided in practice, and the complete Debye
g(v)= 2 p(K)y {(n+1) ) - H(F)} spectrum with correct cut-off factor was recovered. The cur-
rkgv® v rent result can also be applied to investigate other inversion
3NN ( | 1 vy )] problems.
= I(n+1 4 O(v—rg
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