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We present a first-principles methddalled spherical self-consistent atomic deformati®@CAD)] for
calculating the energy per unit cell in ionic crystalline solids. SSCAD is a density-functional method using the
local-density approximatiofLDA). Wave functions are localized about each ion, resulting in a single-particle
Schralinger’s equation for each ion. To simplify the calculation, we spherically average the potential energy in
each of these equations. The electron density is determined from the self-consistent solution of these equations.
SSCAD scales as ord& and runs very fast, even for crystals with large unit cells. We discuss some of the
limitations of SSCAD, and we give examples of using SSCAD to determine crystalline structure, phonon
dispersion, elastic moduli, and charge transf80163-18206)07635-7

. INTRODUCTION by Boyer and co-workers’ and was called the potential
induced breathing modé€PIB).
A major goal of first-principles calculations in solids isto ~ In PIB, the crystalline environment used for obtaining
be able to accurately and quickly calculate the structure anlectron densities of the ions includes only the long-range
properties of a material given only its chemical composition.component of the interactions between ions. Self-consistent

Such calculations would be invaluable in the design of new"€thods in which the short-range interactions between ions
. o ep: . Is also included in the crystalline environment have been
materials. Unfortunately, it is a difficult goal to achieve.

. . ) implemented by Edwardsbrand Corton&:*° This type of
Generally, accurate calculations are not quick, and quick caly,athod was also independently developed by Boyer and

culations are not accurate. Appropriate compromises must Rgy-workers!~**and was called the self-consistent PIB model
found. Fortunately, in some types of materials, we can makeSCPIB. The total energy of the crystal is written as a func-
simplifying approximations which allow quick, efficient cal- tional of the electron density of each of the ions. Using an
culations without sacrificing much accuracy. approach analogous to Kohn and Sh4na, single-particle
An example of this is crystalline solids containing closed-Schralinger-like equation is obtained for the wave functions
shell ions. Gordon and Kim(GK) formulated an electron- 0f each ion.(We call this the “Kohn-Sham-like” or KSL
gas model for calculating the interaction energy in such sol€duation} The solution of that equation results in an electron
ids. They assume the electron density to be a sum gfensity for that ion which minimizes the total energy of the
densities localized about each ion. They obtain the electroffYStal With respect to the electron density function for that
: : . on. This is repeated for each ion, one at a time, thus mini-
density about each ion from Hartree-Fock wave functions o

he free i : . ff he i izing the energy with respect to the total electron density
the free ion and consider it to be unaffected by the interactncion in the crystal. The potential in the KSL equation for

tion with neighboring ions. The interaction energy is calcu-g5ch ion depends on the electron density function of every
lated using the local-density approximati¢hDA). This  jon, and thus the density functions must be determined self-
simple model produces surprisingly good results in ionic sol-consistently by iteration. More recently, this model has been
ids. called the self-consistent atomic deformation mg&<AD).

A number of improvements to the GK method have beenThus far, this model has only been implemented for the case
implemented over the yeatsee Gordon and LeSafor an  Where the electron densities are constrained to be spherically
excellent review. One of the shortcomings in the GK Symmetric about each iofthe spherical SCAD model, or
method is the use of free-ion electron densities. The crystaSSCAD. . .
line environment affects these densities. Muhlhausen and Recently® SSCAD was successfully used in the
Gordor? approximated the crystalline environment of an ion first-principles calculation of the solubility limits  of
with a spherical shell of chargealled a Watson sphebe Mg,Ca,;_,O. The results agreed quite well with experimen-
centered at the ion. The charge on the sphere is chosen to H’E data. . . . )
equal in magnitude but opposite in sign to the charge of th Note that atomic units are used throughqut this paper:
ion. The radius of the sphere is chosen so that the potentiZfe:mzl’ wheree and m are the magnitude of the
inside the sphere is equal to the long-range Madelung poter?—_ arge and the mass of t_he electron, respectively. Units of
tial of the crystal at the nucleus of the ion. The electrondIStance are bohr, and units of energy are hartree.
density of each ion is obtained from wave functions calcu-
lated in the presence of the Watson sphere. Using these elec-
tron densities, the interaction energy is calculated the same We assume that electron densities are localized about
way as in GK, but the intra-ionic energy must now also beeach ion and that the total electron density is simply the sum
included. This approach was also independently developedf the ionic densities:

IIl. METHOD
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gence, we mix the densities calculated in each iteration with
p(=2 pi(r), (1) the densities used in that iteratiofWe generally mix
' 40% of the new density with 60% of the old densjitWe
wherer; is the distance from to the nucleus of théth ion  then use these mixed densities to calculate the KSL poten-
andp;(r;) is the electron density localized at thth ion and  tials in the next iteration. Details about the calculation
is spherically symmetric about the nucleus of that ion. Theof V(r;) are given in the Appendix.
total energy of the crystal is written as a functional of the |n the PIB model, the interionic contribution to the KSL
density and is the sum of the kinetic energy, the electrostatipotential is replaced by the electrostatic potential of the Wat-

energy, and the exchange-correlation energy. son sphere. However, the total energy in PIB is calculated
We use LDA for the exchange-correlation energy, exactly as in SSCAD.
Using a spherically symmetric KSL potential, the solu-
Exc=J d3rpelp), 2) tions to the KSL equatl_on in Eq4) have the form of E_q(5) _
so that the KSL equation actually becomes an ordinary dif-

in a gas of interacting electrons with uniform densityWe tion”). We have implemented two different methods for

to overlap of ionic densities: method. In the second method, we use a set of basis func-
PGK(P)—Ei Pifk(Pi)}, (3) NS, the solution is exact, whereas in BF, the solution is

i.e., the kinetic energy per electron in a gas of interactingime.

sions cannot be separated into terms that involve only pairions compiled by Clementi and Roéfti(He-Xe) and by

body interactions are approximated by interactions betweeHons for the atomic wave functions of ions in a crystal, we

charge between ions. ing NS or BF.

analogous to that of Kohn and Shafwe obtain for each lll. APPLICATIONS

wheree,(p) is the exchange-correlation energy per electrorferential equation foRiy (r;) (the “radial Schralinger equa-
use the expression of Hedin and Lundgtfigor €,(p). We solving that equation. In the first method, we numerically
also use LDA for the extra contribution to kinetic energy dueSOlve the differential equatioinumerical solution(NS)
tions, calculate matrix elements of the KSL equation, and
E J' P then diagonalize the matr[basis function$BF) method. In
k= r
confined to linear combinations of the basis functions used.
where € (p)= & (372p)?? is the Fermi-Thomas energy, On the other hand, the calculations in BF require much less
electrons with uniform densitp. The energies in Eqg2) In BF, we use as basis functions the Slater basis-set ex-
and (3) arise from many-body interactions, i.e., the expres-Pansions of the Roothaan-Hartree-Fock atomic wave func-
of ions. We can greatly increase the efficiency of SSCAD byMcLean and McLeat? (Cs-U. We have found these basis
pairs of ions. As we will see, however, this approximationobtain nearly identical results using NS and BF. We have not
can lead to poor results when considering the transfer ofound any case where it made any significant difference us-
Writing the total energy as a functional of the electron
density, we obtain from density-functional theory a result
ion a one-particle Schdinger-like equatiorithe KSL equa- We now briefly discuss some applications of SSCAD, in-
tion), cluding some comparisons with PIB and GK.

_1y2 Vi(r =
2 VAP +Vi(r) e(r) =Ey(r), ) A. Crystalline structure

whereV;(r;) is the KSL potential spherically averaged about |, Fig. 1, we show the energy per unit cell of MgO as a
the nucleus of theth ion. Using a spherically symmetric fynction of the lattice parameter. Each data point in the
potential, we obtain wave functions of the form, figure was calculated using SSCAD. The solid line is simply
_ drawn through the points to guide the eye. The calculation of
Yinim(F) = Rini (1) Yim( 61, 1), ®  each data point required about 12 s on a Hewlett Packard
wheren,|,m are atomic quantum numbers a¥ig,,(6;,¢;) is  workstation(HP 9000. Each calculation involved 32 itera-
the spherical harmonic function. The electron density of thdions to solve for the density self-consistently from the KSL
ith ion is given by equations(starting with wave functions of neutral atoms
SSCAD is fast and precise. We see very little evidence for
1 any digital noise. Note that these calculations are “order
pi(ri)= E% Nini R (i), (6) N,” i.e., the time required scales approximately linearly with
the number of atoms in the unit cell. This allows calculations
whereN;,| is the number of electrons in the states labeled byin crystals with very large unit cell§Actually, the calcula-

n andl. (These electrons are distributed evenly among thejon of the Madelung potential is ord@&?, but this part of
states labeled by different values of) the calculation is only done once and usually takes only a
The KSL potentialV;(r;) for each ion is a function of the small fraction of the time required for the total calculatjon.
total electron density(r) which, in turn, can be calculated From the position of the minimum energy in the figure,
only after solving Eq(4) for each ion. We therefore begin we see that SSCAD predicts the lattice parameter of MgO to
with electron densities of isolated ions and then solve fobe about 7.93 bohr. This is very close to the experimentally

p(r) self-consistently by iteration. For most rapid conver-determined valug7.97 bohj. This agreement in MgO is
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FIG. 1. EnergyE per unit cell in MgO as a function of the 0
lattice parametea. Each data point represents a calculation made T (0,0,0) X (27/a,0,0)
with SSCAD. q

. . . . FIG. 2. Phonon spectra calculated for MgO with SSCAD, PIB,
partly accidental, since calculations using LDA are known to,

. 0 and GK (using the ionic densities from SSCAD for the equilibrium
usually give results that are too small by about 1-2%. structurg. Each calculation is plotted as a solid dot. Open circles

We would expect SSCAD to do well in ionic solids, es- (yansverse modgsand triangles(longitudinal modesare experi-

pecially when the ions have closed shells, as ir_] MgO. Wenental data from Sangstet al. (Ref. 20 (inelastic neutron scat-
would also expect SSCAD to not do well when highly cova-tering).

lent bonds are present.
The open circles and triangles in the figure show experi-
mental points of Sangstest al,?° determined by inelastic
B. Phonon spectra neutron scattering. We see that the calculations in the LO
branch give frequencies which are much too high. The LO
gnhancement is severely overestimated by the calculations,
and SSCAD does not show any improvement over GK. In
the other branches, the calculations consistently give fre-
can be removed in PIB either by introducing a screenin uencies which are 10-209% too high. Overall, SSCAD does

parameter or by minimizing the energy with respect to the ot significantly improve the agreement with experimental
Watson sphere radi? SSCAD does not exhibit this data compared to GK.

problem!? Determining densities and potentials self-
consistently removes this difficulty.

In Fig. 2, we show the phonon spectra calculated for MgO The elastic moduli can be calculated from the velocities
along theA line from T to X in the first Brillouin zone. We  of sound in a crystal! The velocities can be obtained from
calculated the frequencies for frozen phonons at 17 equallthe phonon spectra neg=0. In MgO, we calculated the
spaced values of the wave vectprWe used three methods velocities of transverse and longitudinal long-wavelength
in the calculations(1) SSCAD, (2) PIB, and(3) GK (using  phonons for three different wave vectorg=(7/8a,0,0),
electron densities from SSCAD for the equilibrium struc- (#/8a,7/8a,0), and (r/16a,w/16a,7/16a). (These corre-
ture). In this last method, the electron densities are held rigidspond to wavelengths between 60 and 10D Tis resulted
All calculations are plotted as solid dots in the figure. in seven different velocities. In cubic crystals, all velocities

All three methods give nearly identical results for the can be written in terms of three elastic moduli;;, Cy,,
transverse branches. The dots and lines for these branchesdC,,. This gives us seven equations and three unknowns.
are drawn on top of each other in the figure and cannot b&Ve found the best values of the elastic moduli using a least
distinguished from each other. In the longitudinal acousticsquares fit. We repeated this calculation using SSCAD, PIB,
(LA) branch, SSCAD and PIB give nearly identical results,and GK. For both SSCAD and GK, the fit was excellent. The
whereas the GK method gives frequencies which are slightl§it was about ten times worse for PIB.
higher. The results are shown in Table 1, along with experimental

In the LO branch, SSCAD and GK give nearly identical values from Jackson and NiesférThe agreement with ex-
results, whereas PIB diverges @sipproaches zero. The LO perimental values improves significantly as we move across
frequency alg=0 was determined by adding the amount of the table from GK to PIB to SSCAD. Note that GK obeys the
frequency enhancement expected for a rigid-ion system witlCauchy equality C;,=C,4 for cubic crystals as expected
charges 2 and 2, in this case 660 cm®. The LO branch for models based on two-body central forces.
obtained from SSCAD evidently is approaching this value at We also calculated the elastic moduli using the full Kohn-
g=0. Sham theord# within LDA, by means of the full-potential

Phonon spectra can be obtained from first-principles cal
culations of frozen-phonon energies. The frequencies for th
longitudinal optical(LO) branch calculated with PIB diverge
as the wave vector approaches zefithis singular behavior

C. Elastic moduli
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TABLE I. Elastic constants in MgO calculated with Glising
the ionic densities from SSCAD for the equilibrium struchuielB,
SSCAD, and LAPW. Experimental values are shown for compari-
son. Units are GPa.

-0.225

—0.230
GK PIB SSCAD LAPW Expf

Cu 393 355 318 285 297

Ci, 198 132 123 84 95 —0.235

Caa 201 195 201 150 156 Exs (hartree)

3Experimental data from Jackson and NiegRef. 22. —0.240

linearized augmented plane wayeAPW) method using fi-
nite strains> This method applies the Kohn-Sham theory
with no approximations other than the local-density approxi-
mation. The results are shown in the table.

—0.245

D. Charge transfer O 022 024 026 028
Some materials are best modeled with fractional charges AQ
on the ions. As an example, we consider BaJiOhe
charges of the closed-shell ions are?BaTi**, and &7~ FIG. 3. Kohn-Sham-like energy level&St of the O 2p orbitals

When we solve the KSL equatigd) in SSCAD (using the  and the Ti 3l orbitals in BaTiO; as a function of charge transfer
experimentally determined lattice parameter 7.6 bohr at  AQ from the O 2 orbitals to the Ti 3l orbitals. The data points
room temperatune we find that the KSL energgthe eigen-  represent calculations using SSCAD. The lines are simply straight
values of the KSL equatioris lower for the empty Ti @  lines drawn through the data points.
orbitals than for the full O P orbitals. This means that we
can lower the total energy of the crystal by transferring some Boyer and Mehf* made a similar calculation but found
charge from the O to the Ti ions. As we transfer charge, théhat the energy minimum did not occur where the eigenval-
KSL energy of the Ti 8 orbitals increases until the KSL Ues cross. At the time, they thought that this occurred be-
energy of the Ti 8 orbitals is equal to that of the Op2  cause SSCAD is only approximately variational. Actually,
orbitais. This happens when the Td Brbitals contain about SSCAD is in principle exactly variationaf. Their results
0.24 electron and the Ogorbitals in each oxygen ion con- Were probably due to approximations in calculating the KSL
tain about 5.92 electrons. If we transfer additional charge, th@otential.(1) They used a “cutoff” form for the short-range
KSL energy of the Ti 8 orbitals rises above that of the Overlap potential, and?) they calculated the KSL potential
O 2p orbitals, now causing the total energy to increase in-
stead of decrease. The KSL energies for these orbitals are —8951.8156
shown in Fig. 3. The total energy per unit cell is shown in
Fig. 4. The minimum energy occurs exactly at the point
where the two levels cross in Fig. 3.

This result is in agreement with Janak’s theor@mhich
Cortond proved to apply to the present case. Tte eigen-
value Ej{> of the KSL equation for théth ion is related to —8951.8157
the total energ\e per unit cell by

E (hartree
Ef° = 9E/oN;; , 7) ( )

whereN;; is the number of electrons occupying the orbitals
corresponding to that eigenvalue. Applying this equation to
Figs. 3 and 4, we obtain

—8951.8158

E= f (ESSL— EXSH)dQ, ®

. —8951.8159 L : L
whereAQ is the amount of charge transferred from the O to 0.20 0.22 0.24 0.26 0.28

the Ti ions. The result of this integral, using the data in Fig. AQ

3, is shown as a solid line in Fig. 4. The constant of integra-

tion was chosen to match the energy at the minimum. The giG. 4. Total energyE per unit cell of BaTiQ, as a function of
excellent agreement between the data points calculated déharge transfeAQ from the O 2 orbitals to the Ti @ orbitals.
rectly with SSCAD and the solid line calculated from the The data points represent calculations using SSCAD. The solid line
KSL energies demonstrates the validity of Janak’s theorens obtained from the integration of the difference of the two Kohn-
in this case. Sham-like energy levels in Fig. 3.
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from a spherically averaged density rather than spherically

averaging the KSL potential due to the true density. 0.03
(Cortond makes this same second approximation and
claims that it makes no real differeng@hen they calculated 0.02
the total energy without using these approximations. This is
where the problem lies. The KSL potential and the total en- 0.01
ergy must be calculated using tkemeapproximations. The AE (hartree)
current version of SSCAD calculates the KSL potential and
the total energy using theameapproximationgsee Appen- 0
dix). Thus, the densities obtained from the self-consistent
solutions of the KSL equations in SSCAD exactly minimize —0.01
the energy calculated by SSCAD, as demonstrated in Figs.
3 and 4.
A particular problem arises with the pair approximation —0.027 005 olo  o1s o020
when pairs of ions that are quite far apart are included in the ' ) ' '
calculations. The pair approximation works best near the AQ

ions where the electron density is greatest. The greatest error FIG. 5. Relat E it cell of MaO funci
introduced by the pair approximation occurs between the atc-)f char' e'tra(re];;eQefr:g:r?%he F())erzpuglrb(i:tZIsoto thge Mas ??Ol:giga.ll()n
oms, where three or more ions make major contributions tq_ ge fra . 9 '

. : . he open circles represent calculations made with PIB, and the
the total electron density. This error becomes especially lar

hen th tributi f - f includ Yiled circles represent calculations made with SSCAD. The data
when _e contributions from lons_ Very lar away aré .|nc u (,3 ‘connected with solid lines use the pair approximation, and the data
In Fig. 5 we show the relative energy per unit cell in

; ) connected with dash lines use the correction due to many-body
MgO as a function of charge transf&Q from the filled . (aractions.

0?2~ 2p orbitals to the empty M§" 3s orbital. Calculations

of the potential about each ion included contributions fromincluded. We see that when 56 or more neighbors are in-
hundreds of neighboring ions. The data connected with soli¢luded in the calculation, the pair approximation predicts
lines were calculated using the pair approximation. The datgharge transfer. On the other hand, when we include many-
represented by open circles were calculated using PIB, andody interactions, the difference in energy is relatively insen-
the data represented by filled circles were calculated usingitive to the number of neighbors and predicts the expected
SSCAD. PIB predicts a charge transfer of about 0.08, andtability of MgO against charge transfer.

SSCAD predicts a charge transfer of about 0.01. We would So far in our experience, we have found that the correc-
expect Mg "O?~ to be very stable against charge transfer,tion for many-body interactions does not significantly affect
so something is obviously wrong with these calculations.calculations where onlpositionsof ions are varied, such as
The Mg 3s orbital has a long tail which increases the overlapthe determination of crystalline structure and phonon spectra.
of densities between ions. This problem is not as bad ifmmhus far, it appears that we only need to include many-body
SSCAD since the increase in the kinetic energy part of thénteractions when we are considering charge transfer be-
KSL potential due to overlap of densities between ions tendswveen ions.

to shorten the length of this tail.

The data connected with dashed lines in the figure were 04 . |
calculated with the correction due to many-body interactions e — e — —0— — — e — —s
included. As can be seen, both SSCAD and PIB give similar
results and predict the expected stability of M@?2~ 02 L ]
against charge transfer. In PIB, the correction is only made in
the energy calculation. The density calculation is not af- AE (hartree)
fected. The Mg 38 orbital still has the same long tail. In ol |
SSCAD, the correction is also included in the calculation of
the KSL potential so that the long tails are inhibited. Appar-
ently, when many-body interactions are included in the en- —oak )

ergy calculation, the presence of long tails in the ion densi-
ties does not significantly lower or raise the total energy.

In Fig. 6 we show how the numbaér of neighbors affects
the calculations. We plot the differendd= between the KSL 0 50 100 150
energy of the Mg 38 orbital and the KSL energy of the O N
2p orbitals. In this calculation, the Mgs3orbital is empty

and the O P orbitals are full. WhenAE is negative, the FIG. 6. DifferenceAE between the Kohn-Sham-like energy lev-
KSL energy of Mg 3 orbital is lower than that of the O g5 of the Mg 2 and O 2 orbitals in MgO as a function of the

2p orbitals, and we can lower the total energy of the crystabymperN of neighboring ions included in the calculation. In these
by transferring charge from the O to the Mg ions. The solidcalculations, the Mg 8 orbitals are empty, and the Op2orbitals

line connects data which were calculated using the pair apare full. The data connected with solid lines use the pair approxi-
proximation. The dashed line connects data which were cakation, and the data connected with dash lines use the correction
culated with the correction due to many-body interactionsdue to many-body interactions.
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APPENDIX: KSL POTENTIAL

We give here details of how we construct the Kohn-
Shame-like (KSL) potential used in SSCAD. We write the
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d
Vielp)= %[PGXC(P)] == (Bplw)l/s_ Cln(1+AP1/3)
(A7)

and

Vi(p)= 7 a5 [pek(p)]——(377 2p)2R, (A8)

total energy of the Crysta' as a functional of the electron We d|V|de the KSL pOtentIal |nt0 |ntra|0n|c and |nter|0n|c

density:
Zip(r)
_ _ 3, SiPA)
E_Ei it 2 |ro| rOJ| 2I Jd r|r_r0i|
=K f g ADPU) f & p(D) el p(1)]

+3 [ @rontaloml-alnmh, (A1)

whereT; is the kinetic energy of thigh ion, Z; is the charge
of the ith nucleus, and is the position of theth nucleus.

contributions:

Vi(r) = VM) + V(). (A9)
The intraionic contribution consists of a long-range electro-
static potential, a short-range electrostatic potential, and an
exchange-correlation KSL potential:

|_Ni
+Vyi(r)+Vidpi),

Vi"(r) = —

(A10)

whereN; is the number of electrons in thih ion. The short-
range electrostatic potenti@he short-range Hartree poten-
tial) is given by

The last term is the correction to the kinetic energy due to

overlap of ionic densities. We use the expression of Hedin
and Lundquist® for the exchange-correlation energy per
electron in a gas of interacting electrons with uniform den-

Sity:
€=~ > (3plm)3— IC[(1+z %)In(1+2)
-2+ 3z 3], (A2)
where
3 1/3
zle(Zw ) , (A3)

and A=21 andC=0.045. For small values g (less than

10 1% when using 8-byte real number<Eq. (10) is more

accurately evaluated using an expansion in powers of
=" 5 (3p/m) " —C(} z-

lOz+ z—§z+4oz).

(A4)

N; pi(r)
V(o= [ ot 1
1

(A11)

This potential goes to zero outside the ionic electron cloud.
Evaluating this equation, we obtain

* ’ ’ ’ 477 * ! \2 ’
Vhi(ri)=4m | pi(ri)ridr —5 ] Ailn )(ri)=dry.
I | I
(A12)
The interionic contribution to the KSL potential consists of a
long-range electrostatic potential, a short-range electrostatic
potential, the exchange-correlation KSL potential due to

overlap with neighboring ions, and a contribution from ki-
netic energy due to overlap with neighboring ions:

V) =V (1, )+ 2 Vi () + Ve i)
]#l

+voverany ) (A13)

The kinetic energy per electron in a gas of interacting elec-

trons with uniform densitfThomas-Fermi energyis given
by

ex= 10 (37°p) ", (A5)

The bars over the functions denote a spherical average
aboutry; which is the origin of the coordinate system we are
using.

The long-range electrostatic potential is the Madelung po-
tential,

From density-functional theory, we obtain a result analo-

gous to that of Kohn and Shalfiwe obtain for each ion the

one-particle Schiinger-like equation given in Eq(4),
where the KSL potentiaV/;(r;) is the spherical average of

_ ZJ 3 /pj(r’)
Vi(r)= 2 |r_r0j|+; J'd r |r_r/|+vxc[P(r)]

+Vilp(r)]=Vilpi(r)], (A6)

where

(A14)

Its spherical average abouy; is given by

— 1 1
Vi) =Vu(0+ 2 (2~ N)( ;), (A15)
]:#I
ri>dij
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wheredIJ is the distance between the nuclei of thlik and — av-bod 1
jth ions anavy, ;(0) is the Madelung potential at the nucleus V¢~ )(Pi)ZEj de)
of theith ion and is evaluated using the Ewald metfdd.

The short-range electrostatic potential is the short-range
Hartree potential due to the the electron cloud ofjttieion. — E [V, pi +pj)—ch(pi)]] . (A22)

Vye(p) = Vi pi)

The form is the same as EO0), except that now the result e
is spherically symmetric abou,; : !
4 where the integration is a spherical average centered at the
o0 7T e ] . . . . . . . .
Vo (r)=4 (! r-’dr-’——f ryrhH2dr! ith ion. This two—dlmensmna! integration requires a large
Hi(r) Wf P pi(r)(r)7dr] fraction of the total time required to calculate the KSL po-
(A16) tential. In the “pair approximation” used in GK, this term is

omitted.
We spherically average this potential abayf, using a The contribution to the KSL potential from kinetic energy
method from Lowdirf® due to overlap with thgth ion is given by the same expres-
sions as Eqs(A18)—(A22), changing the subscripts xc to
J— ’i+dij k.
Vi,i(ri)= 2r,d;; |ri7dij|VHJ(ri)ridri . (A7) After obtaining the electron wave functions and densities

self-consistently, we can easily calculate the total energy:

The exchange-correlation KSL potential due to overlap
with neighboring ions is divided into two parts: E= T+Ey+> f dgrPiE_i(ri)- (A23)
i i

ng:/erlap(r) 2 Vpalr(pI ,pJ +Vmany bod¥r (A18)
ki The first term is the intraionic kinetic energy:

The first term is due to overlap betweenirs of ions, and 1 3 )

the second term is the correction due to many-body interac- Ti=-— 5%4 NimJ A Ginim(NDVEinm(r).  (A24)
tions. As we will see below, the first term can be spherically ’

averaged with integrations over a single variable. The second

term must be spherically averaged with an integration oveifhe second term is the total Madelung energy due to point
two variables on the surface of a sphere. With the contribucharges at the ions:

tion due to pair interactions removed, this term is slowly

varying inr, allowing us to do the integration with sufficient 1o (Zi=N)(Zj—N; )
accuracy. The KSL potential due to overlap between a single Evm= 24 ¥ d” (A25)
pair of ions is given by o
In the third term, the potentid;(r;) is the same as the KSL
VE(pi1pj) = Vel pi +p}) = Vil pi).- (A19) — P (1)

potential V,(r;) for the ith ion with the following changes:

1y,
This potential has a sharp peak rf and is difficult to Ve €xcr Vi €k Vii— 2 Vi, and

spherically average aboug; . We overcome this difficulty

by dividing the potential into two parts: Vo (r s - 1 ‘ 1 1
. Vin,i(ri) 2 Zj- 5N, g, ) (A26)
p (Plvpj) [ch(PJ)]+[ch(P|+PJ) Viepi)— ch(PJ)] rlj(;
(A20) :

The first part is spherically symmetric abay} and can be 1.
spherically averaged abotg; using the method of Lowdin, The factor 3 in the above changes compensates for the

: double counting which results wheémndj are interchanged.
Eq.(25. Th d part has th k@t d. o o
Welgbtgi(n ) © second part has the peakgiremove In the PIB model, the interionic contribution to the KSL

potential is simply given by
1 f dl]
Ve (pipj) = 200y Vi pj)rdr; Vi.i(0), r<ry

Ny Vi T
J Vi) (rw/r)Vm,i(0), ri>ry, (A27)

101

+§f dx[vxc(l)i+pj)_vxc(pi)_vxc(pj)]y

-1 wherer,, is the radius of the Watson sphere, given by
(A21)

Zi—N;
where x is the cosine of the angle betweeg,—rq and rW_VM'i(o)'
r—ro . The variablex is hidden in the argument @f which
is rj=(r; +d2 2r; d”x)l’2 The correction due to many- The total energy is calculated in PIB exactly the same as in
body mteractlons is given by SSCAD.

(A28)
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