
PHYSICAL RE VIE% B VOLUME 16, N UMBER 7 1 OCTOBER 1977

Nuclear magnetic resonance in lithium metal: Thermal mixing~
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We present a calculation of the thermal mixing rate ~ ' between nuclear Zeeman and dipolar reservoirs in

the presence of large rf fields. We applied this calculation to slow-motion diffusion in lithium metal. In
particular, we measured the rotating frame spin-lattice relaxation time T,p

as a function of H, and observed
the transition between the regions of validity of low-field and high-field theories. Furthermore, we

demonstrated that this transition occurs when T,p
T

I. INTRODUCTION

It has long been known that a nuclear spin system
in the presence of an rf field g, near its NMB fre-
quency is characterized by a spin temperature in
the rotating reference frame. " In an intense rf
field (H, much larger than the local field Hi), the
spins are quantized along Hi In the next section
of this paper, we demonstrate that this quantiza-
tion results in the separation of the system into
two parts, a Zeeman and a dipolar reservoir, each
characterized by a spin temperature. We present
a, calculation of the thermal mixing rate z ' between
these two parts and then apply it to slow-motion
diffusion in lithium metal. In addition, we verify
the results of this calculation by explicit measure-
ment of the H, dependence of Tip of 'Li in lithium
metal.

II. THEORY

A. Thermal mixing

Consider a nuclear spin system' in a dc mag-
netic field Ho irradiated by an intense rf field
H, at a frequency (d near the NMH frequen-
cy u, = yH, . In a reference frame rotating about
Ho with frequency (d, the time-independent "ef-
fective

field�"

H,« is given by

H„, = H, + (H, - (u iy)H, .
If we choose the z axis to be along H„, , the Hamil-
tonian can be written '4 '

3Cd" =P+Q ~

In the above,

P =-,' sin 8 QA„.(I„,I„,-I„I„).. (7)

@=-3 sin8 cos8 QA, , I„I„.
i, j

0 is the angle between H, and H„;, , and A, j is the
usual dipolar coupling parameter given by

A, , = ,' y'hr, ,'-(1 —3 cos'8„.) . (9)

In order to determine the form of the density
operator, we rewrite the Hamiltonian by defining
a unitary operator p such that

UK~ U = 3C~ + X„"—= 3C~~ ~

We introduce an operator R defined by

U. - i R

(10)

For H, »IIi, R will be small, and we can write to
first order

two parts: (i) 3C~00 which is secular with respect to
gati and (ii}X,'" which is nonsecular:

3C' = X"+ K'"
d d d

where

3 cos'g —1

2ij

(2)

The first term ${„'~ is the Zeeman interaction be-
tween the spins and H„-, and is given, in units of
frequency, by

(3)

The second term Xd' is the secular dipolar inter-
action between spins and is time independent in the
rotating reference frame. It can be broken into

From Eqs. (10) and (12}, we obtain

which is used to evaluate R:

R =-—,
' sin'8(yH„. , ) 'QA, ,I„I„.

+3 sin8 cos8(yH, «) ' A„I„I„,. .

I j

(12)

(13)

(14)

16 3056



16 UCLEAR MAGNETIC RESONANCE IN LITHIUM METAL:. . . 8057

Also, we have

x, =fi'x,"*ft=x„"*-t[x,*,R]. (15)

Finally, from Eqs. (4), (10), and (15), we have'

andH~ is the local field given by

2

II~ = Tr(xd)2 y'Tr QI„=. —', y '(a~2)~.
f

x=xg+x *—i[x *,R]. (16) (26)

ln Eq. (16), the first two terms, Xzd' and Xd *,
commute, and the third term is smaller than either
of the first two terms. Thus, ~~ and ~~ * are
quasiconstants of motion and can be described by
separate spin temperatures p~ and p„. The density
operator, in the high-temperature limit, is thus
written

a=&-pzXz*- p.X (17)

Note that, although &~ and &„ also commute, they
are not quasiconstants of motion, since the re-
maining part of the Hamiltonian&, '" is not smaller
than ~~.

The third term in Eq. (16) is a small perturbation
which causes P~ and P„ to evolve towards a common
spin temperature. We define the rate z ' of this
thermal mixing by

'Ihe spectral density functions Ju(~) and J~(&u) are
given by

dc( )=J d cos( )Gc(c),
0

(27)

G (7) =»[P(T)P]l»P',
where

Q(~) =exp(iX, T) Q exp( ixd -r)

(3o)

(31)

d ( )=f d cos(st)G ().
0

Go(v) and G p(z) are correlation functions given by

G, (~) = Tr [q(~) q] /»q' (29)

dt (Pg PG) = T-'(Pg--P, ).
From conservation of energy, we see that

(18)
P(T) = exp(zx T) P exp(-ix T) .

It is straightforward to show that

(32)

Tr(x*)' + Tr(X"d')' ' = 0.dP dP

dt ' dt (19)
Q(7) =-2isin8cos8(3cos'8 —1) ' X,",QI„, . (33)

From Eqs. (18) and (19) we have

dPz»(xd *)
2 (Pg P(( )

dp d»(xg)' 1dt'=- »x, (P. -P.)

(20)

(21)

Substituting this into Eq. (29), we get that

»([x, , gi „.] [x„",pi „,. (T)])
Go(v. ) =

Tr [X,",g I„.]'

Finally, Go(r) can be written in the form"

(34)

Using perturbation theory, z ' can be evaluated
and is given by" ' 1, 3 cos2g —1Go(c)= —(,)

G„"., ), (35)
-1 1 -1

~m Tmg ~mP y

where

(22)
where G'(!,~(t) is the second time derivative of the
normal free-induction-decay envelope given by'

'rmq + H2 3 sa8 1 (~(d) )((

x cos'8 sin'8 Jc (yII,«) (23)

Tr [(QI„.) exp(i XG t) (Q I„,. ) exp(-i XG t)]
Gno(t) =

Tr(QI „)'
(36)

From Eqs. (27) and (35), we obtain

x sin'8 J~(2yH, «), (24)

where (a&0')« is the Van Vleck second moment
given by

QPJo((u) =« 3cos'8 —1 (t).&u )z 3cos28 —1

(d) 2&d)

(b, &u')« = 3I (I+1)gA,', , (25)
where g(&u) is the normalized NMR absorption sig-
nal shape given by
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1
g(e) = — dr cos(&u7) G H«(&) . (38)

7T p

Using Eq. (23), we finally have'd 0 2

H 2&-'= 1+ n sin'8
3 cos'8 —1

2 2 2 2+IIeff
'Y g

the correlation function or the line shape.
The expression for v ~ involves G p(w) which can-

not be simply related to the line shape in the same
way as can Go(T). As a result, the expression for

p cannot be s imil ar ly simplif ied without assump-
tions about the explicit form of Gp(q-). An approxi-
mation can be made, however, by assuming the
form of G~(z) to be Gaussian"

(39) G~(~) =exp(-; /2-', ) . (4o)

A nice feature of the above equation is that it is
quite general and has not required any assump-
tions about the explicit functional form of either

The correlation time z~ can be evaluated' by taking
a power expansion of G~(z) and equating coeffici-
ents of 72,

1~ Tr [p 36 00 ]2

dr2 G~(v) =
Trp2

+fjA~pp~p —
5 + 2p 1 I I + 1 A~y)3cos 8 —1

2 (PA'. .)'
(41)

From Eqs. (24), (28), and (40), we have

2 2

Hi 3cos 8 —1

}Erc exp( y Huff rc) '

For H, off-resonance (8e-2'«), the rate v 0' domi-
nates the thermal mixing due to the fact that
J~(2yH, «) is smaller than Je(yH, «) since the argu-
ment 2yH, «of J~ is further out in the wings. This
case has been investigated by Clough" in CaF, .
The experimental values for 7 ' were found to be
in good agreement with theory. Einbinder and
Hartman" also observed thermal mixing in CaF, .

For H, on resonance (8 = -,'v), the rate 7 p domi-
nates the thermal mixing, since cos0 =0. This
case has been investigated by Mansfield and %are'
in CaF,. They found that experimental determin-
ation of z for this case was very difficult, giving
only order of magnitude estimates.

We too investigated this case (8=-2'«) by measur-
jag T,q

of' Li in lithium metal. The details of this
experiment are given in the following sections of
this paper.

B. Application to diffusion in lithium metal

Diffusion in lithium metal strongly affects T,~
over a certain temperature range. "" According
to the Slichter-Ailion theory, the contribution of
diffusion to Tzp for smallH, on resonance is given
by

de H j+4Ht 1
df

——
H2 H. (Pd P2) ~- (46)

If we add the relaxation rate due to diffusion, "we
obtain

dPz

dt

1 2 3 2
4 g 1 4HI 1

H2 ~H2 (Pz Pd ) H2+ 3 H2 T Pz
1 L, ~m 1 4 L, la, diff

(46)

1
dt H ~+HI. ~m T] Q2 diff

(47)

In the last term of Eq. (47), there is no explicit
field dependence since the field-dependent terms
in the numerator and denominator of Eq. (43) can-
cel in this case.

Solving Eqs. (46) and (47) with the initial condi-
tion, P ~(0)» Pd (0), we obtain

T„„,-,- =[(H', +H,')/H ] T„„„,, (43)

where T» is the dipolar relaxation time, the limit-
ing case of Ty p for H, = 0.

For large H„we must consider the relaxation of
the Zeeman and dipolar parts separately, as can be
seen from Eq. (17). In the absence of spin-lattice
relaxation, Eqs. (20) and (21) give, for H, on reso-
nance (8 = -2'-v),

1 2

(44)
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P z(t) =P (0) e xp(-t /, p „,,- ) . (48)

The expression for T» „,, can be written in simple
form for two limiting cases. First, if Il, is suf-
ficiently small such that thermal mixing is fast
and Pz =P„we have Eq. (43}. Second, for large
&„such that thermal mixing is slow and can be
neglected, we have"

300
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I
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'
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2 3 2

1p, diff +1 0 +I, Tl D, diff
(49)

The region of transition between these two limiting
cases occurs where p T1p d ff.

If we plot T1p draff
as a function of 0'„we should

get a straight line for each limiting case but with
different slopes. Ailion" attempted to see this
change of slope in lithium metal but was unsuc-
cessful because of experimental scatter attributed
to unstable temperature control at large JI,. Mes-
ser, Dais, and Wolf" measured &1p at various
values of H1 in aluminum metal, but the published
experimental details are too incomplete for analy-
sis in terms of thermal mixing rates.
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FIG. 2. Ti +ff in powdered lithium metal at 212.4 K
as a function of H&. Solid and dashed lines have the same
meaning as in Fig. l.
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III. EXPERIMENT

We measured T,~ at various values of H, (&u, /2tt
=24 MHz) at two different temperatures (see Figs.
1 and 2). The contribution to T,p from conduction
electrons had to be subtracted off in order to ob-
tain T1p d I.f Relaxation due to conduction elec-

trons in a metal is given by" "
T„,=[(H', +H,')/(H', +cH,')] T, .

From the Korringa relationship, ""we have

T, , =ff/T,

(50)

(51)

where K = 44 s 'K. At 162 'K, (well outside the
diffusion region} we measured T, =260 msec. and
T» =150 msec. This agrees with Eq. (51) and
gives us o = 1.7. Using Eq. (50) and (51), we ob-
tained T]p d'ff from"

-1 -1 -1
1P, diff 1P TlP g (52)

Examination of Figs. 1 and 2 shows a definite
change of slope in the data as we go from small
B, to large H, . The solid lines shown are the best
fits to the data consistent with Etls. (43) and (4S).

From Etl. (42), we can calculate the thermal mix-
ing rate for powdered lithium metal and obtain

IO

(hatt«~'&, ~c)
'

l +(4/H2)H2 exp(r'~GH1) y (53)

where

0 l'
I

Ol 4 92
H, (Qouss j

25

(-,' vm «(u'&, v.c) '=24 p, s,

4/H~ =2.8 G ', and y'wc =1.28 G '.
FIG. l. T1 &ff in powdered lithium metal at 227.1'K

as a function of H~. Solid lines are best fits with the
data consistent with Eqs. (43) and (49). Dashed line is

from Kq. (53) with no adjustable parameters.

This is shown as a, dotted line in Figs. 1 and 2 and
intersects the data at approximately the transition
region as we predicted.
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IV. CONCLUSION

In this paper, we have verified experimentally
the prediction that the dependence of T)p d'ff on JI',
should change slope by a factor of —', when Jl, be-
comes sufficiently large to prevent thermal mix-
ing in a time comparable to T» „,-, . Furthermore,
we observe the change of slope to occur, as pre-

dieted, when 7 Tzp d g This agreement suggests
that our assumption of a Gaussian correlation func-
tion leads to the correct value of q
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