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Ground states and the nature of a phase transition
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The ground state of a fully frustrated simple cubic lattice on N Ising spins is worked
X'/3/4out. A degeneracy of the order 2~ / is found. A possible phase transition is discussed

within a Bethe-Peierls approximation and on the basis of symmetry arguments. The tran-

sition temperature is in good agreement with recent computer simulations.

I. INTRODUCTION

Recent investigations of spin-glasses' have
aroused considerable interest in the fully frustrated
Ising (FFI) spin systems. Several two-dimensional
fully frustrated models have been studied s so
that now one has a fair understanding of the na-

ture of the phase transition at zero temperature in
two dimensions. For example, Southern, Chui, and
Forgacs showed that the square lattice can be

mapped into the eight-vertex model. Forgacs
showed that the critical exponent g for this square
lattice is equal to —,, in agreement with the result

of Stephenson for the triangular lattice.
In three dimensions only one fully frustrated

system has been systematically studied. This is the
generalization of the triangular net to three dimen-

sions which is the fcc antiferromagnet. The
ground state of this system was first elucidated by
Danielian. ' The total number of ground states is

~1/3of the order of 2+; hence there is no macroscop-
ic entropy at zero temperature. Various calcula-
tions suggest that there is a first-order phase tran-
sition at a finite temperature. " It is amusing to
note that if one takes away a quarter of the spins,
a system with macroscopic entropy results. ' Vil-
lain has suggested some other fully frustrated
three-dimensional (3D) systems. The generaliza-
tion of the square lattice to three dimensions is the
main focus of the present paper. The unit cell
consists of eight smaller cubes, one of which is il-
lustrated in Fig. 1, where a single (double) solid

line indicates a ferromagnetic (antiferromagnetic)
bond of absolute magnitude J. Figure 2(a) indi-

cates how these smaller cubes are put together. In
Fig. 2(b) we show a projection onto the xy plane.
The ground state of this model is characterized in
Sec. II. A phase transition is discussed in the
Bethe-Peierls approximation in Sec. III. The na-
ture of the phase transition is studied using sym-

metry arguments in Sec. IV. In Sec. V we discuss
the nature of the phase transition and compare our
results with recent computer simulations. The pos-
sible relevance to the existence of a phase transi-
tion in an Ising spin-glass will also be speculated.

II. THE FULLY FRUSTRATED
CUBIC LATTICE

First the ground state of the cubic FFI lattice
will be characterized. It is obvious that the
lowest-energy configuration of the cube in Fig. 1

will be such that there is one wrong bond (i.e., a
term in the Hamiltonian —JJS;SJ=+J) on every
face of the cube. This can be achieved by using
three wrong bonds that do not touch each other.
There are eight ways to arrange these bonds with
each way having a net energy of —12J. This can
be easily displayed with a projection of the cube on
the xy plane as in Fig. 3, where one configuration
of the wrong bonds is shown. In this projection,
the location of the antiferromagnetic bonds is ir-
relevant and hence will no longer be shown. In
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FIG. 1. —of the unit cell of the FFI cubic lattice.

Here the single (double) line indicate a ferromagnetic
(antiferromagnetic) bond.

FIG. 3. A graph illustrating the location of the
wrong vertical (circle) and horizontal {double line)
bonds on the upper {solid lines) and lower (dotted-solid
lines) faces.

6 5 6

k AS ~ ~Oa ~ ~ ~ ~ 0 ~T ~ ~ 0 SO ~ ~ ~ ~ I ~

~ ~ ~
~00 ~ 00

~ 00
~

~ ~ ~ '

8~. ~ ~~P
0 ~0 00 ~ ~ ~ 0 ~ ~ 0 ~ ~ 0 ~ ~ 0 ~ ~

~0
~ ~

~ ~ ~0
~0

~ ~

4 =g ~ ~ 0 ~ ~0

iJ
~ $ ~0 0Q0 ~ ~ 0

~ ~
~ ~~ 00 ~y

~ 0~
~ 00 ~ ~0'0L.OO

~+001 ~ ~0 ~ 0 ~ 0 ~ ~ ~ ~0 ~ ~ ~ ~
~ ~

~ 000 7
~0 ~~ ~ ~

t."
6' 5

(b)

Fig. 3 the circle denotes the. location of the "verti-
cal" wrong bond, the double solid line denotes the
wrong horizontal bond on the upper face, and the
dotted-solid line denotes the wrong bond on the
lower face. The fact that the wrong bonds never
meet requires that there be no wrong bonds on the
lines corinecting the circles. We show in Appendix

A that the ground state is "dominated" (by this we
mean that the other ground states are less numer-

N2/3/4ous by a factor of 2 ~ ) by identical layers such
that each layer is made up of a random mixture of
the two unit cells as shown in Fig. 4. One such
combination is shown in Fig. 5. (Note that the
two unit cells of Fig. 4 can be mapped into each
other by flipping a vertical line of spins. ) Because
of the randomness the total number of such states

N2/3/4
is of the order of 2 ~ . The entropy per particle
of the ground state is hence nonmacroscopic, simi-
lar to the fcc antiferromagnet. However, the total
degeneracy of the fcc antiferromagnet is of the

N 1/3
order of 2 (Ref. 10) whereas in the present case

N2/ /4it is of the order of 2 /. This is because in the
former case there is only a one-dimensional disord-
er whereas in the latter case there is a sublattice
that possess two-dimensional disorder.

It is of interest to ask what the order parameter
is. The choice of an order parameter is clearly not
a unique procedure. An elegant choice has been
discussed by Betts and Elliot' for the fcc antifer-
romagnet. We shall follow a simpler procedure

FIG. 2. (a) A unit cell of the FFI cubic lattice indi-
cating how the sublattices in Fig. 1 are put together. (b)
A projection of (a) onto the xy plane.

FIG. 4. A graph illustrating the possible ways of ar-
ranging the horizontal bonds in a unit cell.
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magnetization let us consider Fig. 2(a} with the
dissatisfied vertical bonds along the antiferromag-
netic bonds. . .212'. . ., etc. Since there is a degen-
eracy of the position of the horizontal bonds the
average magnetization at. . . 646. . ., . . .6'4'6'. . .,
etc., is zero; i.e., (o'4) = (gs) = (o'4 ) = (&4 ) =0.
The rest of the magnetizations are all of the same
average value, i.e., (o'2) = (gi ) = (os) = (&5')
=(g3, ) =(g7) =(oi ) =(crz ) which is one at
T=O. lt is not difficult to write down the other
eleven configurations but we shall not do it here.

FIG. 5. A configuration of the wrong bonds.

here by specifying the magnetizations at individual
sites. The ground state that we just discussed sug-

gests that at T=0 there are 12 inequivalent config-
urations of local magnetizations obtained by speci-

fying the dissatisfied "vertical" bonds with respect
to the original lattice. The number 12 comes from
the following consideration. One can call vertical
the x, y, or z directions of the original lattice.
This provides a factor of 3. Once the vertical
direction is specified there are four positions at
which the dissatisfied vertical bonds can be located
with respect to the original lattice of ferro and an-

tiferromagnetic bonds. Hence a total factor of 12.
To illustrate a typical configuration of local

III. BETHE-PEIERLS APPROXIMATION
FOR THE 3D FULLY FRUSTRATED

ISING MODEL

In this section we shall carry out a mean-field-

type calculation for the 3D FFI model. In order
to take into account the competition between the
ferromagnetic and antiferromagnetic bonds and
also to a certain extent fluctuations in the system,
we shall apply an eight sublattice Bethe-Peierls ap-
proximation. In this approach the interactions
within a given cluster of spins are treated exactly,
while the effect of the remaining spins outside the
cluster is treated in a mean-field approximation.
The cluster we choose is a single spin with its six
nearest neighbors. The self-consistency equation

for spin 1, for example, on Fig. 2(a} is obtained as

1
mi —— g o iexpE[ai( —o2 —o2 +o3+g3 +gs+gs }+((T3+(T3}(mi 2m4+2—ms}

(~)

+(g&+o&,}(2m5+2m7 —mi }+(os+os}(2m4+mi+2m7}] .

Note that in Eq. (1}bonds such as o io3 have not

been double counted; this is why we have factors
such as m i

—2m 4+ 2m &. Here m; = (o; ) and Z i

is the "partition function" of 0.
&, i.e., the sum over

the o's of the exponential factor in (1}. The other

seven equations can be obtained in an analogous

way, using Fig. 2(a}. In (1}we assumed that

p?l 3 —pl 3 I2 —ppl 2 and m 8 ——m 8 ~ This last ap-

proximation (together with similar ones for the
other equations) is equivalent to assuming that the

system can be divided into eight sublattices, within

which the magnetization is the same for the

corresponding spins. Since the model is periodic,
if there is an ordered state it should also be period-

ic. Of course the periodicity of the ordered state is

not necessarily the same as that of the underlying

l

lattice. Our assumption about the eight sublattices
is the simplest, nontrivial approximation which al-
lows for analytical treatment. Note that this as-
sumption does not contradict our previous discus-
sion of the ground state. There are an infinite
number of ground states divided into 12 classes.
The interclass activation barrier is infinite whereas
the intraclass barrier is finite. For equilibrium
static properties, we feel that physical averages
should be taken over states of one and only one
class. The order parameter obtained this way has
the same periodicity of the lattice.

The eight self-consistency equations form a
closed system of eight nonlinear equations. As-
suming that there is an upper critical temperature
above which all m s are zero and below which at
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least one of them ls dlffercllt fro111 zero, wc can
hnearize the nonlinear equations around this tem-
perature. We obtain

~r ——V~l, & = I,2, ~, 8 (2)

6E sinh2K
(3)I+cosh'

Setting y=1, for the critical temperature we get

The Bethe-Peierls approximation discussed in
the preceding section suggests that there is a
finite-temperature second-order phase transition in
the cubic FFI model. It was, however, also point-
ed out that fluctuations are very important in this
system; therefore, it is not clear how much one

This result ls in good agro:ment (to wlt11111 5%)
with 1eccnt Monte Carlo simulations. ' It 18 1n-

teresting that Eq. (2) is a set of eight independent
equations instead of a system of eight coupled
equations. Had one applied a simple one-sublattice
Weiss mean-field theory'4 one would get a coup/ed
system of linear equations. We see that fluctua-
tions in this fully frustrated system are very impor-
tant. From {2)we get that any ordering is possible
in our system in the linear approximation. If we
expand Eq. (1) to third order in m we find that
this degeneracy is partially but not completely lift-
ed. In fact, although not every solution of (2) is a
solution of the nonhnearized version of the self-
consistency equation (1), even those nonlinear equa-
tions have a large number of solutions {sceAppen-
dix 8). In order to decide which state is the true
thermodynamically stable state at a given tempera-
ture, one should calculate the free energy and then
minimize it with respect to the m s. Unfortunate-
ly this task is extremely complicated even for the
small cluster we used and therefore we have not
carried out the calculation of the free energy. In-
stead, we will use symmetry considerations for our
guidance. The ground-state configurations dis-
cussed in the previous section provide one such
clue. It is satisfying to note that the configuration
discussed at the end of the preceding section is
indeed one possible solution of the coupled non-
linear equations at any temperature below T, .

should trust a mean-field-type calculation.
In th1s sect1on we w1sh to prov1de a Landau-type

analysis' of the nature of the phase transition. A
summary of the Landau arguments has been given
by Mukamel and Krinsky. ' We shall follow their
language. The point group of the cubic FFI model
can be identified with the point group Ts. It
differs from the cubic group 0& in that the 90' ro-
tation symmetry about the x, y, and z axis is miss-
1ng.

If the periodicity of the ordered state is not the
same as the underlying lattice then the full space
group needs to be considered. As we discussed in
the previous sections, we shall assume that the
periodicity of the order is the same as that of the
underlying lattice and so shall focus only on the
point group here. This considerably simplifies the
problem. In problems considered by the authors of
Ref. 17, for example, the periodicity of the ordered
state is not the same as that of the underlying lat-
tice. Then one has to worry about the full space
group of the problem. Even though we have argu-
ments that suggest that the periodicity of the or-
dered state is the same as the underlying lattice, we
have no rigorous proof that this is so. If the
periodicity is different then the arguments below
are inapplicable. As we discussed at the end of
Sec. I, there are twelve inequivalent configurations
of the magnetizations. These form a twelve-
dimensional representation of the symmetry group.
Now no point groups (in particular Ts) have ir-
reducible representations with dimensions larger
than three in three dimensions. Hence our twelve-
dimensional representation must be reducible.
Landau arguments would therefore suggest that
tllls ls R first-order pllRsc tlallsltloil. Wc 11Rvc

then two methods for the study of the cubic FFI
model, which lead to different results.

For two-dimensional FFI models it has been
shown that there is no finite-temperature phase
transition, but there are universal long-range corre-
lations at T=O. For a class of non-fully-
frustrated systems studied in Ref. 19, there is a
finite-temperature second-order phase transition
and the models belong to the universality class of
the ferromagnetic Ising model. ' Consequently, in
two dimensions, there is at least a universality class
of fully frustrated systems and another one of
non-fully-frustrated and nonfrustrated systems.
This suggests that the fcc antiferromagnet and the
model considered in this work have similar proper-
t1cs. Ouf Landau-type analysis ccrta1nly would bc
consistent with a first-order phase transition in the
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cubic FFI model. This conclusion on the other
hand seems to be ln disagreement with the Monte
Carlo calculatlolls fol' tlie cllbic FFI Iiiodel. It
should be emphasized, however, that the results of
these Monte Carlo simulations for the cubic FFI
model should be interpreted with great care.

Even though the macroscopic entropy is zero at
T=0, the degeneracy is still extremely large. It is
of the order of 2 and 2 for the present
model and the fcc antiferromagnet, respectively.
In order to have comparable accuracy, one would

think that one needs to have 2 ~ /2 samples
more for the present model. For a 10)& 10&& 10
system this number is 2 /2' =2". If the simula-
tions for the present model sampled 2'5 more
points than the fcc antiferromagnet we would feel
more comfortable with the final result.

V. CONCLUSION

In this paper we have provided arguments that
the fully frustrated cubic model is in many regards
the same as the fcc antiferromagnet, another fully
frustrated 3D system. They both possess zero ma-
croscopic entropy at T=O and they both undergo a
phase transition at a finite temperature. As for the
order of the phase transition, calculations for the
fcc antiferromagnet suggest that it is of first order.
For the cubic FFI model we think this question is
not yet settled.

There has been interest in whether an Ising
spin-glass posscsscs a phase transltlon at a flnltc
temperature in 30. It is thought that ihe effect of
frustration is such as to destroy a possible finite-
temperature phase transition. If, even in the worst
case of a fully frustrated model, there is still a
finite-temperature phase transition, it is not unrea-
sonable to expect thc 30 Ising spin-glass to have a
phase transition as well. Our result suggests that
the fcc antiferromagnet is not a singular case in
three dimensions and that all 30 Ising spin-glasses

may possess finite-temperature phase transitions.
Real spin-glasses are disordered. The effect of
disorder on the phase transition discussed here has
not been explored,

prakash for letting us know the results of their
Monte Carlo calculation prior to publication. This
work is partially supported by NSF Grant
No.DMR77-23999 (G.F.).

APPENDIX A

We shall characterize the ground state in this
appendix. First let us focus on the order for one
layer of the cubes. We shall use the notation of
Sec. II and exhibit our order by projecting it onto
the xy plane. In every cube there can be one and

only one wrong vertical bond. Thus no horizontal
face connects two wrong vertical bonds (circle in
our figures). Suppose there is a wrong vertical
bond at the origin (0, 0). Then it is easy to see
that we must have either situation (a) or (b) of Fig.
6 (where only the position of the vertical unsatis-
fied bond is displayed). The lines of circles contin-
ue indefinitely in the y direction. Clearly one may
have an equivalent situation of lines of circles con-
tinuing in the x direction. Within the strip formed
by the circles one now has to insert the wrong hor-
izontal bonds. Within the square ABC& in Fig.
6(a) one can have two possible configurations as in
Fig. 7. Furthermore there is no correlation be-
twccn thc posltlon of the horizontal bonds from
one square ABCD to another (e.g., DCEIi ) down
the strip. The degeneracy of such configurations is

+1/3/4of the order of 2 ~". On the other hand, the
configuration corresponding to (b) is only doubly
degenerate, as is shown in Fig. 8. Hence configu-
ration (a) dominates configuration (b).

One might wonder if one can have mixtures of
strips of type (a) and (b) in a plane. Perhaps the
"entropy of mixing" gained in this way might

C
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FIG, 6. Two possible ways that the vertical wrong
bonds can be arranged.
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somewhat by doing the summation over o.3,o3,
o.s,os, and oq, o.2,

' we write

(a)

"'e

(b)

m; = g o g Z;(o; }jQ Zi(o; ), (81)

FIG. 7. The possible ways of arranging the horizon-
tal bonds in a unit cell.

Z;(cr) =25 ff [1+cosh2E(o+A;)] . (82)

compensate for the entropy lost in putting a strip
of type (b) in. An upper bound for this degeneracy
factor is of the order of

~1/3/2 ~ i/5/2
2

—kN '/3/22i
kk= j[

where k indicates the number of strips of type (b).
The first factor is the "degeneracy of mixing"
gained; the second, the degeneracy lost. B can be
simply summed and we get

( 1 +21—N ~ /3/2 yv
i /3/2

This is infinitesimally small for large N. We can
thus continue down the x axis with strips of type
(a) aloiie aiid obtalll tile sltllatioii sliowii iii Fig. 5
for one layer.

Now we have to put in the next layer. If the
horizontal wrong bonds are random as in Fig. 5
then one can only put the circles on top of each
other. We thus conclude that the positions of the
circles continue from layer to layer.

APPENDIX 8

A ~;, A2;, and A3; are given in Table I.
It is possible to expand the above to third power

in m. One finds that, in contrast to the linear ver-

sion~ thc cquat1ons afc coupled. Thc equations afc
in general so complicated that a complete solution
is not possible. Based on the symmetry of the
ground state, we have found different solutions to
these equations. This is sufficient to show that the
solutions are still degenerate. We shall exhibit
these solutions and show that they are indeed solu-

tions of the full equations (81) by direct substitu-
tion.

A solution suggested at the end of Sec. II is ob-
tained by setting m4 ——m6 ——0, m2 ——m~ ——ms ——mq

=m3 ——m7 ——m. Then we have 314——4m, 324 ——0,
334——2m, A)6 ———4m, 226 ——4m, 336——0. From
this, we get Zs(o)=Zq(o)=2 I [I+cosh2K
&( (o +4m )] [1+cosh2E(o —4m )](1+cosh') I.

It is obvious that Z6(cr }, Z4(o') is independent of
o. Hence from (81) we have m& ——0=ms, in
agreement with our assumption. We also have

Aii =3m, Api =3m, Api =—3m. Heiice Zi(o)
=25[1+cosh2K(o +3m )]~ [1+cosh'(o —3m )]
and we have

In this appendix, the nonlinear version of Eq. (1)
will be discussed. Equation (1) can be simplified

go [1+cosh2E(a+3m)]
m= +[1+cosh2K(o +3m) ]

i(m) . (83)

FIG. 8. Two mays of arranging the horizontal bonds
when the vertical bonds are in the wrong configuration.

It is easy to verify that identical equations are ob-
tained for i =2,3,5,7,8, thus verifying that our
starting assumption is valid.

As another example we shall assume the satis-
fied vertical bonds are at 78. . .. We set m&

=m3 =0 and m7 =m8= —m6 = —m4=mp
=m~ ——m; then A&3 0 +23 0 +33 0,

A i5 4m A 25 4m A 35 —0. Hence both Z5(o )
and Z5(o) are independent of cr and we get back
from Eq. (81}that m5 ——ms ——0, consistent with
our assumed order. Also, 311——m, A2&

——3m,
A3&

———m; hence
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TABLE I. Coefficients used in Bethe-Peierls calculation of the transition.

2P?l4+ P?l ~ +2P?lp
—2P?26+ P?l2+ 2P?l 8

2P?l6+2PPl2+ P?l3

2P?l l +2Nly+m4
2m 4 —2P?l 7 +P?l 5

—2P?l2 —2PPl8+ P?l6

2P?l 1 +P?l P+ 2P?l4
—2m6+2P?l q+ P?l q

Nl ~
—2P?l4+ 2P?l 5

2P?l 6 +2PPl 3 +P?l p

—2PPl 8
—2P?l 6+P?l 3

2P?l 5 —2P?l 7 +P?l4

—2PPl4+2m 1 +PPl5

2P?l 2+ 2P?l 3 +PPl 6
—2P?l 5

—2P?l 4+P?l p

—2P?l 3 +2P?16+P?l 8

—2P?l 5
—2PPl 7 +P?l, l

—2PPl 8
—2P?l 3 +P?l g

2PPl 8+P?l 3 —2P?l2

2m 1
—2m 5+P?l

—2P?l ) +2m7+P?15
—2P?l3+2P?ls+PPl6

2P?l 5
—2P?l l +PPl 7

—2PPl g+2P?l3+ P?l 8

gtr [1+cosh2E(tr+ 3m )]

+[1+cosh2K(tr+ 3m )]
(84)

g o[1+cosh2E(o+m*)]3
I?l*=

g [1+cosh'(o+m*)]3

This is the same as (83). It is easy to verify that
identical equations are obtained for i =7,8,6,4,2, 1.
It is easy to check that the other ten configurations
discussed in Sec. II are also solutions to Eq. (81).

These are not the only solutions, however. As
an exaIQple, let us set P?l ] =P?l2 =P?I3 =P?Ig=P?l6
=P?l7 ——0 and m~ ——ms ——m . Then A~] ——0,
+2/ —+2m +3]——2m*. Hence Z~(o ) is in-

dependent of o and the Eq. (81) for i =1 is satis-

fied. In the same way, the equations for
i =2,3,4,6,7 can be verified. %e also get
A ~5 ——325 ——335 ——m =A]8 ——328 ——338. Hence we

get for both i =5 and 8

=f2(m~) .

The linearized version of (2.7) is the same as that
of Eq. (85). The full nonlinearized version is dif-
ferent, however.

By direct numerical evaluation, one can show
that f2(m) &ft(m) for E&E,. Hence the solution

m ~ of (85) is always less than the solution m of
(83). This is consistent with our expectation that
m ~ is not the state of lowest energy of the system.
This calculation suggests that even though the
linearized version is highly degenerate, the degen-

eracy is indeed lifted when the nonlinear equations
are considered.
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