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Bates of high-energy cosmic-ray muon pairs have been measured for separations up to
70 m. Detailed calculations imply that the mean transverse momentum (pr) of mesons
with x & 0.01 is 0.66 + 0;$0 GeV/c at laboratory energies of & 10000 GeV. We find that the
high-pz muons result mostly from decay of abundantly produced particles with lifetimes
& 10 8 sec, such as pions and kaons.

We report here measurements of pair separa-
tion distributions (decoherence curves) for deep
underground muons using a main detector and
auxiliary "outrigger" detectors. These data are
compared to predictions of Feynman scaling and
several p ~ models. Previous Utah decoherence

data from Coats et al. ' (analyzed by Adcock et al. '
with a different interaction model than used here)
had a significant systematic error because of the
loss of about a 20% contribution to main-detector
decoherence curves due to events with too large
a number of muons in the main detector. An ex-
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panded buffer memory removed this problem.
The decoherence curve is the coincident count-

ing rate per second per steradian of two small
detectors (as a function of their separation X) di-
vided by the product of their areas. For our zen-
ith angles and depths, it is approximately given
by R(X) =R, exp(-X/X, ), where X,= 5-15 m. The
distance of a muon from the shower axis is ap-
proximately pr ch sec8/E„with pr the transverse
momentum of the muon's parent meson, E„the
parent's energy, h its vertical height of produc-
tion, and 0 its zenith angle. Typical values are
p r = 0.5 GeV/c, E, = 2000 GeV, and h sec 0 = 20 km,
yielding a separation of 5 m.

Measurements for separation ( 11 m were made
in the main Utah detector, which has been de-
scribed elsewhere. ' It consists of 600 cylindri-
cal spark counters arranged in fifteen vertical
planes, each 6x10 m', and four Cherenkov count-
ers for triggering. The spark counters are sen-
sitive for only 2 p,sec after pulsing. Sonic rang-
ing locates the discharge along their axes to + 3
mm. The detector is =10' g cm thick so that
muons are the only detected particles which trav-
erse the entire apparatus. The average measured
angle between reconstructed muon tracks is &1'
and no evidence of track divergence has been
found. On the average ten sparks are associated
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with each muon in the detector. The original buf-
fer memory was capable of storing information
from 108 sparks and the expanded one from 1000
sparks. The average double-muon-event efficien-
cy was 91% in the main detector and showed no
change with time. ,

Three outrigger detectors are mounted on mov-
able mine cars in an adjacent tunnel separated
from the main detector by a minimum of 800 g
cm ' of rock. Each outrigger has eight spark
counters in each of three horizontal planes with-
out additional absorbing material. Reconstructed
tracks were required to be parallel to main-de-
tector muon tracks to within the outrigger-detec-
tor angular resolution of 15'. To determine the
spurious background rate the outrigger detectors
were pulsed for the equivalent of 20% of the out-
rigger running time. No acceptable track was ob-
served with three collinear sparks, one in each
plane of counters. Outrigger-detector efficiency
was 65% with this requirement and a main-detec-
tor trigger. The main-detector single-muon
overall efficiencies were =85% for more than ~

of the running time and measured muon intensi-
ties agreed within 5/0 for the entire run. The pos-
sible separations were 10-78 m for pairs of a
main-detector muon and an outrigger-detector
muon. A more detailed description of the experi-
ment is available. 4

The data were consolidated in slant-depth and
zenith-angle bins using parametrized centering
functions. Figure 1 shows the decoherence mea-
surements at 0 = 47.5' and a slant depth of 2.4
&10' g cm '. Curve A is an exponential fit to the
data. The estimated errors are statistical only.
The bin from 0 to 1 m was not used because of
inefficient recognition for separations &0.3 m.
Table I lists the best-fit values for Xo obtained
for individual depth and angle bins using a maxi-
mum-likelihood fit and Poisson statistics. The
reduced y' values g„' were computed by consoli-

io'— TABLE I. Measured and predicted Xo.
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FIG. 1. Muon-pair separation distribution at a zenith
angle of 47.5' and a total depth of 2.4 && 10 g cm com-
pared to curve A, best fit by an exponential; curve B,
scaling-model prediction; curve C, scaling model with

P2 —1.5P» curve D, p2 -fit prediction; curve E, p2
fit prediction. Curves B-E' are normalized to data at
5m.
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dating bins with & 5 counts. Errors are multi-
plied by the square root of y„' for y„'&1. There
is some indication that A, exp(-X/X, ) does not de-
scribe the measurements adequately. At 8= 45
and a depth of 2.5 x 10' g cm ' our Xo is 15/0 low-
er than that of Coats et al. '

For purposes of comparison, Monte Carlo cal-
culations have been done using a detailed scaling
model described elsewhere. ' The calculations
sample a primary cosmic-ray spectrum propor-
tional to E '" and a composition from low-ener-
gy observations to develop atmospheric hadronic
cascades. Decaying mesons yield high-energy
muons. Multiple scattering, geomagnetic deflec-
tion, and muon energy losses, with fluctuations,
are simulated. The decoherence calculation is
primarily sensitive to the assumed pr distribu-
tions. The energy-independent form of this dis-
tribution for pions with x =pz/p~„&0. 01 was

do/dpr ~pr'" exp[- pr/o. (x) j,
with n(x) =0.141+0.172@—0.172x'. This was ob-
tained from a fit to 19.2-GeV p-Be and p-AI in-
clusive data' with x& 0.3 together with the x de-
pendence of (pr) from the "sea-gull effect" ob-
served in 24-GeV/c p-p interactions. ' For x
&0.01 the assumed (pr) for mesons (both pions
and kaons) is 0.41 GeV/c.

The deeoherence calculations are somewhat
sensitive to the total hadron-air inelastic cross
sections and to the details of the assumed pri-
mary-cosmic-ray spectrum and composition
(compositions ranging from predominantly pro-
tons to predominantly Fe nuclei were tried). Re-
sonable variations of these quantities, including
variation of the primary spectrum from E "0 to
E "', change the calculated average separation,
Xo, by approximately 15%. Uncertainties due to
assumed inclusive particle spectra, ete. , are
less important if scaling is approximately valid
at the relevant energies.

Curve B of Fig. 1 is predicted by the above
model. The measured and calculated values of
Xo are compared for all five depth-angle combina-
tions in Table I. Roughly, Xo is proportional to
the parent meson's (pr). The ratio of measured
to calculated Xo with minimum g' for the values
in Table I is 1.6. The reduced g' is 1.9, indicat-
ing that use of a single ratio for all depths and
angles is too simplistic or that there are neglect-
ed systema'tic errors. Multiplying all Monte Car-
lo pr by 1.5 improves the agreement with the ob-
servations. Curve C of Fig. 1 shows the result
at 47.5' and 2.4&10' g cm '. For these predic-

tions, the best ratio of measured to predicted Xo
is 1.08, again implying a factor of (1.08)(1.5) = 1.6
increase in (pr). Thus, (pr) for all mesons with
x &0.01 in hadron-air collisions with incident par-
ticle energies of about 8-20 TeV is found to be
0.66+0.10 GeV/c. Comparison of (pr) for parti-
cles with x&0.02 with that from extremely high-
energy data which include particles from the re-
gion @=0 is misleading since (pr) is strongly af-
fected by the numerous particles with x&0.01 with
lower pr because of the sea-gull effect and the E '
dependence of d'o/dp'. The region with x&0.01 is
not so important for our data or for lower-energy
measurements made in the entire x region.

Our scaling-model calculations show that the
average energies per nucleon of primary nuclei
yielding pairs of muons are independent of the
primary's atomic weight, A, and are 30-70 TeV/
nucleon for depths 2.4&10'-4.8&10 g cm . Mu-
ons in observed pairs are typically produced in
several generations of atmospheric interactions.
Median laboratory energies of these collisions
are about 8 TeV at 2.4&10' g cm and 20 TeV
at 4.8 X10' g cm ' and mesons and nucleons are
of comparable importance as incident particles.
Most pairs result from separate collisions, es-
pecially when the primary is not a proton.

If the pr distributions consist of two compo-
nents, with the low-p r component given by Eci.
(1), then comparison of the data and predictions
indicates that & 30% of the mesons are in the high-
pz, component. This component could conceivably
result from direct decay to muons of such "new"
particles as the g(3.1). But muons from particles
with lifetimes r «10 8 sec (or from direct pro-
duction processes) would not display the sece
zenith-angle dependence of muons from pion and
kaon decay. The Utah muon-intensity work'
shows that ~ 10% of the muons at 3.2 &&10' g cm 2

may be produced without the sec0 dependence
(isotropic production), inconsistent with the - 30/0
of the muons in the high-pr component. An iso-
tropic high-pz, component would also give rela-
tively fewer high-pr muons at 62.5 than for 47.5'
at a depth of 3.2 X10' g cm ', contrary to the data
in Table I. High-pr muons apparently result
mainly from the decay of particles with T ~ 10 '
sec, such as pions and kaons.

Accelerator experiments at CERN intersecting
storage rings and Fermilab, other cosmic-ray
experiments, and theoretical arguments suggest'
that for high pr

Ed'a/dP'~Pr "f(xr),
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where xr ——pr/p~„and f is energy independent.
Halzen and I uthe' have found expressions giving
good descriptions of accelerator high-pr inter-
actions with either K = 4 or 1V = 8 ultimately pre-
vailing. We have calculated the coherence curves
at 47. 5' using the pz, dependences given by the

pr and pr ' Halzen-Luthe formulas. The high-

pr component is assumed to be enhanced by A'i'
=2.45 for p-air relative to p-p collisions. " Oth-
erwise the calculations follow our ordinary mod-
el.

Curves D and E in Fig. 1 are predictions for
these models. The shape of the pr ' curve (curve
E) is in poor agreement with the 2.4x10'-g-cm '
data but the pr ' curve is in better but not good
agreement, thus weakly favoring the pr formu-
la. In the energy range of interest, this formula
gives (pr) = 0.50-0.67 GeV/c and for 1U = 8 (pr)
=0.39-0.40 GeV/c. Our calculations show that

(pr) is model dependent and increases from 0 to
-2 GeV/c as a function of separation in the range
0-50 m, implying thatxr=pr/p „(0.03 and the
c.m. system angles are ~ 10'. Several assump-
tions we used should be emphasized. We assumed
that the p~ distribution shapes are x independent
and identical for incident mesons and nucleons.
(If incident mesons produce relatively more high-

pr mesons than incident nucleons, the pr ' law
might agree better with the data. ) Correlations
of pr for particles produced in the same interac-
tion were neglected, perhaps lowering the pre-
dicted pair rate at large separations.

Good agreement with multiple-muon rates for
events with 30 muons was obtained previously
using our scaling model with (pr) =0.41 GeV/c. '
Fair agreement is still possible" with the multi-
ple-muon rates using the broadened pr distribu-
tions, but this requires a higher primary-cosmic-
ray intensity or a greater abundance of heavy pri-
mary nuclei at energies from 10" to 10" eV than
was obtained with (pr) =0.41 GeV/c. For exam-
ple, a spectrum fitted»' to the muon data from a
model in which all pr values were increased by a
factor of 1.5 yielded a primary rate at 3 x10" eV
which was about 1.4 times higher than that ob-
tained with (pr) =0.41 GeV/c. We have discussed
the problem of the consistency of the primary
spectrum obtained from this work with that from

extensive air-shower data elsewhere. "
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