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The first term is simply the initial centroid of the mod-
ulating function, (z(0)). On transforming back to the

original variables, Eq: (8) becomes
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Equation (9) can be looked upon as the equation of mo-
tion of the centroid of the wave packet.
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Over the past two years, several notes!™® have been
published on approximations to the error function. In
general, these articles concerned themselves with various
time-saving approaches which yield erfx to accuracies of
4.5%," 0.04%,% and 2.5 X 107%.3 These approaches,
which are not as accurate as the power series approach
given below, in reality do not save time because for small
x the power series expansion converges so rapidly and for
larger x, where time saving might be important, the error
function is so close to unity that these less accurate values
are not very meaningful. This note is to point out that the
power series expansion for erfx coupled with the asymptot-
ic expansion for erfex = 1 — erfx can be programmed to
run as rapidly as the less accurate techniques suggested,
with a precision limited only by the number of figures
carried by the computer. To be specific, with a computer
that has a word equivalent of ten decimal digits, one can
calculate erfx = 277‘”2fff exp(— y?) dy to nine significant
figures and erfcx to six significant figures. The expansions
are?

- -1/2 - 2”%
erfx = 2xr exp( x)§1o3-00(2n+1)’

x<a (1)
and
_exp(=x%) A (=1)"+1¢3¢ee(2n~1)
erfex === g oy +1,
x>a. (2)
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Fig. 1. The fractional error in the calculated erfcx for the series expan-
sion and asymptotic expansion in the region where it is necessary to
change from one to the other.

The series expansion [Eq. (1)] is rigorously derived
from the definition of the error function and involves no
approximations. It converges for all values of x, but as x
becomes large the convergence is slower and round-off
error is more significant. The crossover point a is chosen
as the point where the average error in erfcx calculated by
the series expansion exceeds the error in the asymptotic
expansion as shown in Fig. 1 for a computer with a 12-
decimal digit word length. The appropriate crossover
point is near 2.8 for a 10-decimal digit word.

Note that the power series, Eq. (1), converges very
rapidly with a maximum of less than 34 terms being used
near x = 3.1. A great savings in computer time and accu-
racy is accomplished by not calculating each term indi-
vidually but by calculating the (n + 1)-st term from the
nth term. The accuracy in the asymptotic region (x > a)
is improved by removing half the last term in the sum
since the correct result must lie between any two consecu-
tive partial sums of the alternating series. This series
should be truncated at the ninth term for @ = 3 because
this is the smallest term in the asymptotic expansion near
x = 3.

We programmed this problem as a subroutine on an
HP9100 desk calculator, using seven words of memory
for the program and four words for storage. This cal-
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culator has a 12-decimal digit word and yields erfcx accu-
rate to seven significant figures for — 5 <x < 15, with a
computation time less than 2 sec. The accuracy ap-
proaches ten significant figures for values of x well away
from x =a. Also, we programmed this problem for the
HP65 hand calculator® with an accuracy in erfcx to at
least five significant figures and a computation time less
than 17 sec. The maximum time is for x just below the
crossover point between the expansions. The expansion
approach has the advantage over the rational fraction ap-
proximation® for small computers with small memories in
that a large number of constants need not be stored in the
calculator’s memory.

Another paper on this subject appeared® after this paper
was written, which gives an approximation of erfx in

closed form. This method is considerably faster in calcu-
lation time than any of the others but yields erfx to only
0.7% and could not be used to calculate erfcx for
x > 1.9, where the error is > 100%.
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It is well known that there is a basic asymmetry be-
tween the two twins in the famous twin problem of special
relativity. One way to demonstrate this asymmetry is to
analyze a situation wherein both twins perform measure-
ments in an identical manner and yet obtain different re-
sults. Usually such a demonstration involves some addi-
tional assumptions about the measuring apparatus of the
traveling twin during his acceleration period (behavior of
his *‘rigid’’ rods, variations of his lines of simultaneity,
etc.), and as a result leaves room for criticism.

There exists, however, a rather simple measurement
procedure, the so-called Fock ‘‘radar station’’! that lends
itself to analysis completely within the framework of spe-
cial relativity with no additional assumptions necessary.
In this note we describe some of the results obtained
when the accelerated twin makes space-time measure-
ments utilizing radar techniques. The transformations be-
tween the two twins’ radar space-time measurements are
determined, and Minkowski diagrams are drawn for both
twins. One result is that the traveling twin determines that
during a considerable part of his trip the twin who stayed
at home remains motionless.

With the radar method an observer reflects a light sig-
nal from the event of interest and notes the times on his
clock at which the signal is emitted (¢,) and received back
(t;). Considering the motions only in one spatial direc-
tion, the distance x of the event from the observer and the
time ¢ assigned to the event by the observer are then de-
fined by the expressions

x=gclt,~t), t=3(,+1,) 1)
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This procedure provides a well-defined, unambiguous
method for an observer to assign space-time coordinates
to any event. Moreover, the process is operational and no
additional assumption needs to be made because the be-
havior of light signals is describable completely within
the framework of special relativity. _

When the radar method (together with the principle of
relativity) is applied to two unaccelerated inertial obser-
vers moving relative to each other with constant velocity,
the results are the same as those obtained by the usual
procedure of using rigid rods and stationary clocks. The
space—time measurements of the observers are related by
the Lorentz transformations, and each observer appears as
an inclined straight line on the other’s Minkowski dia-
gram. In fact, the radar method provides an interesting
way of deriving the Lorentz transformations between two
inertial observers.?

There is, however, no need to restrict the radar defini-
tion (1) to observers who remain unaccelerated throughout
their entire histories. The definition (1) is completely
general and can be applied to accelerated as well as unac-
celerated observers, as has been demonstrated previously
for hyperbolically accelerated observers.?

In particular, we now describe the observations of the
traveling twin, whom we will call observer O, of the
twin problem of special relativity, who uses the radar
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Fig. 1. (a) Minkowski diagram for twin O showing the four regions A,

B, C, and D. (b) Minkowski diagram for twin O’ showing the four re-
gions A, B, C, and D.
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