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The Heisenberg magnetic-exchange Hamiltonian is written in second-quantized form and a 1/V factor
is extracted, where V is the volume of the system, Using Umezawa's self-consistent method, a unitarily

inequivalent representation is selected in which the Hamiltonian obviously describes a ferromagnetic

system; a result not at all obvious since the original Harniltonian is completely symmetric and there is

no reason a priori for expecting it to describe an asymmetric ferromagnetic configuration. All
higher-order terms are accounted for, and the representation is picked out without using the adiabatic
theorem, which is typically used in the self-consistent method. Inequivalence of various representations
is discussed and validity is added for using an exchange integral depending only on relative distance
between lattice sites and, in particular, on nearest neighbors,

r. INIODUCTION

As is well known, Von Neumann proved that for
systems with R f1nlte number of degx'ees of fl'66-
dom any Hilbert-space specification is equivalent
up to a unitary transformation to any other pro-
vided the canonical commutation (anticommutation)
relations are preserved.

Howevex, for systems with infinitely many de-
grees of freedom (i.e. , for fields) not all irreduc-
ible representations of the commutation (anticom-
mutation) relations are unitarily equivalent as has
been shown by various authors. Van Hove~ and
Friedrichs were the fixst to study various rep-
resentations of the canonical commutation and
anticommutation relations, but the phenomenon of
inequivalent representations was not given much
attention by physiclsts until the RppeRrance of
papers by Wightman and Schweber, ' and Haag
axound 1955. Wightman and Schweber showed the
existence of uncountably many unitarily inequi-
valent representations of the canonical commuta-
tion and anticommutation relations. More math-
ematical details were given in two papers by
Qarding and Wightman. Other important works on
inequivalent representations for the canonical
commutation and anticommutation relations have
been written by Segal, Araki and Woods, Ezawa,
Araki and Wyss, ' Klauder and McKenna, and
Klauder, MCKenna, and Woods. Recently,
Hatch and Benson have proposed a theorem to help
clarify the typical statements for inequivalent rep-
resentations with respect to the usual "change of
representation" in quantum mechanics.

With the idea of unitarily inequivalent represen-
tations becoming established, Umezawa, aided by a
few others, began developing a self-consistent
method for picking out physically relevant repxe-
sentations. The method essentially involves trans-
forming the original set of variables in which the

Hamiltonian is written to the physical set of vax'i-
ables in which the Hamiltonian becomes diagonal-
ized and bilinear in annihilation and creation op-
erRtors of the pI1yslcRl Pock spRce TI16 limit Rs
'V-~ is used to eliminate higher-order terms,
and this is usually done through use of the adia-
batic theorem. However, in our model we use a
different technique than the adiabatic theorem,
which will impose certain conditions upon the in-
texaction. A synopsis of Umezawa, 's self-consis-
tent method as applied to many-body systems will
be given in Sec. II.

For our system we will take a three-dimensional
lattice of N Fermions at temperature T =0 K con-
tained in a box of volume V with periodic boundary
conditions, and we will eventually proceed to the
limit as V- ~, N- ~, such that N/V =p, the den-
sity. The Heisenberg magnetic-exchange Hamil-
tonian Bwill be used to describe the spin effects
of our system. Using second-quantized spin op-
erators, we are able to extract a ljV factor in
front of H, arriving at the form of the model to
which we can apply Umezawa's methods. We will
then proceed to show that there exists a represen-
tation where H explicitly describes a ferromag-
netic system, a result not at all obvious since H
is symmetric under spin rotations, whereas a
ferromagnetic configuration is asymmetric under
spin rotations. This representation will be found
without using the adiabatic theorem, and it will be
shown inequivalent to all other representations.
These results will be discussed in Sec. ID.

rr. sEr.p-coNsrsTFNT METHOD OF UMEzxvrw

We begin the study of our physical system by
writing down an appropriate Hamiltonian H = Ho

+H„, for the system and second-quantizing it. It
gives in genex"al nonlinear equations which we then
try to solve in order to deduce the results which
can be compared with experiments. Umezawa,
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Leplae, and Sen" have formulated this step as a
dynamical mapping between the original set of an-
nihilation and creation operators (a„a„), in terms
of which the model is written down, and the phys-
ical annihilation and creation operators (b~, h„),
in terms of which the observed stationary states
are written (also referred to as quasiparticle op-
erators):

a„=f(b„)=C+g b +It b +N~(b ) (2. 1)

where C stands for a constant and N~(b~) for high-
er-order normal products. The expansion coef-
ficients, such as g and h, are to be determined so'

that when Eq. (2. 1) is inserted into the original
Hamiltonian, H takes the form

I,= (Z)'t'I, +N, (f,), (2. 3)

where Z is a c number.
Under the Bogoliubov-type transformation T and

upon normal ordering our operators (denoted by
: X:) and eliminating off-diagonal bilinear terms,
our original Hamiltonian becomes

H(K, ) =H, (f „)+:H„,(f „): (2. 4)

as will be seen clearly for the model me consider
in this paper. Then Umezawa proceeds to elimi-
nate the higher-order (H„,) terms by employing
the adiabatic theorem. This is done by taking

5I,=S" bI, S,

where to first order in: H„,($~):,

S=1+( t) J:H„,(t):dt-
and

Hf f (t) = e"H„,(5~e ' a')

with

(2. 6)

(2.6)E V —g&P &0

for large V. From Eq. (2. 6), Eq. (2. 4) becomes

H=Z &IbJbI, + C+ Qv(b~) =Ho(b„)+ Qv(b„)

(2. 2)
where Qv(bj, ) 0 when the volume V becomes in-
finite, and E„is a c number. The II)~'s satisfy the
same commutation (anticommutation) rules as the

Qy s.
In most cases the determination of the coeffi-

cients in Eq. (2. 1) is carried out in two stages.
First we make a canonical Bogoliubov-type trans-
formation T from the a~'s to the intermediate b~
fields, and then me look for a matrix S which takes
us from the b„'s to the 5„'s (physical fields) in
such a way that

as V-~ is zero.
The important result of using the adiabatic theo-

rem above [essentially Eq. (2.6)] is that Qv(b~) in
Eq. (2. 7) then has energy-conserving matrix ele-
ments with respect to the physical Fock-space
states. It is this energy-conserving constraint
that causes

lim Qv(bj) 0
p» oo

(2. 6)

as will be shown in our model.
However, for the Heisenberg model we will not

use the adiabatic theorem to obtain the energy-
conserving constraint on the matrix elements of
Qv(b~) Th. is condition will instead be obtained by
finding the condition for [Hb, (b~), H,„«( b~)]= 0, a
possibility alluded to by Umezawa in a footnote of
one of his papers, where [, ] stands for the com-
mutator, bi for bilinear, and quad for quadrilinear.
For the Heisenberg magnetic-exchange model this
places conditions upon the exchange integral of the
interaction term as will be discussed.

III. BILINEARIZATION OF THE HEISENBERG
MAGNETIC-EXCHANGE MODEL

We begin by studying a three-dimensional lattice
system of /fermions, one fermion of spin--,' at
each lattice site, at temperature T = 0 'K contained
in a box of volume V with periodic boundary con-
ditions, and we will eventually proceed to the limit
as V- », N- ~ in such a way that N/V = p, the
density of the system. (The motion of ions and
lattice vibrations will not be considered. ) The
variables that we mill be concerned with for de-
scribing a fermion at lattice site 1 are the spin
components S$, S"„S~ and we will use the Heisen-
berg magnetic-exchange model Hamiltonian ' to
describe this system.

The Heisenberg exchange model can be written

H= —S~Z ZI I.SI'8l. (& 1)
f&f'

where S; is the spin operator for the fermion at
the ith lattice site, and Jf;. is the exchange inte-
gral, typically taken as large only when I-I is one
or two lattice spacings, (It is conventionally taken
to just be a nearest-neighbor interaction. )

Using the methods of quantum field theory, we
can write the spin operators in their second-
quantized form in terms of fermion annihilation
and creation operators. In the Pauli representa-
tion of spin our second-quantized spin operators
can be written

H(f, )-S-'H(f, )S = H, (f,) + Q, (h„), (2. 7)

where Q„(b„) is an operator such that the limit of
its matrix elements taken between any two states
of the physical Pock representation of the b~'s

SI = ——,i(al, , ai, , —af, , aI„)
S-=-(a. a" +a. a- )

where a;, , destroys a fermion at lattice site 1

(3 2)
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where q is a reciprocal-lattice vector. This ex-
tracts the volume dependence from the exchange
integral, giving us a (1/V) factor which will be of
importance later when we let V-~, N-~, such
that N/V =q. Consequently, we will write
Jf f = (1/V) Jf f., where

~t
4e2 e fg.(1-1~)

2
q

0 (s.8)

Therefore, using the second-quantized spin op-
erators, Eq. (3.2), and using Eq. (3.8), we obtain
the form of the model Hamiltonian Eq. (3.1) to
which we will now apply the self-consistent method
of Umezawa, namely, in direct lattice space,

1
H = — m m J';=, (a;, a;, a"...a f. , + a;, af, af, af,

—Q 1, Ql, Q l. , Q l. , —Qg, Q$, Ql. , Ql. ,

+2a„a"„a, , a, , +2ay a«a, , a~. ,), f 4l . (3.7)

Fourier transforming, we have in reciprocal-
lattice space for II,

4 ~~ ~ J k )Qk kf Qk f Qk +kf Qk4~ k k k I 1 2 2
l 2

+ Qk k, Qk, Qk, k, Qk, —Q„- k, Qkl, Qk, k, Qk1 1 2 2 1 2 2

—Qk k Qk Qk ~k, Qk, +2Qk k, QJ, Qk k, Qk1 1 2 2 1 1 2 2

with spin up, Q;, creates a fermion at lattice site
l with spin down, etc." The Q's obey anticommu-
tation relations. We will also use the operators
S; and Sj given by'the definitions

+ X ~S"= S-+iS"1 1 1
(3 3)

Sl-S, —sS,

As is well known, the Heisenberg spin-spin
form, Eq. (3. 1), can be motivated by second
quantizing the typical Coulomb interaction term
between fermions, ' where the exchange integral
is taken as

2

Z;, f, = &(1 i&
~
-,
' Z '

~

(1 1 )& .
4)

[((l; f') I is a state specification written in the con-
vention of ordinary quantum mechanics. ] So as
to be able to write H in the form to which
Umezawa's self-consistent method is directly ap-
plicable, we examine Eq. (3.4) more closely,
using for the matrix-element-state specifications
Wannier functions which make calculations readily
possible. 2 Expanding and simplyfying, it is easy
to show that Eq. (3.4) can be written

4 2 ice(1 ls)",a (s. 5)
e

+2af f&af taj+ftaf &1 ' (3 8)
1 1 2

The objective will now be to show that starting
from Eq. (3.7) [or Eq. (3.8)], a representation
for this Hamiltonian can be found where ferro-
magnetism is obviously manifest. We know that
the model (S S form) is invariant in form under
spin rotations generated by the unitary operators,

rr, (e) e+' =exp(i=e Z s; (s. 8)

a",„-Tb;„r ' =f(f), (s. 1o)

where f stands for "function of. " From Von
Neumann's theorem stated in Sec. I, we know that
we can find a unitary T for finite volume to relate
the Q's and b's.

For the transformation to the b's we will use an
analogous type of transformation as is used for
superconducting models ' (a Bogoliubov-type
model), where for our model we concentrate on ro-
tating the spins in our spin Hilbert space. Thus,
we try letting

Qlf uf bIt Ul bi& p Qlt ul blf 1 bli
(s. is)

Q", =v b-, +u-b"li 1 lf 1 1& Ql, =~lbl, +ul bli r

where u; and e; are Hermitian parameters which
have to be determined self-consistently, and

2 2
(u", +vf) =1 for this to be a canonical transforma-
tion. This will take care of step (i).

about the angle 8, i.e, , UHU '=H, and thus being
totally symmetric with respect to spin orientation,
there is no reason Q priori to expect the Heisen-
berg exchange Hamiltonian to describe a ferro-
magnetic configuration (all spins aligned in a par-
ticular direction), since this represents asym-
metry.

Our objective will be accomplished by the fol-
lowing steps, which is essentially Umezawa's
self-consistent method: (i) transform to a general-
ized, parametrized set of variables (dynamical
map); (ii) normal order the operators in H by using
Wick's theorem; (iii) eliminate (k0), (4k) terms
so as to determine the coefficients of the dynami-
cal map (these are self-consistent equations);
(iv) show that the higher-order (higher than sec-
ond) terms have energy-conserving matrix ele-
ments in our physical Fock space seitA. out using
the adiabatic theorem; (v) take the limit as Y- ~
in order to eliminate the higher-order terms and
leave us with just a Hamiltonian obviously express-
ing ferromagnetisms.

We first transform from the original set of
operators (a",, ~ a;„) to a generalized, parame-
trizedsetof operators (bf„, b;„), which has the
same canonical anticommutation relations as the
Q' s. This can be written formally as
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Then, since we are trying to bilinearize H, we

separate it into bilinear and higher-order parts by
using Wick's theorem to normal order the oper-

ators. This is step (ii).
Performing these operations, using Eq. (S.11),

Eq. (3.7) becomes

2 2 ~ 0 2
~l 1 2y [(T(~f sf sl sl }T )'9+1 vi}51 51 2+i vl(51 5~1 + 51 51 } (+1 vl}bl bl,):]

2 f f 2
[&Till 111 ~ ) ( 1 51 51 ++lvl (51 bl 51 51 } vl 51 51 )' ]

-. 2- - --t - '- - 2-'-.
[&Tgl ~ i gl ~ iT ):{Ql bit 51, +81 vl(51 &51,

—51, 51,) vlbl, 51&):]

2 2 2
' [0+1 vl)(+1& vl&}+4+ivI+1&vl f(bit bit 51&t 51&t + bli bli 51&i 51&t bli bli 51 t bl&t bit bit 51& i 51

2 2 2 2
+f QlÃ1 + vl vl& + lif&vI Bfvl)(bit 51, 51~, 51~ i + bit 51, 5'f&, 5'f, }

+(4sf v'f Bf&vf& —2Qf&v f —2Bfvf&f(bf& 51, 51~ t 51& i + 51& 5lt 51~ i 51~ t)

+12(+1+1&+vjvl&)(slvl& +1&vl})(bit bit bl&i bl&t bfiblt 51&i bl&i+ bit bli bl&t bl&t bit bli bl&i bl&i bit bit 51&t bl&i

+b Ibt bt' 'bt —b b b ' b'' +b'i b b' b' ]:+)) bi&i tb 1st

, where; x; signifies normal ordering, l. e. , an-
nihilation operators are to operate before creation
operators, and ( ) means a ground-state expecta-
tion value with respect to the ground state of the
g representation. As can be seen, we have terms
like (ground state I Taf, af, T 'Iground state), and
when we take the limit as V-~ this suggests that
a new set of states limb .„(T '

~ground state)) be
introduced, which depend upon the transformation
parameters in T. This will prove to be a useful
procedure. Therefore, when V , which is the
situation we are interested in, we wiQ have things
such as

(new ground state
~
g"„a-„~new ground state ) .

(S. ls)
As has been illustrated in the literature cited in
Sec. 1, T I ground state ) in general is in a differ-
ent representation than I ground state).

Imposing the condition that the coefficient of
5"„5» and of 5"„5"„vanish, and using the canonical

ps 2
condition (uf + v;) = 1, self-consistent equations can
then be determined for u; and vf. From Eq. (3.12)
the equations to be solved are

(g) P (2) 2 (2)f
2C; 'Nqeq+ujCq —v(C( =0

and

(p)t =Z -2~f., &;.', ,),

1
ffibi + fl(bit bit bli bli} (s. 2o)

where

a;=[(c; ) +~c
~ ] &o . (3.21)

where now I) = T 'I ground state). Solving Eq.
(3.14) using the quadratic formula, we obtain

(s. 16)

vx=-'[1+(-)C~f off ] (3.1V)
(2) (2)t

Ml~f =~s (Cf +C; )Bf (S.18)
(2) (2)t 2

where IC&l =Cj Cg, and the upper sign of gg

is taken at the same time as the upper' signs of
2

5y and Qy51 and likewise for the lowe r signs.
Then the bilinear part of H from Eq. (S.12}

becomes
(I) (P.) (234

zhi- -Z —[(uf- vf)cf -ufv, (c, + C, )]
2

~(b;, 5;,-5;, bf, ) . (S. le)

lf we take the upper signs in Eqs. (3. 16)-(3.18),
then

c- =Q
(+)

] ~

(2)C- =Z

~i-i'& f'tel't f'iilf't)

—2&T'f f&{gf&t gf&t)

(2)t p (2)
2Cy Qj'vy + QyCy —'UyCI —0 (3.14)

(s. 16)

But now what about the fourth-order terms in Eq.
(S.12)? We will proceed to show that they give no
contribution as V- ~. Using the anticommutation
relations of the b's, namely,

~bits& 51 is'f bit sbl is'+ 51'
~ s bli s 6ft 1 st s'

fb;„,5;,„.)=(5,„,5;.„,)=O, (S.22)
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[Hquaat Hbj] (3.24)

Therefore, if Eg. (3.24) is satisfied, then sand-
wiching [H,„,d, Hh, ] between eigenstates of HM

gives us

&s'iH,„„H„is&=&s'iH„H,„., is& (3.25)

&. iH,„„i.&= "&. iH,„„i.&, (3.28)

where

i.&=II ftio&, (3.2V)

and E, is the eigenvalue of Hb, operating on Is);
10) stands for the Fock ground state of the b's.
This means that the matrix elements of P,„«must
be energy conserving, E;=E~ with respect to the
eigenstates of Il„, if there is to be any contribution
from them in our "b" Hilbert space.

Now let us consider these energy-conserving
terms. As is the ease so many times when dealing
with interacting systems, it is convenient to use
Fourier-transformed quantities. At this point,
this will prove useful to us. Fourier transform-
ing H,„« in Eq. (3.12), we have as a typical term

k kg ka

+~k "k~k k +k+k +k -kQkyQk +k~ka

—Qk „k'Vk Qk +kQk + 2Qk kQk Qk +kVk1 1 P 3 g 1 3 3

—kg „u„ug,~m„- ):bg „., bf, bg, f, bg, : (3.28)

There are a nuxnber of other terms similar in
form to Eg. (3.28), but this will suffice for our
pu rpo ses.

Now, at this point, we need to recall from Eq.
(S.22) that

(S-„„,f„-. ,)=5„-„-,5, ,, (3.2

we find after some tedious algebra that the com-
mutator of H~, [in Eq. (3.20)] with the quadrilinear
terms in Eg. (S. 12) is

r
2 3 3 Pi

Hq„g~ Hyg] ZZ J|gt ~ ((4BP)PP)iv'fi —2sfivi —2Ãf8fg)B

x @f fr fi ff —f'r f'r ff
2

+ (4Q jsg1cg ~ 1Igs + 2Q|Ble + 2'015fe)

x (B;—Bf,)(bf, 5;, 5", , 5;,,)j:, l&f'
(3.23)

However, we have using Egs. (3.15)-(3.18) and

(3.21) that this commutator vanishes if we take
the typical case where the exchange integral J de-
pends only on the relative distance between lattice
sites and, in particular, we take this to be a
nearest- neighbor interaction. Thus,

However, in the limit as V ~, the momentum
spectrum becomes continuous (since M~ 1/V), so
that to be mathematically correct, Eq. (3.29)
should be given by

(f„-„,f „-.„,)= 5(k- k')5„.. .
where 5(k —k') is the Dirac 5 function. Therefore,
it is useful to introduce some new operators
(volume normalized b's) d„„d-„,given by

d- =(V)'~'(2.) "'f
d;„=(V)"'(2v)'~f-

(s. So)

(3.31)

so that for finite volume our anticommutation rela-
tions are

(d„-„,d;. ,,]= [V/(2v) ]5„-,„-,5„;,
(d„-„,d„-.„,] =(d;, „d„-.„,}= O . (s. s2)

Then for the situation we are interested in,
Eg. (S.32) gives the desired results

(d;„,d';, „,]=5(k-k')5„.. .
(d„-„,d;.„,)=(d„-, d„-,„,] =0 .

(3.33)

For further mathematical preciseness, as
pointed out in some of the references cited in Sec.
I on inequivalent representations, we smear out
our annihilation and creation operators with an
orthonormal set of square-integrable functions,
fz(k), by defining our fermion annihilation opera-
tors as 33

d,(f,)=(2.)'(~)-'Zf, ( )k;d„(~=1,2, .. .) .
(s. 34)

Then the basis states in Eq. (3.27) are defined as

i » =d.(f,) i
o'&,

i
2& =d,(f,)d', ,(f„)i

O &,
(s. s5)

etc. , where I 1) stands for a one-particle state,
12) for a two-particle state, and Io ) for the Fock
ground state of the d's. These states are nor-
malizable and allow us to construct a mell-behaved
Hilbert space, whereas the states obtained by op-
erating on the Fock ground state of the d's by the
dk, 's are not. However, for most practical cal-
culations the bk, or dk, can still be used, but if
problems are encountered, the d, (f~)'s should be
used»

Now, having the mathematical machinery, if we
look at the matrix elements of the Fourier trans-
form of B,„«with respect to the states in Eq.
(3.35), recalling from Eq. (3.26) that they must
be energy-, conserving, we have for the represen-
tative term in Eg. (3.28),

~ ~

-&s'i(2v)'(4V')-'Q P Q F(k, k„k,)
k
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where

E(ky kg~ kp) =eT f(Bf fvf 5f ~fUf +Sf PLI vg ~igi1 1 3 8 1 1

&P7: -g +5 +Pf. +PT~P7. +jf -PP71 f7 +F+f,1 3 3 1 1 2

+ 2' gQf Qf +$5/1 2 3 1

x vi,e„-;„u;), (3.3'7)

and (EC) means energy conserving, i. e. , for Eq.
(s. s6),

(s. s8)Eq „„+E~,„=Eq +Eq

Taking, for example, two-particle states in Eq.
(S.36) and using Eqs. (3.26) and (3.31)-(3.36),
we can reduce Eq. (3.36) to

I

(3.)'(4v')-'&0Io& QZ 2 fy (l, -k)
jf k1 ka

xf~ (k~+k)E(k, kg, kg)j fg (kg) f~4(ka)

lim 4g ~ V "1~3 dk1 W~ dk~

-f~ (ka) f~ (k, )} . (3.39)
-EC

Now what is important is the energy-conservation
requirement imposed on Eq. (3.89). Equation
(8.38) could be solved for the x component b' of k
as a function of k„ka, O', O'. Then Eq. (8. 39)
becomes in the limit as V- ~,

Si= —i2(bi bi -bi bi)
+ X~-=s-+~3-=S- b-'1 1 1 lt 1t

g

Therefore, Eq. (8.41) can be written

(s.43)

H=-5 Bisf+C (3.48)

(The constant will be determined by setting our
lowest-energy eigenvalue. at zero. )

Equation (3.43) is just what we had hoped for at
the outset. It describes an assembly of indepen-
dent spin-& particules. Obviously, Bg can be in-
terpreted as an internal magnetic field produced
by the interactions between the Fermions, and all
spins are aligned in some manner by this field.
For 81 & 0 the state of lowest energy is that of
paraQel alignment of the physical particle spins
in the +z direction [and for BI «0, in the (-g)
direction]. The ground state of Eq. (3.48) can then
be written

Io&»„,= Io&„„.= I~~. ..s. . .&
= (bi, )I0&,

(s.44}
where i o&»~, stands for the physical ground state.
[Then from Eq. (8.43),

c = »yl(0 I+Bisi I 0&»rs (s.46)

x [f ~~ [kf~-g(k„ka, b", b')

xi+b~j+b'5] f~ [kg+g(kg, ka, b", b')i+bj +b'fa]

x[f (k )f (k ) -f,(k,)f (k )]

xy[Q(k„, k„b', b')i

+ a"j+«4), i„i,J)), (3.eo I

where g represents "function of" and the (V) 'I'
factor coming as a result of energy conservation
makes the matrix element vanish when V
In precisely the same manner as Eq. (3.40) was
obtained, it can be shown that all the matrix ele-
ments for H,„~vanish in the limit as V

Consequently, since an operator is determined
by its matrix elements in the Hilbert space, our
original Hamiltonian written now in terms of the
5's just reduces to

P = P~(+ C = -Z —BI(bf, bf, —bf, bI, ) + C ~

(s.41)
Intron. Eqs. (3.3) and (S.11) we have for our sec-
ond-quantized spin operators in terms of the 5's,
denoting these by I, in order to distinguish them
from the original 8»

8'f =-. (b;, bl, - bl, b;,),

T exp '&at pent Age Qjf t eg y (s.46)

where u„"= cose-„, e-„=sine„. Then from 0 = T g 7
and io').,«=10)„«=Tio)»„, we have

Io),„„.=r-'Io}.„, . (S.47)

Thus, letting V , we obtain

.„,(o I o),„„=,„,.(o I
r

I o),„„,= Ifm /exp[ —v(sv)-'

x f dk
I

ln cosef, I ]}= 0 . (8.48)

From the references cited in Sec. I on inequivalent
representations this meatus that T is not unitarily
implementable (subjectively) into our physical
Pock space (b space).

Now, of course, there are infinitely many pos-

and we will not be concerned with this term in
further work, other than to remember that it sets
the minimum energy at zero ]Thus, .using the
ive steps at the beginning of this section, we have

indeed found a ferromagnetic representation for the
Heisenberg exchange model.

As we will now indicate, this ferromagnetic
representation is inequivalent to the original g
representation. From the dynamical map, Eq.
(3.11), we formally have for the operator con-
necting 5's and g's,
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exp le g&;) ~0)„,.
1

If we consider the scalar product

, „(0
~
exp(18 'Z I

)~
0), „

(3.49)

and use the Euler-angle representation (&P, 9, g)
for 9, then in the limit as N- ~, V- ~, N/V- p,
we have

Ilm ' ybys(0 ~
exp $9 'Q sI ~0)yby8

N

~ lim (cos-, 9) =0 . (3.50)

Therefore, the degenerate ground states of our
ferromagnetic Hamiltonian, Eq. (3.43), are not
connected by unitary operators and belong to dif-
ferent Hilbert spaces.

At this point, it may also be beneficial to note
that the original-variable Hamiltonian, Eq. (3.7),
has more than one representation description in
the limit as V-~. If we explicitly normal order
Eq. (3.7) [or Eq. (3.3)] without transforming to
generalized parametrized variables, we then find
immediately that

Then in exactly the same manner as we found Eq.

sible z directions along which the spins could be
aligned. We now proceed to indicate that all of
these ferromagnetic representations are inequi-
valent. First of all, the ground state degenerate
with IG)~„„„ i.e. , have different directions of spin
alignments, are obtained from

(3.43), we find for this case in the limit as V-~
that II reduces to

H- —g Jo (cE), sg, +QI, Qg, )

For this representation, 0 spins are just as favored
for the ground state as 4 spins at any site and with
respect to any axis. This could be interpreted as
a "paramagnetic" representation.

IV. CONCLUSION

In conclusion, applying Umezawa's methods of
quantum field theory to solid-state systems, we
have shown explicitly that the Heisenberg mag-
netic-exchange model does describe a ferromag-
netic system when one is in the appropriate rep-
resentation. All the higher-order terms were
definitely accounted for, and this was accomplished
without using the adiabatic theorem. The method
used to eliminate these terms certainly adds
validity to taking the exchange integral to depend
only on relative distance between lattice sites and,
in particular, on nearest neighbors; because by
doing this, we were then led directly to the
ferromagnetic Hamiltonian in Eq. (3.43).

It is important to point out that Eq. (3.43) can
be obtained just by letting V become very large,
and not necessarily going to ~, as can be seen
from Eq. (3.40). How large depends on the order
of magnitude of the other factors in Eq. (3.40).

Thus, the Heisenberg exchange Hamiltonian can
properly be called the Heisenberg ferromagnetic
Hamiltonian.

In a future paper, the physi. cal implications in-
volved in picking out the ferromagnetic represen-
tation for the Heisenberg exchange model will be
discus sed.
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