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We present a first-principles method@called spherical self-consistent atomic deformation~SSCAD!# for
calculating the energy per unit cell in ionic crystalline solids. SSCAD is a density-functional method using the
local-density approximation~LDA !. Wave functions are localized about each ion, resulting in a single-particle
Schrödinger’s equation for each ion. To simplify the calculation, we spherically average the potential energy in
each of these equations. The electron density is determined from the self-consistent solution of these equations.
SSCAD scales as orderN and runs very fast, even for crystals with large unit cells. We discuss some of the
limitations of SSCAD, and we give examples of using SSCAD to determine crystalline structure, phonon
dispersion, elastic moduli, and charge transfer.@S0163-1829~96!07635-7#

I. INTRODUCTION

A major goal of first-principles calculations in solids is to
be able to accurately and quickly calculate the structure and
properties of a material given only its chemical composition.
Such calculations would be invaluable in the design of new
materials. Unfortunately, it is a difficult goal to achieve.
Generally, accurate calculations are not quick, and quick cal-
culations are not accurate. Appropriate compromises must be
found. Fortunately, in some types of materials, we can make
simplifying approximations which allow quick, efficient cal-
culations without sacrificing much accuracy.

An example of this is crystalline solids containing closed-
shell ions. Gordon and Kim1 ~GK! formulated an electron-
gas model for calculating the interaction energy in such sol-
ids. They assume the electron density to be a sum of
densities localized about each ion. They obtain the electron
density about each ion from Hartree-Fock wave functions of
the free ion and consider it to be unaffected by the interac-
tion with neighboring ions. The interaction energy is calcu-
lated using the local-density approximation~LDA !. This
simple model produces surprisingly good results in ionic sol-
ids.

A number of improvements to the GK method have been
implemented over the years~see Gordon and LeSar2 for an
excellent review!. One of the shortcomings in the GK
method is the use of free-ion electron densities. The crystal-
line environment affects these densities. Muhlhausen and
Gordon3 approximated the crystalline environment of an ion
with a spherical shell of charge~called a Watson sphere4!
centered at the ion. The charge on the sphere is chosen to be
equal in magnitude but opposite in sign to the charge of the
ion. The radius of the sphere is chosen so that the potential
inside the sphere is equal to the long-range Madelung poten-
tial of the crystal at the nucleus of the ion. The electron
density of each ion is obtained from wave functions calcu-
lated in the presence of the Watson sphere. Using these elec-
tron densities, the interaction energy is calculated the same
way as in GK, but the intra-ionic energy must now also be
included. This approach was also independently developed

by Boyer and co-workers5–7 and was called the potential
induced breathing model~PIB!.

In PIB, the crystalline environment used for obtaining
electron densities of the ions includes only the long-range
component of the interactions between ions. Self-consistent
methods in which the short-range interactions between ions
is also included in the crystalline environment have been
implemented by Edwardson8 and Cortona.9,10 This type of
method was also independently developed by Boyer and
co-workers11–13and was called the self-consistent PIB model
~SCPIB!. The total energy of the crystal is written as a func-
tional of the electron density of each of the ions. Using an
approach analogous to Kohn and Sham,14 a single-particle
Schrödinger-like equation is obtained for the wave functions
of each ion.~We call this the ‘‘Kohn-Sham-like’’ or KSL
equation.! The solution of that equation results in an electron
density for that ion which minimizes the total energy of the
crystal with respect to the electron density function for that
ion. This is repeated for each ion, one at a time, thus mini-
mizing the energy with respect to the total electron density
function in the crystal. The potential in the KSL equation for
each ion depends on the electron density function of every
ion, and thus the density functions must be determined self-
consistently by iteration. More recently, this model has been
called the self-consistent atomic deformation model~SCAD!.
Thus far, this model has only been implemented for the case
where the electron densities are constrained to be spherically
symmetric about each ion~the spherical SCAD model, or
SSCAD!.

Recently15 SSCAD was successfully used in the
first-principles calculation of the solubility limits of
Mg xCa12xO. The results agreed quite well with experimen-
tal data.

Note that atomic units are used throughout this paper:
\5e5m51, where e and m are the magnitude of the
charge and the mass of the electron, respectively. Units of
distance are bohr, and units of energy are hartree.

II. METHOD

We assume that electron densities are localized about
each ion and that the total electron density is simply the sum
of the ionic densities:
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r~r !5(
i

r i~r i !, ~1!

wherer i is the distance fromr to the nucleus of thei th ion
andr i(r i) is the electron density localized at thei th ion and
is spherically symmetric about the nucleus of that ion. The
total energy of the crystal is written as a functional of the
density and is the sum of the kinetic energy, the electrostatic
energy, and the exchange-correlation energy.

We use LDA for the exchange-correlation energy,

Exc5E d3rrexc~r!, ~2!

whereexc(r) is the exchange-correlation energy per electron
in a gas of interacting electrons with uniform densityr. We
use the expression of Hedin and Lundqvist16 for exc(r). We
also use LDA for the extra contribution to kinetic energy due
to overlap of ionic densities:

Ek5E d3r Frek~r!2(
i

r iek~r i !G , ~3!

where ek(r)5
3
10 (3p2r)2/3 is the Fermi-Thomas energy,

i.e., the kinetic energy per electron in a gas of interacting
electrons with uniform densityr. The energies in Eqs.~2!
and ~3! arise from many-body interactions, i.e., the expres-
sions cannot be separated into terms that involve only pairs
of ions. We can greatly increase the efficiency of SSCAD by
using the ‘‘pair approximation,’’ as in GK, where the many-
body interactions are approximated by interactions between
pairs of ions. As we will see, however, this approximation
can lead to poor results when considering the transfer of
charge between ions.

Writing the total energy as a functional of the electron
density, we obtain from density-functional theory a result
analogous to that of Kohn and Sham.14 We obtain for each
ion a one-particle Schro¨dinger-like equation~the KSL equa-
tion!,

2 1
2 ¹2c~r !1V̄i~r i !c~r !5Ec~r !, ~4!

whereV̄i(r i) is the KSL potential spherically averaged about
the nucleus of thei th ion. Using a spherically symmetric
potential, we obtain wave functions of the form,

c inlm~r !5Rinl~r i !Ylm~u i ,f i !, ~5!

wheren,l ,m are atomic quantum numbers andYlm(u i ,f i) is
the spherical harmonic function. The electron density of the
i th ion is given by

r i~r i !5
1

4p(
nl

NinlRinl
2 ~r i !, ~6!

whereNinl is the number of electrons in the states labeled by
n and l . ~These electrons are distributed evenly among the
states labeled by different values ofm.!

The KSL potentialV̄i(r i) for each ion is a function of the
total electron densityr(r ) which, in turn, can be calculated
only after solving Eq.~4! for each ion. We therefore begin
with electron densities of isolated ions and then solve for
r(r ) self-consistently by iteration. For most rapid conver-

gence, we mix the densities calculated in each iteration with
the densities used in that iteration.~We generally mix
40% of the new density with 60% of the old density.! We
then use these mixed densities to calculate the KSL poten-
tials in the next iteration. Details about the calculation
of V̄i(r i) are given in the Appendix.

In the PIB model, the interionic contribution to the KSL
potential is replaced by the electrostatic potential of the Wat-
son sphere. However, the total energy in PIB is calculated
exactly as in SSCAD.

Using a spherically symmetric KSL potential, the solu-
tions to the KSL equation in Eq.~4! have the form of Eq.~5!
so that the KSL equation actually becomes an ordinary dif-
ferential equation forRinl(r i) ~the ‘‘radial Schro¨dinger equa-
tion’’ !. We have implemented two different methods for
solving that equation. In the first method, we numerically
solve the differential equation@numerical solution~NS!
method#. In the second method, we use a set of basis func-
tions, calculate matrix elements of the KSL equation, and
then diagonalize the matrix@basis functions~BF! method#. In
NS, the solution is exact, whereas in BF, the solution is
confined to linear combinations of the basis functions used.
On the other hand, the calculations in BF require much less
time.

In BF, we use as basis functions the Slater basis-set ex-
pansions of the Roothaan-Hartree-Fock atomic wave func-
tions compiled by Clementi and Roetti17 ~He-Xe! and by
McLean and McLean18 ~Cs-U!. We have found these basis
functions to be very flexible. When we solve the KSL equa-
tions for the atomic wave functions of ions in a crystal, we
obtain nearly identical results using NS and BF. We have not
found any case where it made any significant difference us-
ing NS or BF.

III. APPLICATIONS

We now briefly discuss some applications of SSCAD, in-
cluding some comparisons with PIB and GK.

A. Crystalline structure

In Fig. 1, we show the energy per unit cell of MgO as a
function of the lattice parametera. Each data point in the
figure was calculated using SSCAD. The solid line is simply
drawn through the points to guide the eye. The calculation of
each data point required about 12 s on a Hewlett Packard
workstation~HP 9000!. Each calculation involved 32 itera-
tions to solve for the density self-consistently from the KSL
equations~starting with wave functions of neutral atoms!.
SSCAD is fast and precise. We see very little evidence for
any digital noise. Note that these calculations are ‘‘order
N,’’ i.e., the time required scales approximately linearly with
the number of atoms in the unit cell. This allows calculations
in crystals with very large unit cells.~Actually, the calcula-
tion of the Madelung potential is orderN2, but this part of
the calculation is only done once and usually takes only a
small fraction of the time required for the total calculation.!

From the position of the minimum energy in the figure,
we see that SSCAD predicts the lattice parameter of MgO to
be about 7.93 bohr. This is very close to the experimentally
determined value~7.97 bohr!. This agreement in MgO is
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partly accidental, since calculations using LDA are known to
usually give results that are too small by about 1–2%.

We would expect SSCAD to do well in ionic solids, es-
pecially when the ions have closed shells, as in MgO. We
would also expect SSCAD to not do well when highly cova-
lent bonds are present.

B. Phonon spectra

Phonon spectra can be obtained from first-principles cal-
culations of frozen-phonon energies. The frequencies for the
longitudinal optical~LO! branch calculated with PIB diverge
as the wave vector approaches zero.7 This singular behavior
can be removed in PIB either by introducing a screening
parameter7 or by minimizing the energy with respect to the
Watson sphere radii.19 SSCAD does not exhibit this
problem.12 Determining densities and potentials self-
consistently removes this difficulty.

In Fig. 2, we show the phonon spectra calculated for MgO
along theD line from G to X in the first Brillouin zone. We
calculated the frequencies for frozen phonons at 17 equally
spaced values of the wave vectorq. We used three methods
in the calculations:~1! SSCAD,~2! PIB, and~3! GK ~using
electron densities from SSCAD for the equilibrium struc-
ture!. In this last method, the electron densities are held rigid.
All calculations are plotted as solid dots in the figure.

All three methods give nearly identical results for the
transverse branches. The dots and lines for these branches
are drawn on top of each other in the figure and cannot be
distinguished from each other. In the longitudinal acoustic
~LA ! branch, SSCAD and PIB give nearly identical results,
whereas the GK method gives frequencies which are slightly
higher.

In the LO branch, SSCAD and GK give nearly identical
results, whereas PIB diverges asq approaches zero. The LO
frequency atq50 was determined by adding the amount of
frequency enhancement expected for a rigid-ion system with
charges 2 and 22, in this case 660 cm21. The LO branch
obtained from SSCAD evidently is approaching this value at
q50.

The open circles and triangles in the figure show experi-
mental points of Sangsteret al.,20 determined by inelastic
neutron scattering. We see that the calculations in the LO
branch give frequencies which are much too high. The LO
enhancement is severely overestimated by the calculations,
and SSCAD does not show any improvement over GK. In
the other branches, the calculations consistently give fre-
quencies which are 10–20% too high. Overall, SSCAD does
not significantly improve the agreement with experimental
data compared to GK.

C. Elastic moduli

The elastic moduli can be calculated from the velocities
of sound in a crystal.21 The velocities can be obtained from
the phonon spectra nearq50. In MgO, we calculated the
velocities of transverse and longitudinal long-wavelength
phonons for three different wave vectors:q5(p/8a,0,0),
(p/8a,p/8a,0), and (p/16a,p/16a,p/16a). ~These corre-
spond to wavelengths between 60 and 100 Å.! This resulted
in seven different velocities. In cubic crystals, all velocities
can be written in terms of three elastic moduli:C11, C12,
andC44. This gives us seven equations and three unknowns.
We found the best values of the elastic moduli using a least
squares fit. We repeated this calculation using SSCAD, PIB,
and GK. For both SSCAD and GK, the fit was excellent. The
fit was about ten times worse for PIB.

The results are shown in Table I, along with experimental
values from Jackson and Niesler.22 The agreement with ex-
perimental values improves significantly as we move across
the table from GK to PIB to SSCAD. Note that GK obeys the
Cauchy equality (C125C44 for cubic crystals! as expected
for models based on two-body central forces.

We also calculated the elastic moduli using the full Kohn-
Sham theory14 within LDA, by means of the full-potential

FIG. 1. EnergyE per unit cell in MgO as a function of the
lattice parametera. Each data point represents a calculation made
with SSCAD.

FIG. 2. Phonon spectra calculated for MgO with SSCAD, PIB,
and GK~using the ionic densities from SSCAD for the equilibrium
structure!. Each calculation is plotted as a solid dot. Open circles
~transverse modes! and triangles~longitudinal modes! are experi-
mental data from Sangsteret al. ~Ref. 20! ~inelastic neutron scat-
tering!.
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linearized augmented plane wave~LAPW! method using fi-
nite strains.23 This method applies the Kohn-Sham theory
with no approximations other than the local-density approxi-
mation. The results are shown in the table.

D. Charge transfer

Some materials are best modeled with fractional charges
on the ions. As an example, we consider BaTiO3. The
charges of the closed-shell ions are Ba21, Ti 41, and O22.
When we solve the KSL equation~4! in SSCAD ~using the
experimentally determined lattice parametera57.6 bohr at
room temperature!, we find that the KSL energy~the eigen-
values of the KSL equation! is lower for the empty Ti 3d
orbitals than for the full O 2p orbitals. This means that we
can lower the total energy of the crystal by transferring some
charge from the O to the Ti ions. As we transfer charge, the
KSL energy of the Ti 3d orbitals increases until the KSL
energy of the Ti 3d orbitals is equal to that of the O 2p
orbitals. This happens when the Ti 3d orbitals contain about
0.24 electron and the O 2p orbitals in each oxygen ion con-
tain about 5.92 electrons. If we transfer additional charge, the
KSL energy of the Ti 3d orbitals rises above that of the
O 2p orbitals, now causing the total energy to increase in-
stead of decrease. The KSL energies for these orbitals are
shown in Fig. 3. The total energy per unit cell is shown in
Fig. 4. The minimum energy occurs exactly at the point
where the two levels cross in Fig. 3.

This result is in agreement with Janak’s theorem,24 which
Cortona9 proved to apply to the present case. Thej th eigen-
valueEi j

KSL of the KSL equation for thei th ion is related to
the total energyE per unit cell by

Ei j
KSL5]E/]Ni j , ~7!

whereNi j is the number of electrons occupying the orbitals
corresponding to that eigenvalue. Applying this equation to
Figs. 3 and 4, we obtain

E5E ~ETi 3d
KSL 2EO 2p

KSL !dQ, ~8!

whereDQ is the amount of charge transferred from the O to
the Ti ions. The result of this integral, using the data in Fig.
3, is shown as a solid line in Fig. 4. The constant of integra-
tion was chosen to match the energy at the minimum. The
excellent agreement between the data points calculated di-
rectly with SSCAD and the solid line calculated from the
KSL energies demonstrates the validity of Janak’s theorem
in this case.

Boyer and Mehl11 made a similar calculation but found
that the energy minimum did not occur where the eigenval-
ues cross. At the time, they thought that this occurred be-
cause SSCAD is only approximately variational. Actually,
SSCAD is in principle exactly variational.13 Their results
were probably due to approximations in calculating the KSL
potential.~1! They used a ‘‘cutoff’’ form for the short-range
overlap potential, and~2! they calculated the KSL potential

TABLE I. Elastic constants in MgO calculated with GK~using
the ionic densities from SSCAD for the equilibrium structure!, PIB,
SSCAD, and LAPW. Experimental values are shown for compari-
son. Units are GPa.

GK PIB SSCAD LAPW Expt.a

C11 393 355 318 285 297
C12 198 132 123 84 95
C44 201 195 201 150 156

aExperimental data from Jackson and Niesler~Ref. 22!.

FIG. 3. Kohn-Sham-like energy levelsEKSL of the O 2p orbitals
and the Ti 3d orbitals in BaTiO3 as a function of charge transfer
DQ from the O 2p orbitals to the Ti 3d orbitals. The data points
represent calculations using SSCAD. The lines are simply straight
lines drawn through the data points.

FIG. 4. Total energyE per unit cell of BaTiO3 as a function of
charge transferDQ from the O 2p orbitals to the Ti 3d orbitals.
The data points represent calculations using SSCAD. The solid line
is obtained from the integration of the difference of the two Kohn-
Sham-like energy levels in Fig. 3.
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from a spherically averaged density rather than spherically
averaging the KSL potential due to the true density.
~Cortona9 makes this same second approximation and
claims that it makes no real difference.! Then they calculated
the total energy without using these approximations. This is
where the problem lies. The KSL potential and the total en-
ergy must be calculated using thesameapproximations. The
current version of SSCAD calculates the KSL potential and
the total energy using thesameapproximations~see Appen-
dix!. Thus, the densities obtained from the self-consistent
solutions of the KSL equations in SSCAD exactly minimize
the energy calculated by SSCAD, as demonstrated in Figs.
3 and 4.

A particular problem arises with the pair approximation
when pairs of ions that are quite far apart are included in the
calculations. The pair approximation works best near the
ions where the electron density is greatest. The greatest error
introduced by the pair approximation occurs between the at-
oms, where three or more ions make major contributions to
the total electron density. This error becomes especially large
when the contributions from ions very far away are included.

In Fig. 5 we show the relative energy per unit cell in
MgO as a function of charge transferDQ from the filled
O22 2p orbitals to the empty Mg21 3s orbital. Calculations
of the potential about each ion included contributions from
hundreds of neighboring ions. The data connected with solid
lines were calculated using the pair approximation. The data
represented by open circles were calculated using PIB, and
the data represented by filled circles were calculated using
SSCAD. PIB predicts a charge transfer of about 0.08, and
SSCAD predicts a charge transfer of about 0.01. We would
expect Mg21O22 to be very stable against charge transfer,
so something is obviously wrong with these calculations.
The Mg 3s orbital has a long tail which increases the overlap
of densities between ions. This problem is not as bad in
SSCAD since the increase in the kinetic energy part of the
KSL potential due to overlap of densities between ions tends
to shorten the length of this tail.

The data connected with dashed lines in the figure were
calculated with the correction due to many-body interactions
included. As can be seen, both SSCAD and PIB give similar
results and predict the expected stability of Mg21O22

against charge transfer. In PIB, the correction is only made in
the energy calculation. The density calculation is not af-
fected. The Mg 3s orbital still has the same long tail. In
SSCAD, the correction is also included in the calculation of
the KSL potential so that the long tails are inhibited. Appar-
ently, when many-body interactions are included in the en-
ergy calculation, the presence of long tails in the ion densi-
ties does not significantly lower or raise the total energy.

In Fig. 6 we show how the numberN of neighbors affects
the calculations. We plot the differenceDE between the KSL
energy of the Mg 3s orbital and the KSL energy of the O
2p orbitals. In this calculation, the Mg 3s orbital is empty
and the O 2p orbitals are full. WhenDE is negative, the
KSL energy of Mg 3s orbital is lower than that of the O
2p orbitals, and we can lower the total energy of the crystal
by transferring charge from the O to the Mg ions. The solid
line connects data which were calculated using the pair ap-
proximation. The dashed line connects data which were cal-
culated with the correction due to many-body interactions

included. We see that when 56 or more neighbors are in-
cluded in the calculation, the pair approximation predicts
charge transfer. On the other hand, when we include many-
body interactions, the difference in energy is relatively insen-
sitive to the number of neighbors and predicts the expected
stability of MgO against charge transfer.

So far in our experience, we have found that the correc-
tion for many-body interactions does not significantly affect
calculations where onlypositionsof ions are varied, such as
the determination of crystalline structure and phonon spectra.
Thus far, it appears that we only need to include many-body
interactions when we are considering charge transfer be-
tween ions.

FIG. 5. Relative energyDE per unit cell of MgO as a function
of charge transferDQ from the O 2p orbitals to the Mg 3s orbital.
The open circles represent calculations made with PIB, and the
filled circles represent calculations made with SSCAD. The data
connected with solid lines use the pair approximation, and the data
connected with dash lines use the correction due to many-body
interactions.

FIG. 6. DifferenceDE between the Kohn-Sham-like energy lev-
els of the Mg 3s and O 2p orbitals in MgO as a function of the
numberN of neighboring ions included in the calculation. In these
calculations, the Mg 3s orbitals are empty, and the O 2p orbitals
are full. The data connected with solid lines use the pair approxi-
mation, and the data connected with dash lines use the correction
due to many-body interactions.

54 7733SPHERICAL SELF-CONSISTENT ATOMIC . . .



ACKNOWLEDGMENTS

This work was supported by the Office of Naval Re-
search. We thank Dr. Mark Pederson, Dr. R. Steven Turley,
and Dr. David D. Allred for useful discussions.

APPENDIX: KSL POTENTIAL

We give here details of how we construct the Kohn-
Sham-like ~KSL! potential used in SSCAD. We write the
total energy of the crystal as a functional of the electron
density:

E5(
i
Ti1

1

2(i j
iÞ j

ZiZj

ur0i2r0 j u
2(

i
E d3r

Zir~r !

ur2r0i u

1
1

2E d3r E d3r 8
r~r !r~r 8!

ur2r 8u
1E d3rr~r !exc@r~r !#

1(
i
E d3rr i~r !$ek@r~r !#2ek@r i~r !#%, ~A1!

whereTi is the kinetic energy of thei th ion,Zi is the charge
of the i th nucleus, andr0i is the position of thei th nucleus.
The last term is the correction to the kinetic energy due to
overlap of ionic densities. We use the expression of Hedin
and Lundqvist16 for the exchange-correlation energy per
electron in a gas of interacting electrons with uniform den-
sity:

exc52 3
4 ~3r/p!1/32 1

2C@~11z23!ln~11z!

2z221 1
2 z

212 1
3 #, ~A2!

where

z215AS 34pr D 1/3, ~A3!

andA521 andC50.045. For small values ofr ~less than
10210 when using 8-byte real numbers!, Eq. ~10! is more
accurately evaluated using an expansion in powers ofz:

exc52 3
4 ~3r/p!1/32C~ 3

4 z2 3
10 z

21 1
6 z

32 3
28 z

41 3
40 z

5!.
~A4!

The kinetic energy per electron in a gas of interacting elec-
trons with uniform density~Thomas-Fermi energy! is given
by

ek5
3
10 ~3p2r!2/3. ~A5!

From density-functional theory, we obtain a result analo-
gous to that of Kohn and Sham.14We obtain for each ion the
one-particle Schro¨dinger-like equation given in Eq.~4!,
where the KSL potentialV̄i(r i) is the spherical average of

Vi~r !52(
j

Zj

ur2r0 j u
1(

j
E d3r 8

r j~r 8!

ur2r 8u
1Vxc@r~r !#

1Vk@r~r !#2Vk@r i~r !#, ~A6!

where

Vxc~r!5
d

dr
@rexc~r!#52~3r/p!1/32Cln~11Ar1/3!

~A7!

and

Vk~r!5
d

dr
@rek~r!#5

1

2
~3p2r!2/3. ~A8!

We divide the KSL potential into intraionic and interionic
contributions:

V̄i~r i !5Vi
intra~r i !1V̄i

inter~r i !. ~A9!

The intraionic contribution consists of a long-range electro-
static potential, a short-range electrostatic potential, and an
exchange-correlation KSL potential:

Vi
intra~r i !52

Zi2Ni

r i
1VH,i~r i !1Vxc~r i !, ~A10!

whereNi is the number of electrons in thei th ion. The short-
range electrostatic potential~the short-range Hartree poten-
tial! is given by

VH,i~r i !52
Ni

r i
1E d3r 8

r i~r i8!

ur2r 8u
. ~A11!

This potential goes to zero outside the ionic electron cloud.
Evaluating this equation, we obtain

VH,i~r i !54pE
r i

`

r i~r i8!r i8dri82
4p

r i
E
r i

`

r i~r i8!~r i8!2dri8.

~A12!

The interionic contribution to the KSL potential consists of a
long-range electrostatic potential, a short-range electrostatic
potential, the exchange-correlation KSL potential due to
overlap with neighboring ions, and a contribution from ki-
netic energy due to overlap with neighboring ions:

V̄i
inter~r i !5V̄M ,i~r i !1(

j
jÞ i

V̄H, j~r i !1V̄xc
overlap~r i !

1V̄k
overlap~r i !. ~A13!

The bars over the functions denote a spherical average
aboutr0i which is the origin of the coordinate system we are
using.

The long-range electrostatic potential is the Madelung po-
tential,

VM ,i~r !52(
j

jÞ i

Zj2Nj

ur2r0 j u
. ~A14!

Its spherical average aboutr0i is given by

V̄M ,i~r i !5VM ,i~0!1 (
j

jÞ i
r i.di j

~Zj2Nj !S 1di j 2
1

r i
D , ~A15!
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wheredi j is the distance between the nuclei of thei th and
j th ions andVM ,i(0) is the Madelung potential at the nucleus
of the i th ion and is evaluated using the Ewald method.25

The short-range electrostatic potential is the short-range
Hartree potential due to the the electron cloud of thej th ion.
The form is the same as Eq.~20!, except that now the result
is spherically symmetric aboutr0 j :

VH, j~r j !54pE
r j

`

r j~r j8!r j8dr j82
4p

r j
E
r j

`

r j~r j8!~r j8!2dr j8.

~A16!

We spherically average this potential aboutr0i , using a
method from Lowdin:26

V̄H, j~r i !5
1

2r idi j
E

ur i2di j u

r i1di j
VH, j~r j !r jdr j . ~A17!

The exchange-correlation KSL potential due to overlap
with neighboring ions is divided into two parts:

Vxc
overlap~r !5(

j
jÞ i

Vxc
pair~r i ,r j !1Vxc

many-body~r !. ~A18!

The first term is due to overlap betweenpairs of ions, and
the second term is the correction due to many-body interac-
tions. As we will see below, the first term can be spherically
averaged with integrations over a single variable. The second
term must be spherically averaged with an integration over
two variables on the surface of a sphere. With the contribu-
tion due to pair interactions removed, this term is slowly
varying in r , allowing us to do the integration with sufficient
accuracy. The KSL potential due to overlap between a single
pair of ions is given by

Vxc
pair~r i ,r j !5Vxc~r i1r j !2Vxc~r i !. ~A19!

This potential has a sharp peak atr0 j and is difficult to
spherically average aboutr0i . We overcome this difficulty
by dividing the potential into two parts:

Vxc
pair~r i ,r j !5@Vxc~r j !#1@Vxc~r i1r j !2Vxc~r i !2Vxc~r j !#.

~A20!
The first part is spherically symmetric aboutr0 j and can be
spherically averaged aboutr0i using the method of Lowdin,
as in Eq.~25!. The second part has the peak atr0 j removed.
We obtain

V̄xc
pair~r i ,r j !5

1

2r idi j
E

ur i2di j u

r i1di j
Vxc~r j !r jdr j

1
1

2E21

1

dx@Vxc~r i1r j !2Vxc~r i !2Vxc~r j !#,

~A21!

where x is the cosine of the angle betweenr0 j2r0i and
r2r0i . The variablex is hidden in the argument ofr j which
is r j5(r i

21di j
222r idi j x)

1/2. The correction due to many-
body interactions is given by

V̄xc
many-body~r i !5

1

4pE dV iH Vxc~r!2Vxc~r i !

2(
j

jÞ i

@Vxc~r i1r j !2Vxc~r i !#J , ~A22!

where the integration is a spherical average centered at the
i th ion. This two-dimensional integration requires a large
fraction of the total time required to calculate the KSL po-
tential. In the ‘‘pair approximation’’ used in GK, this term is
omitted.

The contribution to the KSL potential from kinetic energy
due to overlap with thej th ion is given by the same expres-
sions as Eqs.~A18!–~A22!, changing the subscripts xc to
k.

After obtaining the electron wave functions and densities
self-consistently, we can easily calculate the total energy:

E5(
i
Ti1EM1(

i
E d3rr i Ēi~r i !. ~A23!

The first term is the intraionic kinetic energy:

Ti52
1

2(n,l NinlE d3rc inlm~r !¹2c inlm~r !. ~A24!

The second term is the total Madelung energy due to point
charges at the ions:

EM5
1

2(i , j
~Zi2Ni !~Zj2Nj !

di j
. ~A25!

In the third term, the potentialĒi(r i) is the same as the KSL
potentialV̄i(r i) for the i th ion with the following changes:

Vxc→exc , Vk→ek , VH,i→ 1
2 VH,i , and

V̄M ,i~r i !→ (
j

jÞ i
r i.di j

S Zj2
1

2
Nj D S 1di j 2

1

r i
D . ~A26!

The factor 1
2 in the above changes compensates for the

double counting which results wheni and j are interchanged.
In the PIB model, the interionic contribution to the KSL

potential is simply given by

V̄i
inter~r i !5H VM ,i~0!, r i,r w

~r w /r i !VM ,i~0!, r i.r w ,
~A27!

wherer w is the radius of the Watson sphere, given by

r w5
Zi2Ni

VM ,i~0!
. ~A28!

The total energy is calculated in PIB exactly the same as in
SSCAD.
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