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An approximate method to calculate exchange-correlation contributions in the framework of first-principles
tight-binding molecular dynamics methods has been developed. In the proposed scheme on-sitesoff-sited
exchange-correlation matrix elements are expressed as a one-centerstwo-centerd term plus a correction due to
other neighboring atoms. The one-centerstwo-centerd term is evaluated directly, while the correction is calcu-
lated using a generalization of thefSankey-Niklewski Phys. Rev. B40, 3979 s1989dg approach valid for
arbitrary atomiclike basis sets. The proposed scheme for exchange-correlation terms, called the multi-center
weighted exchange-correlation density approximationsMcWEDAd, permits the accurate and computationally
efficient calculation of corresponding tight-binding matrices and atomic forces for complex systems. We
calculate bulk properties of selected transitionsW,Pdd, noble sAud, and simplesAl d metals, a semiconductor
sSid, and the transition metal oxide TiO2 with the method to demonstrate its flexibility and accuracy.
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I. INTRODUCTION

The application of first-principles simulation techniques is
becoming a research tool of increasing importance in mate-
rials science, condensed matter physics and chemistry, and
molecular physics and chemistry. Most of these techniques
are based on density functional theory2 sDFTd which creates
an important simplification of the many-body quantum-
mechanical problem. Typically, DFT calculations are per-
formed within the Kohn-Sham approach3 using the local
density approximationsLDA d3 or a generalized gradient ap-
proximation sGGAd.4 These total-energy quantum-
mechanical methods can be used to calculate forces on at-
oms, and thus perform first-principles molecular dynamics
sMDd simulations. Such simulations have been very success-
ful in the description of a variety of properties of different
materials. However, in spite of the important simplifications
introduced by DFT and related approximationsse.g.,
LDA,GGAd, complex systems still require huge computa-
tional resources. This problem has severely limited the range
of applications of these simulation techniques to situations
with small numbers of atomss,100–200d in the unit cell,
and short MD simulation times.

Due to the computational limitations, first-principles
simulation techniques have been mainly directed to the study
of the energetics and electronic structure of diverse materi-
als, surfaces, and molecules. Typically, a good guess for the
atomic structure is obtained before the calculation, and the
first-principles method is then used to refine the geometry,
obtain the electronic structure, and compare the total energy
of a few competing structures. These methods, however,
have been very rarely applied to elucidate complex atomic
structures that require theexplorationof an extensive phase
space of possibilities when noa priori answer, or approxi-
mate good guess, is already available. More importantly, the
application of first-principles methods to investigate complex

kinetic processes in materialsse.g., the atomic motion of
atoms on a surface, kinetic pathways, molecular reactions,
etc.d is still very limited, due to the computational resources
required for these calculations.

It is clear that the usefulness of first-principles simulation
techniques can be greatly extended if appropriate approxima-
tions are made, with the purpose of increasing the computa-
tional efficiency, with as little loss of accuracy as
possible.1,5–9 This idea has prompted the development of
first-principles tight-binding molecular dynamicssTBMDd
methods,1,5,10whose main characteristics ares1d a real-space
techniquesi.e., no need for supercells or gridsd, s2d optimized
atomiclike orbitals1,5,11,12as basis set, ands3d efficient, two-
dimensional, tabulation-interpolation schemes1,5 to obtain the
effective TB Hamiltonian matrix elements as well as their
derivatives to obtain the forces.

The main advantage of such techniques is computational
efficiency which makes them ideal first-principles explor-
atory tools. The use of first-principles TBMD methods as a
exploratory tool can be complemented with more accurate
calculations, if necessary; once stimulating results and/or
new ideas are obtained, final results can be refined by per-
forming more accurate and time-consuming calculations
splane-wave DFT, e.g., Ref. 13, or even many-body, e.g.,
Ref. 14, calculationsd.

In this paper we report on further developments for the
efficient calculation of exchange-correlation contributions in
first-principles TBMD methods, and their implementation in
the FIREBALL code.1,15,16 The basic theoretical elements of
this technique are briefly reviewed in Sec. II, including a
more detailed analysis of the two different approximations
previously proposed1,5 for the practical calculation of
exchange-correlation matrix elements in these methods using
standard DFTse.g., LDAd. The LDA sor GGAd exchange-
correlation energy is highly nonlinear in the electron density
and this presents special difficulties in the creation of accu-
rate and efficient approximate methods. In Sec. III we
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present our methodology to calculate these contributions:
this approach overcomes the main deficiencies of the previ-
ous approximationssdiscussed in Sec. IId, mixing accuracy
and computational efficiency. Finally, in Sec. IV we present
results for several materialssAl, Si, Au, W, Pd, TiO2d that
illustrate the good performance of this approach.

II. AB INITIO TIGHT BINDING: FIREBALL

FIREBALL1,15,16 is a first-principles TBMD simulation
technique based on a self-consistent version of the
Harris-Foulkes17,18 functional. The energy functional is writ-
ten as

EtotfrsrWdg = o
n

«n − EeefrsrWdg + ExcfrsrWdg

−E rsrWdVxcfrsrWdgd3r + Eion-ion, s1d

where rsrWd is the input density, which will be allowed to
vary, and will be determined self-consistently. The first term
is a sum over occupied eigenstates«n of the effective one-
electron Hamiltonian,

S−
1

2
¹2 + VfrgDcn = «ncn; s2d

the potentialV is the sum of the ionic potentialvionsrWd stypi-
cally represented by a pseudopotentiald, a Hartree potential,
and an exchange-correlation potentialVxc,

Vfrg = vionsrWd +E rsr8dd3r8

urW − rW8u
+ VxcfrsrWdg. s3d

In Eq. s1d Eee is an average electron-electron energy,

Eeefrg =
1

2
E E rsrWdrsrW8d

urW − rW8u
drW drW8, s4d

Eion-ion is the ion-ion interaction energy,

Eion-ion =
1

2o
i,j

ZiZj

uRW i − RW ju
s5d

sZi is the nuclear or pseudopotential charge of atomi at

position RW id, and Excfrg is the exchange-correlation energy.
First-principles MD simulations can be performed once the
forces

FW i = −
]Etot

]RW i

s6d

on each atomi are evaluated.
The efficiency of calculations based on the Harris-Foulkes

functional is associated with the possibility to choosersrWd in
the above equations as a sum of atomiclike densitiesrisrWd,

rsrWd = o
i

risrWd. s7d

In the FIREBALL method, confined atomiclike orbitals are
used as a basis set for the determination of the occupied

eigenvalues and eigenvectors of the one-electron Hamil-
tonian, Eq.s2d. The fireball orbitals, introduced by Sankey
and Niklewski sSNd,1 are obtained by solving the atomic
problem with the boundary condition that the atomic orbitals
vanish outside and at a predetermined radiusrc where
ucsrWdur=rc

=0. An important advantage of the fireball basis set
is that the HamiltonianfEq. s2dg and the overlap matrix ele-
ments are quite sparse for large systems. The electron density
rsrWd is written in terms of the fireball orbitalsfilmsrWd
;fmsrWd si is the atomic site,l represents the atomic subshell,
e.g., 3s,4s,3p,3d, etc., andm is the magnetic quantum num-
berd

rsrWd = o
m

qmufmsrWdu2. s8d

In this way four-center integrals are not required for the cal-
culation of the Hartree terms, and all the two- and three-
center interactions are tabulated beforehand and placed in
interpolation data tables which are no larger than two
dimensional.1 Hamiltonian matrix elements are evaluated by
looking up the necessary information from the data tables.

In practice, the atomic densitiesri

risrWd = o
lm

qilmufilmsrWdu2 s9d

are approximated to be spherically symmetric around each
atomic sitei si.e., qilm=qilm8d. Self-consistency is achieved
by imposing that the output orbital chargesqm

out fobtained
from the occupied eigenvectorscn of Eq. s2dg and input or-
bital chargesqm coincide ssee Refs. 15 and 19 for further
detailsd.

The remaining difficulty is the efficient calculation of
exchange-correlation interactions within a first-principles TB
scheme. One possibility is to use nonstandard DFT and in-
troduce the exchange-correlation energy and potential as a
function of the orbital occupancies.9,20,21In this paper, how-
ever, we opt for the more traditional approach in which
exchange-correlation contributions are calculated as a func-
tional of the electron densityrsrWd. Within this line, two dif-
ferent methods have been previously proposed for the prac-
tical calculation of exchange-correlation terms, using data
tables similar to those for the Hartree contributions. These
two methods aresAd the Sankey-Niklewski approximation,
and sBd the Horsfield approximation.

A. Sankey-Niklewski approximation

The basic idea introduced by SN is to write down the
nonlinear-in-rsrWd exchange-correlation matrix elements in
terms of matrix elements ofrsrWd.1 These latter matrix ele-
ments are easily tabulated in data tables no larger than two
dimensional, similar to those required for the Hartree terms.

Consider the matrix elementskfmuVxcfrgufnl of the
exchange-correlation potential. For each matrix element
kfmuVxcfrgufnl, expandVxcfrg in a Taylor series

Vxcfrg . Vxcfr̄mng + Vxc8 fr̄mngsr − r̄mnd + ¯ s10d

around an appropriate “average density”r̄mn:
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r̄mn =
kfmurufnl
kfmufnl

. s11d

With this choice ofr̄mn the second term in the expansion for
kfmuVxcfrgufnl is zero, and the next term is minimized.1 This
yields

kfmuVxcfrgufnl ; kmuVxcfrgunl . Vxcfr̄mngkmunl + Cmn,

s12d

where Cmn are some corrections associated with the linear
term in Eq.s10d fsee Eqs.s40d, s41d, s42d, and s45d in Ref.
1g.

The SN definition ofr̄mn is based on the idea of “impor-
tance sampling;” the density is weighted more heavily in
regions of higher overlap.1 This is achieved by using the
orbitalsfm asweighting functionsin Eq. s11d.

There are some deficiencies attributed to the SN method
that we now discuss. First, note thatr̄mn in Eq. s11d is not
defined in the zero-overlap caseskfm ufnl;km unl=0d when
regions of positive and negative overlap “cancel out”se.g.,
ksuppl, or ksus8l with two orthogonals orbitals on the same
atomd. Second, in some extreme cases the sign ofkmurunl
may be different from the sign ofkm unl. Third, in the SN
method the average density approximation overestimates the
exchange-correlation energy on-site termskmuexcuml fsee Fig.
1sadg. Finally, the SN method was originally proposed for
minimal sp3 basis setssi.e., r̄mn andCmn were only derived
for sp3 basis setsd. An important ingredient in our approach
to calculate exchange-correlation terms for TBMDssee Sec.
III d will be to generalize the SN approximation for arbitrary
atomiclike basis sets.

B. Horsfield approximation

An alternative approach to deal with exchange-correlation
terms within a first-principles TBMD method was proposed
by Horsfield,5 who introduced a many-center expansion
based on Eq.s7d. In this approach we can distinguish two
casessim is the atomic site corresponding to orbitalm and in

corresponds to orbitalnd:
sad im= in; i son-sited,

kmuVxcfrgunl . kmuVxcfrigunl + o
jÞi

kmusVxcfri + r jg

− Vxcfrigdunl; s13d

sbd sim; idÞ sin; jd soff-sited,

kmuVxcfrgunl = kmuVxcfri + r jgunl + o
kÞi,j

kmusVxcfri + r j + rkg

− Vxcfri + r jgdunl. s14d

Although practical experience has shown that this is an
accurate approach in many cases, the on-site termsfcasesadg
are not always well approximated by Eq.s13d and it is nec-
essary to perform the additional numerical integrals5,6

kmuSVxcfrg − Vxcfrig − o
jÞi

sVxcfri + r jg − VxcfrigdDunl,

s15d

which cannot be obtained from data tables. Another short-
coming of this approach is the fact that most of the compu-
tational time required to create the data tables within this
approximation is spent in the calculation of the exchange-
correlation terms, reducing the computational efficiency.22

III. MULTICENTER EXCHANGE-CORRELATION
SCHEME FOR AB INITIO TIGHT BINDING

In this section we present our approach for calculating
exchange-correlation contributions in first-principles TBMD
methods. Our goal is to introduce a practical scheme that
overcomes the main deficiencies of the previous approaches,
mixing accuracy and computational efficiency. For this pur-

FIG. 1. sColor onlined Exchange-correlation matrix elements for
the Si dimersalong thez axisd as a function of distance. “This
work” refers to the McWEDA approach.sad On-sitekpzuexcupzl ma-
trix element.sbd Off-site kpzuVxcupzl matrix element. Basis set:sp3

fireball orbitals with cutoff radiiRcssd=4.8 a.u.,Rcspd=5.4 a.u.
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pose, we use the best features of the SN and the Horsfield
approximations. As in the Horsfield scheme, we distinguish
two cases:sad on-site sim= ind and sbd off-site matrix ele-
ments. For clarity, we discuss first casesad, and postpone to
the end of the section the corresponding results for casesbd.

sad im= in; i. As a first step in our approximation, we
simply add and subtract a contribution associated with the
atomic densityri at site i, and write, formally, the matrix
element as a one-center contribution plus acorrection, in
similarity with the Horsfield approach:

kmuVxcfrgunl = kmuVxcfrigunl + „kmuVxcfrgunl − kmuVxcfrigunl….
s16d

The one-center termsfirst term on the rightd is much larger
than thecorrection sinside parenthesesd, and is calculated
exactly. The correction is calculated using a generalized ver-
sion of the SN approach that we now discuss.

In order to generalize the SN approach beyondsp3 basis
sets, and correct the problems outlined in Sec. II, we define
average densitiesr̄mn using newweighting functions wm, as-
sociated with orbitalsfm, that are positive defined while
keeping the importance-sampling property that the orbitals
fm play in Eq.s11d. These functions are defined as follows.
First, we consider the atomiclike orbitals

film = RilsrdYlmsVd s17d

whereRilsrd is the radial part offilm andYlmsVd the spheri-
cal harmonic associated with the angular part. Next, we de-
fine the new weighting functions

wil = uRilsrduY00sVd s18d

fuRilsrdu is the absolute value ofRilsrdg. With these functions
we now define average densities for each matrix element
sm ,nd as

r̄mn =
kwmuruwnl
kwmuwnl

. s19d

This definition for the average multisite densitiesr̄mn sus-
ing weighting functionsw instead of the atomic orbitalsfd
sRef. 23d solves all problems related to zero overlap
skfm ufnl=0d mentioned in Sec. II, since nowkwm uwnlÞ0.
Also, the use of these weighting functions represents, in gen-
eral, an improvement in the “importance-sampling” calcula-
tion of r̄mn for the nonzero-overlap cases. Regions of positive
overlap are no longer “artificially” canceled by regions of
negative overlap; both positive and negative overlap regions
add up now in this definition ofr̄mn. Moreover, with this
definition for the weighting functions bothkwmuruwnl and
kwm uwnl are positive thus assuring thatr̄mn is always well
defined.

Using this definition ofr̄mn fEq. s19dg, we now define a
generalizedSN sGSNd approximation for the exchange-
correlation matrix elements

kmuVxcfrgunl . Vxcfr̄mngkmunl + Vxc8 fr̄mng„kmurunl − r̄mnkmunl….
s20d

This approximation allows us to calculate the correction
in Eq. s16d, skmuVxcfrgunl−kmuVxcfrigunld, in a practical way.

Thus, we finally obtain the multicenter weighted
exchange-correlation density approximationsMcWEDAd for
the on-site matrix elements,

kmuVxcfrgunl . kmuVxcfrigunl + Vxcfr̄mngkmunl + Vxc8 fr̄mng

Ã„kmurunl − r̄mnkmunl… − Vxcfr̄igkmunl

− Vxc8 fr̄igskmuriunl − r̄ikmunld s21d

with

r̄i =
kwmuriuwnl
kwmuwnl

s22d

sindicesm, n have been omitted inr̄i, for clarityd.
sbd sim= idÞ sin= jd. Proceeding in a similar manner as for

the on-site matrix elements, we first write the matrix element
as a two-center main contribution, that we calculate exactly,
and a correction that is evaluated using the GSN approxima-
tion. We obtain for the McWEDA evaluation of the off-site
matrix elements

kmuVxcfrgunl = kmuVxcfri + r jgunl + „kmuVxcfrgunl

− kmuVxcfri + r jgunl… s23d

.kmuVxcfri + r jgunl + Vxcfr̄mngkmunl + Vxc8 fr̄mng„kmurunl

− r̄mnkmunl… − Vxcfr̄i jgkmunl − Vxc8 fr̄i jg„kmusri + r jdunl

− ri jkmunl… s24d

with

r̄i j =
kwmusri + r jduwnl

kwmuwnl
s25d

sindicesm, n omitted for clarityd. In Eqs.s21d and s24d r̄mn,
which includes all density contributions, is defined using Eq.
s19d. Equationss19d, s21d, s22d, s24d, ands25d form the basis
of the McWEDA approximation for the calculation of
exchange-correlation matrix elements, and are the important
theoretical underpinning of the results we present in the next
section. Notice that in this approach the GSN approximation,
Eq. s20d, is only used to evaluate the correctionsfterms in-
side parentheses in Eqs.s16d ands23dg to the dominant one-
or two-center contributions.

IV. RESULTS

In this section we present results illustrating the perfor-
mance of our exchange-correlation scheme discussed in Sec.
III. Figure 1 shows LDA exchange-correlation matrix ele-
ments for a Si dimersalong thez axisd, as a function of
distance, calculated using the different approximations dis-
cussed in Secs. II and III. Figure 1sad shows the on-site
exchange-correlation-energy matrix elementkpzuexcupzl: the
solid line represents the exact result, the dashed line our
approximationfEq. s21dg, and the dotted line the original SN
average density approximationfsee Eq.s45d in Ref. 1g. In
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this case, the Horsfield approximation Eq.s13d coincides
with the exact result; on the other hand, the SN and GSN
methods, Eq.s20d, yield identical results. In this figure we
observe that the McWEDA approach reproduces with high
accuracys,1%d the exact result, while the SN approach
yields a larger errors,7%d. Notice that the origin of the
inaccuracy in using the SN method occurs at large distances
and is due to averaging a single atomic density in the atomic
limit. The error as a function of distance is practically con-
stant and thus appears as a rigid shift in the total energy
curve se.g., see Figs. 2 and 3d. Our McWEDA approach, on
the other hand, tends to the exact value in this limit. Similar
results are obtained for the other on-sitekmuexcuml termsfwe
present in Fig. 1sad the case where the largest discrepancies
are foundg.

Figure 1sbd shows the off-site matrix elements

kpzs1duVxcupzs2dl for the Si dimer. In this case, both the
McWEDA Eq. s24d and the Horsfield method Eq.s14d coin-
cide with the exact resultssolid lined. The original SN ap-
proximationfEqs.s40d and s41d in Ref. 1g is represented by
the dotted line: this curve follows closely the exact one, with
a deviation of,3%. Finally, the dash-dotted line shows the
GSN result Eq.s20d. Although the GSN approximation is
only used in the approach presented in this paper to evaluate
the correction in Eq.s16d, it is instructive to compare it with
the original SN approximation. As shown in Fig. 1sbd, both
approximations yield almost identical results. At very short
distancesssdø1.25 Å, not shownd the SN approximation be-
gins to deviate significantly from both the GSN and exact
results.sIn fact the SN approximation is not well defined for
d,1.2 Å where the sign ofkfmurufnl is different from the
sign of kfm ufnld.

Figure 2 shows the total energy as a function of lattice
parametera for bulk sfccd Al, as calculated with theFIRE-

BALL code using ansp3 basis setffireball orbitals with cutoff

TABLE I. Equilibrium lattice constantsa and bulk moduliB for selected elements obtained using McWEDA, Eqs.s21d ands24d s“This
work”d for the exchange-correlation LDA contributions, usingsp3 sAl,Sid or sp3d5 stransition metalsd basis sets of fireball orbitals with cutoff
radii Rc sin a.u.d as indicated. Also shown are plane-wave LDA and experimental values.

Name

Rc sa.u.d a sÅd B sGPad

s orbital p orbital d orbital This work PW LDA Expt. This work PW LDA Expt.

Au fcc 4.6 5.2 4.1 4.14 4.06a 4.07 210 170a 173

Pd fcc 4.6 5.0 4.0 3.96 3.94b 3.89 215 178b 181

W bcc 4.7 5.2 4.5 3.18 3.14a 3.16 347 333a 323

Si dia 4.8 5.4 5.46 5.37b 5.43 109 98b 99

Al fcc 5.3 5.7 4.04 3.96b 4.05 93 87b 72

aSee Ref. 25.
bSee Ref. 26.

FIG. 2. sColor onlined Total energy for bulk Al as a function of
the lattice parametera. LDA exchange-correlation matrix elements
are calculated using different approximations. The solid lines“This
work”d corresponds to McWEDA Eqs.s21d and s24d; the dashed
line to Eqs.s13d ands14d fi.e., the Horsfield approximation without
the correction of Eq.s15dg; and the dotted line is the GSN approxi-
mation Eq.s20d. These calculations are performed using theFIRE-

BALL code and a basis set of Alsp3 fireball orbitals with cutoff radii
Rcssd=5.3 a.u.,Rcspd=5.7 a.u.

FIG. 3. sColor onlined Total energy for bulk Au as a function of
the lattice parametera. LDA exchange-correlation matrix elements
are calculated using McWEDA Eqs.s21d and s24d s“This work”d;
the Horsfield result Eqs.s13d and s14d; and Eq.s20d sGSNd. The
energy scale on the right corresponds to the GSN approximation.
These calculations are performed using theFIREBALL code and a
basis set ofsp3d5 fireball orbitals with cutoff radiiRcssd=4.6 a.u.,
Rcspd=5.2 a.u., andRcsdd=4.1 a.u.
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radii Rcssd=5.3 a.u. andRcspd=5.7 a.u.g, using different ap-
proximations to calculate the LDA exchange-correlation ma-
trix elements. First of all, notice the critical failure of Eqs.
s13d and s14d fi.e., the Horsfield approximation without ad-
ditional numerical integrals—Eq.s15dg. In this system each
atomi has a lot of overlapping neighborss j Þ id, and Eq.s13d
does not describe properly the on-site exchange-correlation
matrix elements. Our McWEDA approachfEq. s21dg, on the
other hand, does not suffer from this problem, as shown by
the solid line. This minimalsp3 basis set calculation yields
an equilibrium lattice constanta=4.04 Å and bulk modulus
B=93 GPa, to be compared with the valuesa=3.97s4.05dÅ
and B=84s76d GPa from plane-wave LDAsPW LDAd cal-
culationssexperiment is in parentheses, as shown in Table Id.
For the sake of completeness, we also show in this figure the
total-energy curve corresponding to using the GSN approxi-
mation Eq. s20d for the calculation of the exchange-
correlation matrix elementsfi.e., Eq. s20d instead of Eqs.
s21d and s24dg. This curve presents an almost rigid shift
s,0.7 eVd to lower energy values, associated with the calcu-
lation of the on-sitekmuexcuml termsfsee Fig. 1sadg.

Transition metals contain a significant valence electron
density sthe d-electronsd, mixed with a free-electron-like
densitysthesp-bandsd, and thus represent good test cases for
the different exchange-correlation schemes. Figure 3ssolid
lined shows the total energy of bulk Au as a function of the
lattice parameter as calculated with theFIREBALL code using
the exchange-correlation scheme proposed in Sec. IIIfi.e.,
Eqs.s21d ands24dg. We used ansp3d5 basis set with fireball
orbitals defined by the following cutoff radii:Rcssd
=4.6 a.u.,Rcspd=5.2 a.u., andRcsdd=4.1 a.u. In similarity
with Fig. 2, we also show the results for GSNfEq. s20dg, and
Horsfield fEqs. s13d and s14dg. These results demonstrate
how critical it is for the transition metals to have a good
description of the on-site exchange-correlation contributions:
the GSN curvesscale on the right of Fig. 3d is now shifted by
,10 eV to lower values,24 and Eqs.s13d and s14d fail dras-
tically to describe properly the total energy as a function of
lattice parametera. On the other hand, the McWEDA ap-
proach yields a fairly good description of bulk Aussee also
Table I and Fig. 4d.

Table I shows the calculated lattice parametera and Bulk
modulusB0 sobtained using a Murnaghan equation of stated
for Au, as well as for other transition metalssPd, Wd, Al sa
typical free-electron-like metald, and Sisa typical semicon-
ductord. These results have been obtained using either mini-
mal sp3 basis setssAl,Sid or sp3d5 basis setsstransition met-

FIG. 4. Band structure of fcc Au. LDA exchange-correlation
terms are calculated using the McWEDA approach discussed in
Sec. III. Basis set:sp3d5 fireball orbitals with cutoff radiiRcssd
=4.6 a.u.,Rcspd=5.2 a.u., andRcsdd=4.1 a.u. The dashed line rep-
resents the Fermi level.

FIG. 5. Band structure of bcc Wssee also Fig. 4d. Basis set:
sp3d5 fireball orbitals with cutoff radii Rcssd=4.7 a.u., Rcspd
=5.2 a.u., andRcsdd=4.5 a.u.

FIG. 6. Band structure of fcc Pdssee also Fig. 4d. Basis set:
sp3d5 fireball orbitals with cutoff radii Rcssd=4.6 a.u., Rcspd
=5.0 a.u., andRcsdd=4.0 a.u.

FIG. 7. Band structures for TiO2 in the rutile structure. The
valence-band maximum is taken as the zero of energy.
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alsd. The experimental values27 and the PW LDA values are
also presented in Table I. This table shows that with the
McWEDA approach the experimental lattice constantsa are
reproduced within,2% while the bulk moduli are slightly
overestimated by,15%. The agreement is improved when
comparing with the theoretical PW LDA result. Since the
accuracy of first-principles TBMD methods is mainly related
to the quality of the atomiclike basis set, improvements of
the results presented in Table I are to be expected with a
better choice for the basis set, either by improving thesp3 or
sp3d5 orbitals and/or by adding new orbitals to the basis set
se.g., double basis sets, etc.d.12,28–30

Electronic structures from TBMD are often used not only
for the calculation of forces and total energiesswhich require
a good description of the electronic structure of the systemd
but also in studies of optical properties, electronic transport,
etc. In order to analyze the accuracy of the McWEDA ap-
proach Eqs.s21d–s24d for the calculation of the electronic
structure, we show in Figs. 4–6 the electronic band struc-
tures for the transition metals Au, W, and Pd, calculated us-
ing sp3d5 basis sets. As mentioned above, transition metals
represent good test cases since they present a mixture of
localized sthe d electronsd and free-electron-likesthe sp
bandsd states. The comparison with more accurate calcula-
tions se.g., see Ref. 31d shows a very good overall agree-
ment. For a more detailed comparison, Table II shows the
values of these electronic structuressFigs. 4–6d at selected
high-symmetry points as compared with augmented plane-
wave sAPWd LDA calculations.31

Tetragonal rutile structure TiO2 belongs to the space
group P41/mnm, containing six atoms per unit cell. The
structural parameters for rutile structure TiO2 have been de-
termined to a high degree of accuracy from the neutron dif-

fraction experiments performed by Burdettet al.32 We have
calculated the structural parameters and electronic band
structure for TiO2 in the rutile structure using theFIREBALL
code and the exchange-correlation approach discussed in
Sec. III. For these calculations we have used ansp3 basis for
oxygen with cutoff radiiRcssd=3.6 a.u. andRcspd=4.1 a.u.,
while for Ti a basis set ofsp3d5 orbitals was used, with cutoff
radii Rcssd=6.3 a.u.,Rcspd=6.0 a.u., andRcsdd=5.7 a.u. The
optimal structure is obtained by minimizing the total energy
of the rutilesP41/mnmd structures with respect to the lattice
parametersa,c and the internal parameteru. We perform this
minimization by a two-step procedure as outlined in Ref. 33.
Table III summarizes the comparison of our results to the
experimentally determined structural and elastic parameters
in TiO2, and other theoretical work. This table shows that our
results for the structural properties of TiO2 in the rutile struc-
ture are within 1% of the experimental results of Burdettet
al.32 From the equation of state, we obtain a value for the
bulk modulusB of 206 GPa which agrees well with the ex-
perimental value of 211 GPa.34 In addition, our results agree
well with the calculated results of others.33,35

Using our theoretically predicted equilibrium lattice pa-
rameters, we have calculated the self-consistent electronic
band structure for rutile TiO2 depicted in Fig. 7 along the
high-symmetry directions of the irreducible Brillouin zone.
Table IV gives a summary of our results in comparison to
experiment and other calculations for the detailed features of
the band structure. The upper valence band is composed of O
2p orbitals and has a width of 5.75 eV. These results are in
agreement with the experimental values of 5.50 eV.36 The
lower O 2s band is 1.89 eV wide. Our results are consistent
with other calculations.33,35The calculated direct band gap at
G of 3.05 eV is in agreement with the reported experimental

TABLE II. Comparison of the McWEDA band structures of Figs. 4–6 at selected high-symmetry points with accurate APW LDAsvalues
in bracketsd calculationssRef. 31d. All values sin eVd are referred to the Fermi energy.

G1 G258 G12 N1 N2 N18 N1

W −10.48s−10.20d −1.56 s−1.18d 1.94 s1.90d −6.92 s−6.53d −4.10 s−3.54d 0.65 s0.64d 1.92 s1.93d

G1 G258 G12 L1 L3 L3 L28

Au −9.90 s−10.29d −4.93 s−4.62d −3.37 s−3.14d −7.42 s−7.40d −4.95 s−4.72d −2.17 s−1.92d −1.17 s−1.09d
Pd −7.66s−7.30d −3.01 s−2.86d −1.36 s−1.29d −5.50 s−5.34d −3.06 s−2.97d −0.03 s−0.03d 0.67 s0.70d

TABLE III. Theoretical results for structural and elastic parameters for TiO2 in the rutile structure.
Comparisons are made between our resultssMcWEDAd and experimental results for the volumeV, lattice
parametersa,c, internal parameteru, and bulk modulusB; zero subscript represents the experimental results
sRef. 32d.

V/V0 a/a0 c/c0 u/u0 B sGPad B0 sGPada

Present work 0.994 0.997 0.999 0.994 206 211

Other calculationb 1.039 1.013 1.002 1.001 240

Other calculationc 1.021 0.999 1.002 0.998 209

aSee Ref. 34.
bSee Ref. 33.
cSee Ref. 35.
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gap of 3.06 eV.37 This agreement is the result of multiple
errors sthe local density approximation, the Kohn-Sham
approximation,38 our approximation of the exchange-
correlation matrix elements, and the local orbital basis setd
that tend to oppose one another. The traditional use of the
LDA and the Kohn-Sham approximation generally underes-
timatesscompared to experimentd the band gap for insulators
and semiconductors.39,40 The band gap obtained from PW
LDA calculations for TiO2 is ,2.0 eV.33 Finite local orbital
basis sets tend to overestimate band gaps; that, in addition to
our approximations, along with the LDA and Kohn-Sham
errors produces the present band gap of 3.05 eV.

We also find an indirect band gap fromG to M which is
smaller than the direct band gap by 0.13 eV.

V. SUMMARY

In summary, we have presented an improved approach to
calculate exchange-correlation contributions in first-
principles TBMD methods. After a brief presentation of the
basic theoretical foundations and practical motivation for
these techniques, we have discussed the different approxima-
tions fSN sRef. 1d and Horsfield5g used so far to calculate
exchange-correlation terms in these methods, using standard
DFT se.g., LDAd. Then, in Sec. III, we propose an alternative
approach that corrects the main deficiencies of previous ap-
proximations in a practical manner, keeping always in mind
computational efficiency. In this approach, on-sitesoff-sited

exchange-correlation matrix elements are formally written as
a one-centerstwo-centerd term plus a correction due to the
rest of the atoms. The one-centerstwo-centerd term is evalu-
ated sand tabulatedd directly, while the correction is calcu-
lated using a SN-like approach. For this purpose, a general
si.e., for arbitrary atomiclike basis setd version of the SN
approach has also been developed. We refer to our method-
ology as the multicenter weighted exchange-correlation den-
sity approximation.

The scheme has been tested for several materials using
the FIREBALL code and minimalsp3 sfor Al, Si, and Od or
sp3d5 sAu, Pd, W, and Tid basis sets. The results, presented in
Sec. IV, show the good accuracy of the present first-
principles TBMD approach as compared with experiment
and other accurate calculations.
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