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The resonant frequencies of a sinusoidally driven system are usually defined as those for which
some physical response is a relative maximum. There is also a tendency to define them as
frequencies for which the reactance of the system vanishes, since zero-reactance frequencies are
often approximately equal to maximum-response frequencies and are sometimes easier to
calculate. However, there are many systems for which the two types of frequencies are
significantly different. There are also systems for which the reactance does not vanish in certain
frequency ranges, though maximum responses still occur. It is concluded that vanishing
reactance is not valid as a general criterion for resonance, and students should be warned against

its use.

I. INTRODUCTION

In studying the properties of sinusoidally driven sys-
tems, one often finds it important to determine their reso-
nant frequencies. These are usually defined to be those fre-
quencies for which some type of physical response of the
system is a relative maximum. However there seems tobe a
tendency, often expressed in current physics and electrical
engineering textbooks, to define the resonant frequencies
as those for which the reactance of the system vanishes.
This latter point of view raises some questions, since for
some systems the zero-reactance frequencies can be quite
different from those at which quantities other than reac-
tance achieve maximum response. The intent of this paper,
therefore, is to examine the condition of zero reactance and
evaluate its validity as a criterion for resonance. We begin
with a consideration of what is really meant by resonance
in a sinusoidally excited system.

I1I. THE MAXIMUM-RESPONSE CONCEPT OF
RESONANCE

The AIP Handbook defines resonance for a system in
forced oscillation as a condition where any change, how-
ever small, in the frequency of excitation causes a decrease
in the response of the system.' In other words, a curve
representing some physical response as a function of fre-
quency exhibits a relative maximum at resonance.

There are many familiar illustrations of this concept. A
mechanical oscillator, for example, exhibits a maximum in
its displacement amplitude at one resonant frequency, and
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a maximum velocity amplitude at another. Good examples
of electrical circuits that exhibit resonance are the simple
series RLC circuit in which the current amplitude is maxi-
mum at the resonant frequency, and the simple parallel
circuit with its maximum voltage at resonance. There are
also many acoustical systems, such as the air column in a
musical wind instrument, that exhibit maximum-response
resonances. For example, the resonant frequencies of a
clarinet or a trumpet are almost always defined in terms of
maximum pressure amplitude at the reed, whereas reso-
nance in a flute corresponds to maximum volume velocity.

It is interesting to note that in all the above cases the
maximum-response criterion for resonance has a real phys-
ical validity, expressed in terms of properties that are in-
volved in the perception of resonance or interaction with
other systems. The zero-reactance criterion, to be dis-
cussed next, seems by contrast to be somewhat arbitrary
and artificial.

II1. THE ZERO-REACTANCE CRITERION

Reasons are not usually stated for identifying zero reac-
tance’ with the concept of resonance, but it is often done in
engineering applications, and is commonly found in phys-
ics and engineering textbooks. Some texts simply list zero
reactance as one of several alternative conditions for reso-
nance,” while others actually define resonance in this
way.*®

The practice of identifying zero reactance with reso-
nance probably grew out of the use of complex analysis in
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the treatment of resonant electrical circuits. The usual pro-
cedure for determining a maximum-response frequency is
to derive an expression for the complex circuit impedance
Z, and then to find the driving frequency for which |Z|
becomes maximum (or minimum). The zero-reactance
frequency, of course, is found by setting the imaginary part
of Z equal to zero. When this method is applied to the
simple series RLC circuit, it is found that the frequency of
maximum current response is identical to the zero-reac-
tance frequency, and this is also the case for the maximum
voltage response in a simple parallel circuit. Hence for
these two cases, which are the ones most often used in text-
book illustrations of resonance, the zero-reactance crite-
rion appears to be valid. Furthermore, it is usually much
easier to solve for the frequency at which the reactance of a
circuit vanishes than it is to maximize (or minimize) the
expression for |Z}. And finally, for the high-Q resonant
circuits that are of greatest interest to electrical engineers,
the zero-reactance frequency often turns out to be so close
to the frequency of maximum response that the difference
can be neglected for practical purposes. It is apparently for
these three major reasons (successful application to simple
circuits, ease of calculation, and negligible error in many
practical situations) that zero reactance has come to be so
widely used as a criterion for resonance.

From an analytical point of view, however, the criterion
is suspect. Note that the impedance of a circuit can be writ-
ten as Z = r + jx, where the “resistance” r and the reac-
tance x are generally both functions of the frequency w. To
determine the maximum response we set d |Z|/dw =0,
which leads to the condition that

dr dx
r—+x—=0.
dw dw

Itis clear that vanishing reactance does not in itself guaran-
tee a maximum response; the term r(dr/dw) must vanish
as well. The term does vanish in many cases, such as those
discussed above, but there are important exceptions. We
now wish to examine some of these, and to evaluate the
effectiveness and validity of the zero-reactance criterion.
We shall consider its application first to electrical circuits,
and then to acoustical air columns.

V()

Fig. 1. RLC circuit, driven by a sinusoidal voltage source F(r)
=V, sinwt.
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Fig. 2. Maximum current frequency (solid line) and zero-reactance fre-
quency (dashed line) as functions of R, for the RLC circuit in Fig. 1.
Corresponding values of Q are shown in parentheses.

IV. HOW VALID IS THE ZERO-REACTANCE
CRITERION FOR ELECTRICAL CIRCUITS?

While vanishing reactance appears to be a useful crite-
rion for resonance in many electrical circuits, its usage also
raises some questions. An electrical circuit is likely to have
a number of maximum-response frequencies, correspond-
ing for example to maxima in the total current, voltage,
power, and current through or voltage across individual
components. These frequencies may differ from each other,
and the zero-reactance frequency is usually different from
any of them.® In a high-Q circuit it often turns out that the
various frequencies for maximum response are nearly
equal, and that the zero-reactance frequency is approxi-
mately the same. However it is quite possible to have a
circuit of lower Q for which the use of zero reactance to
approximate the corresponding peak frequency could re-
sult in significant error.

Current amplitude (A)

| 1
150 200 250 300 350
Frequency (Hz)

Fig. 3. Resonance curves for the RLC circuit in Fig. 1. See Table I for
corresponding values of the parameters,
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Table L. Parameters corresponding to resonance curves in Fig. 3.

R e £ S Af
Curve () (Hz) (Hz) (%)
1 20 2.0 261.89 229.72 ~12.3
2 30 3.0 264.52 250.09 — 55
3 40 4.0 265.01 256.84 — 3.1
4 50 5.0 265.16 259.90 — 20
5 70 7.0 265.23 262.54 - 1.0
6 100 10.0 265.25 263.93 — 05

For example, consider the RLC circuit in Fig. 1. If we let
L and C have the nominal values of 6 mH and 60 uF, re-
spectively, and plot the maximum-current and zero-reac-
tance frequencies as functions of R, we obtain the curves of
Fig. 2. Note that the two frequencies are approximately
equal when Q is high, but become widely divergent as Q
decreases. We can check the sharpness of the maximum-
current resonance by examining the family of curves in
Fig. 3. Table I lists the values of R, @, the resonant frequen-
cy f, (for maximum current amplitude), the zero-reac-
tance frequency f,, and the percentage Af by which f,
differs from f,, for each curve. It is clear that a definite
resonance effect continues to exist (as shown, for example,
by curves 2—4 of Fig. 3) well into the region where the
divergence between the zero-reactance and maximum-cur-
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Fig. 4. Impedance and reactance curves for a cylindrical air column. (a)
Magnitude of the input impedance versus frequency. (b) Input reactance
versus frequency.
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rent frequencies becomes significant. Such a region exists
for most electrical circuits that exhibit resonance, and cer-
tainly makes the validity of the zero-reactance criterion
questionable.

V.HOW VALID IS THE ZERO-REACTANCE
CRITERION FOR ACOUSTICAL SYSTEMS?

We will consider just two acoustical systems, a cylindri-
cal tube and a truncated cone, both of which contain air
columns that are useful in musical wind instruments. Both
are taken to be essentially closed at the driven end (the
small end, for the cone) with a sinusoidal input volume
velocity. Under these conditions the resonant frequencies,
corresponding to relative maxima of the input pressure am-
plitude, are those for which the magnitude of the input
acoustical impedance is maximized. Hence, we can deter-
mine the resonant frequencies by plotting |Z| as a function
of frequency and identifying the positions of the peaks.

Such a curve for a cylindrical air column of radius 0.5 cm
and length 50 cm, with typical viscous, thermal, and radi-
ation losses, is shown in Fig. 4(a). Note the sharp, well-
defined resonance peaks, with frequencies that are close to
the odd-harmonic series one expects for the idealized case.
Figure 4(b) shows the input reactance curve for the same
air column. Note that the zero-reactance frequencies,
where the reactance changes steeply from positive to nega-
tive, correspond very closely to the peak frequencies of the
impedance curve. (Indeed, for an idealized cylinder with
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Fig. 5. Impedance and reactance curves for the air column in a truncated

cone. (a) Magnitude of the input impedance (at the small end) versus
frequency. (b) Input reactance versus frequency.
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no losses the two sets of frequencies are exactly the same.)

From these results one might jump to the conclusion
that it would be advantageous to use the zero-reactance
criterion with air columns, but there are at least two rea-
sons why this is not true. For one thing, when losses are
taken into account the analytical calculations of maxi-
mum-impedance frequencies and zero-reactance frequen-
cies alike become rather complicated, even for a cylindrical
air column. For precise results, such calculations are most
easily done numerically with a computer. That being the
case, it becomes just as easy to determine the maximum-
impedance frequencies as it is to determine those for zero
reactance, and the “ease of calculation™ advantage no long-
er exists. Furthermore, it turns out that for many tube
shapes other than cylindrical the zero-reactance frequen-
cies are significantly different from the maximum-imped-
ance frequencies. This is well illustrated by our next exam-
ple, the air column in a truncated cone.

Figures 5(a) and 5(b) show the impedance and reac-
tance curves for a truncated conical air column with inlet
radius 0.5 cm, outlet radius 6.0 cm, and length 50 cm, cor-
responding roughly to the dimensions of a trumpet bell.
Note the well-defined resonance peaks in the impedance
curve. These are fairly sharp (high-Q), so one might expect
from experience with electrical circuits that the zero-reac-
tance criterion would yield good approximations. How-
ever, it turns out that the zero-reactance frequencies are
consistently too high, by significant amounts that increase
successively with each peak. Furthermore, Fig. 5(b) re-
veals that the reactance doesn’t even vanish after the fifth
mode! There are plenty of reasonably sharp impedance
peaks above the fifth-mode frequency, but no reactance
zeroes at all. The criterion totally breaks down here, and we
must again raise serious doubts about the validity of zero
reactance as a condition for resonance.

VI, CONCLUSIONS

Zero-reactance frequencies are sometimes easier to de-
termine than frequencies of maximum response (particu-
larly in the complex analysis of electrical circuits), and
may be approximately equal to some of the maximum-re-

The momentum of a transverse wave
P. Stehle

sponse frequencies for certain high-Q systems, but there are
at least three good reasons for not using zero reactance as a
general criterion for resonance:

(1) It can lead to significant error in the determination
of resonant frequencies, as it does with many acoustical air
columns and lower-Q electrical circuits.

(2) Reactance zeroes do not even exist for some systems
in certain frequency ranges, though maximum responses
may occur in those same ranges.

(3) The criterion itself is rather artificial, and has no
conceptual relationship to the maximum physical re-
sponses of a system.

As we teach the concept of resonance we should explain
why it is sometimes defined in terms of zero reactance,
point out the fallacy of this, and warn students of the possi-
bility of error. Indeed, we should probably recommend
that the definition not be used at all.
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The mechanism by which a traveling transverse wave in a string stores momentum and transports
energy is studied. The existence of longitudinal waves with much higher propagation speed is

shown to be essential.

It is commonplace that the quantum treatment of travel-
ing waves possess a momentum density. Recoil is associat-
ed with the emission and absorption of photons, phonons,
and other kinds of quanta as in the Compton effect. The
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relation between momentum density and energy flux in a
traveling wave does not involve Planck’s constant, and in
fact, has been long known in the case of electromagnetic
waves where the Poynting vector specifies both. This con-
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