
PHYSICAL REVIEW 8 VOLUME 30, NUMBER 9 1 NOVEMBER 1984

Molecular reorientations in the ordered phases of KCN and NaCN studied by NMR

Harold T. Stokes*
Department of Physics and Materials Research Laboratory, Uniuersity of Illinois, Urbana, Illinois 61801

David C. Ailion and Thomas A. Case
Department of Physics, Uniuersity of Utah, Salt Lake City, Utah 84112

(Received 7 March 1984; revised manuscript received 25 June 1984)

We have measured ' C and Na NMR spin-lattice relaxation times as a function of temperature
in KCN and NaCN'in order to study the head-to-tail reorientations of the CN molecules in the
two low-temperature ordered phases. We have combined our data with those of dielectric-response
and ionic-thermal-conductivity measurements and have determined the correlation time ~, of the
reorientations over more than five decades. We found ~, to be continuous through the electric-
ordering phase transition with the same activation energy in both phases. In the elastically ordered

phase of KCN, we detected small-angle CN reorientations about directions nearly parallel to the
orthorhombic b axis, leading to a small disorder in the CN orientation along that axis. We found
the rms average of the angle between the C—N and b axes to be 3.9'. Our experiments resulted in
the first direct observations of NMR relaxation arising from chemical-shift anisotropy in a solid.

I. INTRODUCTION

Potassium cyanide (KCN) and sodium cyanide (NaCN)
both exhibit an elastically ordered phase (below 168 K in
KCN and 288 K in NaCN) in which the CN molecules
are aligned parallel to the b axis in an orthorhombic crys-
tal structure' (Fig. 1). In this phase, the CN molecules
are disordered with respect to head-and-tail alignment and
undergo random head-to-tail reorientations. At a lower
temperature, both KCN and NaCN undergo a second-
order phase transition (at 83 K in KCN and 172 K in
NaCN) in which the CN molecules are ordered with
respect to head and tail in an antiparallel fashion.
This is an electrically ordered phase.

The structure and dynamics of these two phases have
been of considerable interest in recent years. The reorien-
tational motions of the CN molecules have been studied
by dielectric response, ' ionic thermal conductivity '

(ITC), EPR, and NMR. ' We"' have studied these
motions by NMR of ' C in KCN and NaCN and by
NMR of Na in NaCN. Combining our results with
dielectric-response ' and ITC measurements, ' the corre-
lation time of the reorientations has been obtained over a
wide range of temperature, extending into both phases.
We find that the correlation time is continuous through
the electric-ordering phase transition and follows an Ar-
rhenius relationship with the same activation energy on
both sides of the phase transition.

Furthermore, we have also detected a small-angle
reorientational motion of CN molecules in the elastically
ordered phase of KCN. We propose that this motion
arises from interactions between the CN molecules, so
that a given CN not only reorients head-to-tail itself, but
also reacts to the head-to-tail reorientations of its CN
neighbors by changing its own orientation by some small
angle. This model leads us to conclude that in the elasti-

cally ordered phase, the CN molecules are slightly disor-
dered with respect to alignment along the b axis.

II. THEORY

Nuclear spins, when placed in an external dc magnetic
field Ho, develop a macroscopic magnetization along Ho.
The time evolution of this nuclear magnetization towards
its thermal-equilibrium value is often exponential with a
time constant T&, the spin-lattice relaxation time. Here,
we develop some expressions for Ti due to mechanisms
present in KCN and NaCN. Reorientational motions of
the CN molecules cause fluctuations in various nuclear-
spin interactions. These fluctuations in turn cause spin-
lattice relaxation. The interactions considered here are
(1) the nuclear spin-spin dipolar interaction, (2) the chemi-
cal shift, and (3) the nuclear-quadrupolar interaction. In
the cases discussed here, we consider only polycrystalline
samples, thus allowing us to simplify our expressions for
T& by averaging over 0, the direction of Ho with respect
to the crystalline axes.

A. Dipolar interaction

Molecular reorientations cause the nuclear spin-spin di-
polar interaction to fluctuate, thus giving rise to spin-
lattice relaxation. For interactions between unlike spins
( I and S spins), we obtain the dipolar contribution
1/Ti c;u to the I spin-lattice relaxation rate' of the I
spins,

I~Tl, chp 2YIrsIt S(S+ 1)[—,', ~"'(~1—cos)+ —', ~"'(col)

+ J~ ~(tol+tos)j—
where col and co~ are the NMR frequencies, ylHO and
psIIp, of the I and S spins, respectively, and J'&'(co) are
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spectral density functions of the motion. In a powder
sample, we have'

J' '(co) J"'(co) J' '(co)=6:1:4,

and, accordingly,

(2)

1/T, d,
. = 3ylysf—i'S(S+1)[ ,' J'—'(col ~s)+ , J' —(~l)

+3J (c01+~s)] . (3)

The spectral density function is given by

J' '(c0)=f , drcos(cctr)QGg '(r),
k

where Gg'(r) is a correlation function,

G,',"(.)=(fF,',"(tWF,',"(r+ )),.
(4)

The symbol ( )to denotes an average over time t and
solid angle Q. The summation in Eq. (4) is over all S
spins (labeled k) which interact with some given I spin
(labeled j). The term 5Fg ' is the fluctuating part of the
dipolar coupling function,

Fjk —— 2rjk P2(—cos8jk ),(0) —3

where rjk is the vector from the I spin to the S spin, Ojk

Consequently, we have

(SFg'(r) ),=0,
and, if the motion is uncorrelated for large r,

(8)

lim G(r) =0 .
7~00

Thus, we write the correlation function as

Gjk'(r) =(Fg (t)Fg (&+r))to ([(F—g (t)),] )n .
(10)

If the correlation function is assumed to be exponential,
I.e.,

Gg (r) =Gg (0)exp( r/—z, )

where ~, is the correlation time of the motion, we then ob-
tain from Eqs. (3) and (4),

is the angle between rjk and Hp and P2 is the Legendre
polynomial P2(x) =

2 (3x —1).
By fluctuating part of Fg ', we mean

oFg'(t)=Fg (&) (F—g (t)), . (7)

C1/T, d; —,
'
y ystl S(S——+1) QGg'(0) — +— +3

I+(ctlt cps)—v, 2 I+col'rc I+(ctll+cos) ~c
(12)

where

Gjk (0) ([Fjk (t)] )tn ([(Fjk (t))t] )Q ' (13)

1. C-Na dipolar interaction

The major source of fluctuations in the ' C- Na dipolar interaction is the head-to-tail reorientations of the CN mol-
ecules. Each ' C nucleus can occupy one of two positions, and the time averages in Eq. (13) can be calculated using sta-
tistical averages over these two positions.

Assuming the occupation of each position to be equally probable, we obtain

([Fg'(t)] ), n ———,
' (rl jk+r2 jk) (14)

([(Fjk (t) )t] )Q Tl[r 1 jk+ "2jk+ r l,jkr2 jkp2("1 jk r2 jk)1 (15)

where rl jk and r2 jk are the vectors from the ' C nucleus to the Na nucleus for the two positions of the ' C nucleus,
respectively. Setting these expressions into Eq. (13), we obtain

(P) & —6 —6 —3 —3
Gjk (0)= —,[r 1 jk+r2 jk 2"1 jk "2 jkp2(rl j—k.r2&k)]

Usually, expressions for T$ dip are written in terms of
Mlf2, the motionally "averaged out" part of the dipolar
second moment. We can write AMzc N, in terms of
Gg'(0):

bM2 C N,
'———,ylysA' S(S+1)QGg'(0) .

k
(17)

Combining this with Eq. (12), we obtain the expression of
Albert and Ripmeester, '

1 &C 3 +c
1/Tl, C—Na ~j+2,C—Na +

I+(col —cos) '7 2 I+ctll1

7C+3 2 2I+(ct21+cos) 'ra
(18)

2. C-N dipolar interaction

In the case of ' C-' N interactions, we can greatly sim-
plif'y Eq. (10) since only the interaction with the ' N nu-



30 MOLECULAR REORIENTATIONS IN THE ORDERED PHASES OF KCN AND NaCN. . . 4927

cleus in the same CN molecule as the ' C nucleus needs
to be considered. The dipolar interaction between ' C and
' N of different CN molecules is negligible in compar-
ison because of the much greater separation in distance.

Let r& and r2 be the directions of rjk for two different
orientations of the molecule. Using Eq. (6), we obtain

(+jk ("1)+jk ("2)&0 5 "0 [3("1 "2)'—lI (19)

—6=
5 ro Gz(r), (21)

where we have introduced here a "rotational" correlation
function G~(v), given by

where r0 ——r~k, the C—N distance, which we assume to be
constant under reorientation. From Eqs. (9) and (10), we
see that

( [(+jk'(&) &g]'&n= »m &+g '(r)+jk'(& +r) &&n .t~ CO

Combining Eqs. (10), (19), and (20), we finally obtain

G'k (r) ro I '([r (~)'r (r +&)]

lim ([r (t).r (t+v')]2&, ]
+ ~OO

G~(0)=1—lim ([r (t) r (t+r)] &, . (24)

The information about the type of reorientations taking
place is contained in Gz(0), as we will demonstrate below.

a. Head-to-tail reorientations. First, let us evaluate
Gjt(0) for simple head-to-tail reorientations of the CN
molecules. Since [r(t) r(t+r)] =1 for all values of t
and r in this case, we see from Eq. (24) that Gz(0) is zero.
Simple head-to-tail reorientations cannot cause relaxation
in this case. This is due to the fact that the intramolecu-
lar dipolar energy is invariant under 180' rotations. As a
result, T~ c N is very sensitive to other types of reorienta-
tions which might otherwise be masked by the large
head-to-tail reorientations.

b. Intermediate orientations. von der Weid et al. sug-
gested that CN molecules in KCN reorient head-to-tail
via intermediate orientations along the orthorhombic
(111& directions. This model would give ten possible
directions for the CN molecule: the orthorhombic [010]
and [010] directions (the b axis) and the eight intermedi-
ate (111&directions. The time average in Eq. (24) can be
expressed as a statistical average using occupation proba-
bilities Q; (direction r; is occupied with probability Q;):

(22)

10 10

Gz(0)=1 —Q g(r 'rk)'Q Qk .
i =1k=1

(25)

Using an exponential correlation function as in Eq. (11),
we obtain from Eq. (12),

1/Tl, C N5 YIYS—'Il S(S+1)ro Gg(0)

1 +C 3 +c
X 22+2 1+.(col —cps) re 2 1+cojH

The occupation probability Q; of the (111& directions
is less than that of the [010] and [010] directions by the
Boltzmann factor @=exp( 5/kT), wh—ere b is the differ-
ence in energy for the two types of orientations. Imposing
the normalization requirement

10

QQ;=1, (26)

where

+C+3 221+(a)1+cos ) 'Tq

(23) we easily obtain Q;=(2+8@) ' for the [010] and [010]
directions, and Q; =e(2+ 8e) ' for the ( 111& directions.
Setting this into Eq. (25), we obtain

G(())1(14)2 1 4 &8eb2( a+b+c)—+(a b+c)+(a—+b c)—
a 2+b 2+~2 (a 2+b 2+c 2 )2

(27)

where a, b, c are the orthorhombic lattice constants (Fig.
1).

c. Small-angle orientations. For reasons to be discussed
in a later section, we also want to consider the possibility

CN-

K, No

of small-angle reorientations about the b axis. For this
case, we consider a continuum of possible CN directions
r with an associated probability density function Q(r)
such that the probability of finding a CN molecule
oriented in a direction within the solid angle dr is given
by Q (r )dr. Similar to Eq. (25), we write

G~(0)=1—fdr fdr '(r. r ') Q(r)Q(r ') . (28)

To evaluate this expression, let us choose the x,y, z axes to
be along the orthorhombic c,a, b axes, respectively. Also,
let us use polar coordinates, r, 8,$ with their usual mean-
ing. In terms of P and 8, we have

FIG. 1. Orthorhombic crystal structure of KCN and NaCN.

r r ' =cosP sin8 cosP' sin8'

+sing sin8 sing' sin8'+ cos8 cos8' (29)
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dr =sin8d8dg .
By symmetry, we have

Q ( —8,$)=Q (8,P),
Q(8, —P) =Q(8,$),

(30)

where 5o (t) is the fluctuating part of any off-diagonal
element of the chemical shift tensor cr. The choice of
off-diagonal element is arbitrary in this case since we

average over all orientations 0 of o.
Consider a chemical shift with axial symmetry. Let ri

and r2 be the axes of symmetry for two different orienta-
tions of the tensor o W. e show in the Appendix that

and

Q(~—8,$)=Q(8,$) . (31)

(o' (ri)o~(rz))n ——3'0 (bo') [3(ri rz) —1], (36)

Using these relations, we obtain from Eq. (28),
~/2 2~ '2

Gii(0)=1 —4 f d8sin8f dPQ(8, $)cos /sin 8

n'/2 2e'
4 f dP sin f dP Q (8,$)sin P sin 8

2—4 f d8sin8 f dPQ(8, $)c so8
L

(32)

If we replace 8 by a which is also defined to be the angle
between the C—N axis and the macroscopic b axis, then

Gii (0)=2a~ (34)

where a, is the root-mean-square average of a over all
the CN molecules in the crystal.

B. Chemical shift

Molecular reorientations cause nuclei with an anisotro-
pic chemical shift (CS) to experience a fluctuating mag-
netic field. This in turn causes spin-lattice relaxation. '

From Soda and Chihara, ' we obtain
00

1/Ti, cs =2col dr cos(col&)

X (50. ( )5to( +t))ri, n (35)
I

Now, for small-angle reorientations about the b axis (z
axis), Q (8,$) is nonzero only near 8=0 and m.. Since the
integrals in Eq. (32) include only values of Q(8,$) be-
tween 8=0 and n./2, we can expand the expression about
8=0. Keeping only the lowest-order term in 0, we have

Gz(0) =4f d8sin8 f dP Q(8, $)8z

=2(8') . (33)

where b,cr is the anisotropy of o. Noticing the similarity
between this expression and Eq. (19), we can immediately
obtain

1/Ti cs s~t(k——cr) GR(0)
1+Coi

(37)

where Gz(w) here is the same correlation function as that
given in Eq. (22), assuming that the axis of symmetry for
a lies along the C—N axis. '

If we use the approximation cos « tot in Eq. (23), we
obtain

C. Quadrupolar interaction

Nuclei with spin I & —,
'

possess electric quadrupole mo-
ments and thus interact with electric field gradients.
Motions of electric charges (such as CN reorientations)
cause fluctuating electric field gradients and thus spin-
lattice relaxation. From O'Reilly, ' we obtain for the case
I = —, (as in Na),

1/Ti, c x=2r—tws—&'~(~+1)ro Gii(0)
+COI rc

Note that co~-=0.35col, so this approximation is very
rough. Combining Eq. (38) with Eq. (37), we obtain a
very useful relation between Ti cs and T, c

Ti,c—N ~I(~rr) "0
(39)

Ti,cs 10yh sA' S(S+ 1 )

Note that this ratio does not depend on GR (r), i.e., it does
not depend on the nature of the reorientations.

1/Ti ~
———„e'Q'iri' ( ~5V (t)+t5V,.(t) ~'),,n '» +(

I

5V (t) —5V»(t)+»5Vi(t)
I
')~n z (40)

1.+s 'T
xx» &j' ~r 1+4 2

where e is the electronic charge, Q is the nuclear quadru-
pole moment, and 5V (t), 5V~(t), etc. are the fluctuating
parts of V =a'V/axaz, V, ="a'V/ayaz, etc., respective-
ly, and V is the electric potential at the I spin. Here,
correlation functions are again assumed to be exponential.

III. SAMPLES

The ' C NMR measurements were made on isotopically
enriched (90 at. %%uo 'C )sample sof KCNan dNaC N(ob-
tained from Prochem (Summit, NJ). The Na NMR

measurements were made on a sample of NaCN (nonen-
riched) obtained from the University of Utah Crystal
Growth Laboratory (Salt Lake City, Utah) as well as the
enriched sample of NaCN mentioned above.

IV. EXPERIMENTAL RESULTS

A. KCN

We measured the Ti of ' C in KCN as a function of
temperature at three different fields (Fig. 2). At each field
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FIG. 2. Spin-lattice relaxation time T& of ' C in KCN.

13

1/T) ——1/Tl, c—N+ 1/T1, cs ~ (41)

where T~ c N and T& cs are given by Eqs. (23) and (37),
respectively.

To test Eq. (41), we examine the ratio T~ c N/T~ cs
given by Eq. (39). This ratio is independent of the nature
of the reorientations, as long as the fluctuations in the di-
polar and chemical-shift interactions are caused by the
same reorientations, which, of course, they must be.

It is easy to show from Eqs. (41), (37), and (38) that T,
should have its most shallow minimum when
Ti,c—N=-Ti, cs If we set Ti,c—N=Ti, cs in Eq. (39) and
use values of 4o. and ro published in the literature
(bo =290 ppm in Ref 17 and ro.——1.13 A in Ref. 19), we
predict that the most shallow minimum should occur

a minimum in T& is observed. The field dependence of
T~ exhibited here is very unusual. On the cold side of the
minima (1000/T & 9 K '), T~ decreases with decreasing
field, whereas on the hot side (1000/T &7 K '), T& in
creases with decreasing field, in contrast to the expected
behavior for dipolar relaxation. Furthermore, the T

~

minima at 10.5 and 56.65 MHz are both deeper than the
minimum at 24 MHz.

This field dependence can be explained by considering
T~ to be due to a combination of two different interac-
tions, dipolar and chemical shift. The T~ due to the dipo-
lar interactions usually decreases with decreasing field on
the cold side of its minimum and is field independent on
the hot side. On the other hand, the T~ due to chemical
shift anisotropy usually increases with decreasing field on
the hot side of its minimum and is field independent on
the cold side. If both interactions are present in compar-
able strength, we might expect to see a field dependence
like that exhibited by our data.

In KCN both such interactions are present: the ' N-' C
dipolar interaction and the ' C chemical shift. Spin-
lattice relaxation, of course, is caused by fluctuations in
these interactions. We propose that the mechanism in
KCN which produces such fluctuations is molecular
reorientations of the CN ion. The observed Tj, then, is
given by

when col/2m =23 MHz. [Note that this. result is only ap-
proximately correct since it is based on Eq. (38) which is
an approximation to Eq. (23).] At this frequency, the T&

minimum should have a value larger than the T]
minimum at frequencies above or below. This predicted
result is in agreement with our 24-MHz data which is in-
termediate between the two extremes where either T~ c
or T, c, dominates T, .

The above agreement strongly confirms our hypothesis
that the observed relaxation is due to CN reorientations
which cause fluctuations in the ' C chemical shift and
the ' N-' C dipolar interactions. We emphasize that this
conclusion does not depend on the type of reorientations,
since Tl,cs and Tl,c—N bot" depend &n the same way on
the correlation function Gz(r) which is the only parame-
ter dependent upon the details of the motion.

Now, in order to determine the nature of the reorienta-
tions present, we must investigate Gz(r). From Eq. (37),
we find the value of T& cs at its minimum,

1/Ti, cs,min= ~g ~1(Acr) GR(0) . (42)

At col /2~ =24 MHz, we have already shown that
T& cs ——T& c N. From Fig. 2 we find that T&;„-=40s at
24 MHz, and thus, using Eq. (41), we obtain
T~ cs;„=-80 s. Solving Eq. (42) for Gz(0), we finally
calculate Gz(0)—:0.01. We determine Gz(0) more accu-
rately at the end of this section.

We can conclude that simple head-to-tail reorientations
cannot cause our observed relaxation since such motions
correspond to Gz (0)=0, as shown in Sec. II. Thus the re-
laxation exhibited by- our data must be due to departures
from this simple head-to-tail reorientation.

From the very small value of Gz(0), we know that
these departures must be small, i.e., the CN molecules
spend most of their time oriented in directions near or
along the orthorhombic b axis. The fact that Gz(0) is
nonzero, though, indicates that the CN molecules must
spend at least part of the time oriented in directions not
parallel to the b axis. This can be accomplished in two
different ways: (1) The CN ' molecules spend a very
small fraction of their time oriented at large angles with
the b axis, or (2) the CN molecules spend most of their
time oriented at small angles with the b axis. The first
possibility is the case of intermediate orientations, and the
second is the case of small-angle reorientations. In Sec. II
we calculated Gz(0) for both of these cases. We now t'ry

to fit these calculations to the data for each case.
First, let us consider the case of intermediate orienta-

tions. von der Weid .et al. made .EPR measurements on
HCN defects in KCN and found some of them in the
orthorhombic (111)orientations as well as the [010] and
[010] directions, suggesting that a head-to-tail reorienta-
tion might proceed, for example, from [010] to [111] to
[111]and finally to [010]. From the fractional occupa-
tion of these (111) orientations detected by EPR, they
determined that the minima of the (111)potential wells
were only 0.0074 eV greater than that of the [010] and
[010] potential wells. The similarity between HCN and
CN molecules led them to suggest that the information
obtained about the HCN reorientations from EPR might
also be true for the CN reorientations.
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We can rule out the model of von der Weid et al. for
the CN reorientations in KCN. Using 5=0.0074 eV
from Ref. 9 and a =4.22 A, b =5.07 A, and c =6.13 A
from Ref. 1, we evaluate our expression for GR(0), Eq.
(27), at the temperature ( T = 125 K) of our T& minimum
for 24 MHz and obtain G~(0)=0.6, which is about 60
times larger than our experimental value. The model of
von der Weid et al. would cause T~ to be less than 1 s at
the minimum instead of the 40 s which we observed (Fig.
2).

In order for this model of intermediate orientations to
fit our value of G~(0), a much larger value of b, is re-
quired. For large 5, we have e«1, and Eq. (27) may
then be written to first order in e as

Gg(0)=8e a+b+c (43)

In this case, the relaxation rate is decreased by a factor
e=exp( 6/kT)—, a feature which is typical of reorienta-
tional motion between unequal potential wells. Using
Gz (0)=0.01, we find from Eq. (43) that 6=0.07 eV.

One striking consequence of such a large 5 is an asym-
metry of the slope of T~ on the two sides of the
minimum. On a plot of InT~ versus 1/T, the slope of
the line on the cold side of the minimum would be Eq +6
and on the hot side (Eq ——b, ). The difference in the ab-
solute values of these slopes would be equal to 2b, =-0.14
eV. Such. a great difference is clearly in disagreement
with our data.

Thus although the value 6=0.07 eV may give the
correct value for T~ at the minimum,

' it would produce
too great an asymmetry in the slopes of T~. We therefore
conclude that our T& data in KCN does not arise from
reorientations between (111) directions and [010] or
[010] directions. If there are any intermediate orienta-
tions in (111)directions, the resulting relaxation must be
so weak so that it is masked by the relaxation which we
do observe. We can thus place a lower limit on 6 in
KCN. This limit is more than ten times the value mea-
sured by von der Weid et al. for HCN reorientation.
Even though the CN and HCN are very similar, their
reorientational motions here are strikingly different. Ap-
parently, von der Weid et al. were not justified in suggest-
ing that CN reorients similar to HCN .in KCN.

Reorientations between other possible intermediate
orientations which are at large angle with the b axis
would give similar results: large 5 and asymmetric slopes
in T&, which disagrees with our data. We can simply rule
out this type of mechanism as being responsible for the
observed relaxation.

This leaves us with the other possibility: small-angle
reorientations. In Sec. II we calculated G/t(0) for this
model. Using G~ (0)-=0.01 in Eq. (34), we obtaina,=-4. Later in this section we obtain more accurate
values for G~(0) and a, . We discuss the possible origin
of these small-angle reorientations in a following section.

The correlation time ~, for the reorientations can be ob-
tained from the positions of the T& minima. We see from
Eqs. (37) and (38) that the T& minima occur when
cols.,=1, which allows us to determine the values of ~, at
the temperatures of the three T& minima shown in Fig. 2.

We plot the resulting values of ~, in Fig. 3.
Values of the correlations times r, obtained at lower

temperatures from dielectric response and ITC measure-
ments ' are also plotted in Fig. 3. As can be seen, a sin-
gle straight line can be drawn through all the data. Thus
we conclude that the correlation times obtained from
dielectric response and ITC data describe the same motion
as the correlatiori times obtained from our NMR data.
Using the Arrhenius relation,

r, =roexp(E& /kT), (44)

we obtain E„=0.154 eV and ro ——3.8X10 ' s from a
least-squares fit to the data. (These values are more accu-
rate than our previously reported values' due to im-
proved dielectric response data. ) The activation energy
Ez ——0. 154 eV which we obtain from data in Fig. 3 is
consistent with the slopes of the T~ data in Fig. 2 if the
background relaxation rate is first subtracted off. We
note that ~, is continuous through the electric-ordering
phase transition and that the activation energy Ez ap-
pears to have the same value on both sides of the phase
transition. Thus, the phase transition does not appear to
have a measurable effect on the CN reorientational
motion.

With an expression for r, we can now fit our data with

I/Tl I/Tl;C —N+ 1/Tl, CS+ I/Tl, oth (45)

where T& c N and T& cs are given by Eqs. (23) and (37),
respectively. [Here we used Eq. (23) instead of the ap-
proximate expression, Eq. (38).] The last term, 1/T, „h„,
is the relaxation rate from other sources (such as
paramagnetic impurities) which determine T& at low tem-
peratures. The form we choose for T& „h„ is rather arbi-
trary and does not affect the results of the fit significant-
ly. We use

1/T~ „h„——A exp(T /T), (46)

104

10o
V
LO

10-8

I I I I I I I l

8 12 16 20 24
1000/T (K-')

FIG. 3. Correlation time ~, of CN reorientations in KCN.
Our NMR data (o). Dielectric response data (4) and ITC
data (4) from Ref. 7.

which is a straight line on a graph such as Fig. 2. We al-
low the coefficient A to take on different values for the
three frequencies cot.

In the expressions for T~ c N and T~ cs we allow only
two adjustable parameters: Gz (0) and b,cr. The resulting
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best fit is shown by the solid lines in Fig. 2 and yields
Gii(0) =0.0093 and bo.=300 ppm. The value of ho has
not been directly measured in KCN, but in other com-
pounds containing CN groups, similar values for b,o. have
been obtained: 280 ppm in HCN (Ref. 21) and 290 ppin
in K2Pt(CN)4Bro3 3H30 (Ref. 17). From the best fit
value of Gz(0), we obtain a,=3.9'. (We reported ear-
lier' that a~,=2.6' and subsequently found a numerical
error in that calculation. )

In our analysis of the ' C relaxation in KCN, we have
neglected the ' C-' C dipolar interaction. To demonstrate
the validity of this approximation, we measured T& in a
sample containing only 10 at. % ' C and found no signifi-
cant difference in Ti from the data in Fig. 2. Since
' C—'3C distances are very different in the two samples,
our data shows that the ' C-' C dipolar interaction does
not make any significant contribution to our relaxation
data.

500 I I

'3C in NaCN

&10 5 MH n 0 n
200 —O2

100

O 50
CO

20—

10—

2
3

I I I I I I I

4 5 6 7 8 9 10 11

1000/T (K ')

FIG. 4. Spin-lattice relaxation time T~ of ' C in NaCN.

B. NaCN

We measured T, for ' C in NaCN as a function of
temperature at two different fields (Fig. 4). The relaxa-
tion here is dominated by ' C- Na dipolar interactions
and is described by Eq. (18). Since the NMR frequencies
of ' C and Na are very close to each other (about 1.2
MHz when col/2m. =24 MHz, for example), the first term
in Eq. (18) should have a much larger value at its
minimum than the other two terms. Thus T& should
have a rather prominent minimum when

i
col —co+

i ~, =1,
which allows us to determine the values of ~, at the two
T& minima shown in Fig. 4.

We plot in Fig. 5 these values of ~, along with values
obtained from dielectric response ' and ITC measure-
ments. We see again that ~, obeys the Arrhenius rela-
tion of Eq. (44) with Ez ——0.284 eV and r,=9.4X 10 "s.
As in KCN, ~, is continuous through the electric ordering
phase transition, and E~ has the same value in both
phases.

Using these values, we can now fit the data to

1/Ti ——1/Ti c ~, +1/Tl, c—N+1/Tl, cs+1/Tl, other .

(47)

)Q4

NaCN

10Q

I
CO

10-4

0—8

I

10 12

1QQQ/T (K-t)
FIG. 5. Correlation time ~, of CN reorientations in NaCN.

Our NMR data (O). NMR data (~) from Ref. 10. Dielectric
response data (4 } and ITC data (D ) from Ref. 7.

Expressions for these terms are given by Eqs. (18), (23),
(37), and (46), respectively. Equation (47) for Ti in
NaCN is identical in form to Eq. (45) for Ti in KCN ex-
cept for the addition of the C—Na relaxation term. The
' C- K dipolar interaction is very weak and can be
neglected for ' C relaxation in KCN. In contrast, the
' C- Na dipolar interaction is very strong and in fact
dominates ' C relaxation in NaCN. Using the value of
b,o. determined for KCN, we allow only two adjustable
parameters [EM2 c i4, and Gii(0)t in our expressions for
Tl,c—Na~ T& c ~, and T~ c

The resulting best fit is shown by the solid lines in Fig.
4 and yields EM2C ~, ——2.5X10 s and Ga(0)=0.006.
There is a much larger uncertainty in G~ (0) here than for
KCN since the effect of small-angle reorientations are
now largely masked by the 1/T, c z, term. However,
we do obtain a value which is approximately the same as
in KCN, showing that the same small-angle reorientations
which we observed in KCN are probably also present in
NaCN with about the same amplitude.

We can calculate b,lM2C ~, from Eq. (17) assuniing
simple head-to-tail reorientations of the CN molecules
along the b axis. We neglect the small-angle reorienta-
tions which make a relatively minor contribution to
AM2 c ~,. Using this model, we obtain EM2 c
=5.0)&10 s which is twice as large as the value ob-
tained from the data. This disagreement suggests either
that this simple model used in calculating AMzc
from Eq. (17) does not completely describe our data or
that we have made a computational error. At present, we
cannot account for this disagreement.

We also measured the T, of Na in NaCN as a func-
tion of temperature (Fig. 6). The relaxation here is due to
the quadrupolar interaction of Na with fluctuating elec-
tric field gradients arising from CN reorientations. The
strong nature of this interaction gives rise to a rather
short Ti at the minimum. We see from Eq. (40) that the
T& minimum should be at coq~, -—1. Using this relation,
we obtain ~, =7&(10 s at the minimum, and we plot
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FIG. 6. Spin-lattice relaxation time T~ of Na in NaCN.

this point ln Fig. 5.
We fit the data to

I/Ti ——1/Ti g+ I/T) o,h„,
where we use, as an approximation for Eq. (40),

(48)

(49)

and treat T~ „h„as a constant. In the expression for
T& &, we have only one adjustable parameter, A~. The re-
sulting best fit is drawn as a solid line in Fig. 6. We do
not attempt to calculate A~ here.

Buchheit et al. ' also measured T~ of Na in NaCN
and found the minimum to be at 1000/T =4.4 K ' for
coq/2m=79 38 MH.z. Using coze, =l at their minimum,
we obtain ~, =2.0&10 s. This point is also plotted in
Fig. 5. They also measured T&&, the spin-lattice relaxa-
tion time in the:rotating reference frame, and found a
very shallow minimum at 1000/T=7. 5 K ', using an rf
field H ~

——2 G. From the approximate relation

ylH~ ~, = 1 at the minimum, we obtain ~, =7. 1 & 10 s,
in rough agreement with the data shown in Fig. 5. (Actu-
ally, this determination of w, is not rigorously correct in
weak rf fields at a r&z minimum. The effect of the lo-
cal field should be included, in which case a smaller value
of ~, would be obtained, in better agreement with our
data. )

V. DISCUSSION

Vfe have shown from our data in KCN that the CN
molecules reorient among directions which are very nearly
parallel to the orthorhombic b axis. However, we can see
from Fig. 3 that the observed reorientations cannot be
simple librations of the CN molecules since the mea-

sured correlation times are much too long. The correla-
tion times observed for these small reorientations are com-
parable in magnitude to those expected for the head-to-
tail reorientations. Certainly, head-to-tail reorientations

are also taking place here although they do not affect the
relaxation directly.

The observed values of ~, lead us to propose the follow-
ing model. These small-angle reorientations of any given
CN molecule are caused by the head-to-tail reorienta-
tions of nearby CN molecules. In the elastically ordered
phase, the CN molecules are disordered with respect to
head-and-tail alignment. Since the CN molecule is
slightly different with respect to head and tail, this disor-
der breaks the orthorhombic symmetry of the lattice on a
microscopic scale and distorts the lattice randomly
throughout the crystal. This distortion causes each CN
molecule to be misoriented slightly from its otherwise
equilibrium orientation along the b axis. This misorienta-
tion varies randomly from molecule to molecule such
that, over macroscopic distances, the misorientation aver-
ages to zero and the lattice has overall orthorhombic sym-
metry as detected by x-ray and neutron diffraction.

Each time a CN molecule reorients head-to-tail, the
local distortion of the lattice changes, thereby causing the
CN molecules in the vicinity to change their orientations
slightly so that they are now all misoriented in new direc-
tions. Thus, a given CN molecule Ieorients both in
small-angle steps (due to head-to-tail reorientations of
neighbors) as well as large-angle steps (180', due to its own
head-to-tail reorientations). The small-angle steps provide
the mechanism for relaxation of ' C in KCN. In contrast,
the large-angle steps are not directly observable in the ' C
relaxation even though they are responsible for the small-
angle steps of nearby CN molecules.

From this model, we see that the small-angle reorienta-
tions observed in our data are indirectly caused by head-
to tai/ reori-entations. The frequency of the small-angle
reorientations is much greater than that of the head-to-tail
reorientations since a given CN undergoes a small-angle
reorientation whenever any one of the neighboring CN 's

reorients head-to-tail. Nevertheless, the correlation time
of the small-angle reorientations is not equal to the mean
time between such reorientations since each reorientation
is very small and arises from the head-to-tail reorienta-
tions of any one of a number of neighboring CN 's. In
fact, since the head-to-tail reorientations drive the small-
angle reorientations, their correlation times must be equal.
Thus the values of r, which we obtained from our data
are identical to those for head-to-tail reorientations.

If these small-angle reorientations and resulting disor-
der are present in KCN, we would expect them to be
present in NaCN as well. However, these effects are
masked in NaCN largely by the strong ' C- Na dipolar
interactions which produce ' C relaxation via head-to-tail
CN reorientations directly and which are rather insensi-
tive to the small-angle reorientations, if present. Howev-
er, our ' C relaxation data in NaCN does allow these
small-angle reorientations to be present. In fact, we get a
slightly better fit of our calculated relaxation to the data
if we assume the presence in NaCN of small-angle
reorientations of the same amplitude as in KCN.

ACKNOW LEDGMENTS

%'e wish to thank Professor F. Liity and Professor C. P.
Slichter for very useful discussions. This work was sup-



30 MOLECULAR REORIENTATIONS IN THE ORDERED PHASES OF KCN AND NaCN. . . 4933

ported by the U.S. National Science Foundation under
Grant No. DME-76-18966 and by the U.S. Department of
Energy under Contract No. DE-AC02-67ER01198.

APPENDIX: CALCULATION OF (a„,(r ~ )cr„,(r2) )n

Consider a chemical-shift tensor o. with axial symme-
try. Let r, and r2 be the axes of symmetry for two dif-
ferent orientations of o. Calculation of the powder aver-

age of a~(r&)o~(r2) is accomplished by averaging over
all possible orientations of the coordinate axes x,y,z. To
do this, we use the transformation matrix A(8, $,$) which
reorients the coordinate axes through Eulerian angles
8,$,$. We have from Goldstein

A~ =sing sin8,

A„„= —sing cosP —cos8 sing cosg,

A„~ = —sing sing+ cos8 cosP cosP,

Az, ——cosg sin8,

A~ =sin8sing,

A~ = —sin8 cosP,

=cosO .

(A 1)

Under a reorientation 8,$,$ of the coordinate axes, the
components of o become

A~ =cos1(t cosP co—s8 sing sing,

A„~=cosg sing+ cos8 cosP sing,

o k gA; (8,$,$')o. „[A '(8,$,$)]„k .
m, n

Thus, we write .

(A2)

1(o.„,(r, ) a„,(r 2)) n—— f

deaf

dp f d8sin8+A„(8, $,$.)ak(r~)[A '(8,$,$)]k,
r, k

X gA,.(8,0,0)a.„(r-,)[A
—(8,0,4)]

m, n

(A3)

Now, since we are averaging over all possible orientations of the coordinate axes, we are free to choose the original
axes which define the components a;k(r~) and a;k(r2). Therefore, let us choose the z axis along r~ and the x and y axes
such that r2 lies in the y-z plane. Then we have

o(r )= 0 o 0

0 0 o.~

(A4)

and

a;k(r2) =gA;~ (y, 0,0)o~„(r) ) [A '(y, 0,0)]„k,
m, n

(A5)

where y is the angle between r& and r2. In Eq. (A4), o„=cr~~ because of axial symmetry. Now, using (A ')g=Ak;
and Eqs. (A4) and (A5), we finally obtain

(rl)a (~2))Q g A k(Y»0)A k(Y 0 )a"(r1)akk(rl)
i, k, m, n

X f dg f dP f d8sin8A„;(8, $,$)A (8,$,$)A„(8,$,$)A,„(8,$,$) .

The evaluation of this expression is straightforward, though tedious, and we obtain

(o~(r&)o~(r2)).n= —,', (b,o) (3cos y —1),
where hcr=cr cr, the anisotropy of —o.

(A6)

(A7)
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