
VOLUME 88, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 25 FEBRUARY 2002

085701-1
Nucleation in Systems with Elastic Forces

W. Klein,1,* T. Lookman,2 A. Saxena,2 and D. M. Hatch2,†

1CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
2Theoretical Division, T-11, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 2 July 2001; published 11 February 2002)

Systems with long-range interactions when quenched into a metastable state near the pseudospinodal
exhibit nucleation processes that differ from classical nucleation seen near the coexistence curve. In
systems with long-range elastic forces the description of the nucleation process can be quite subtle due
to the presence of bulk and surface elastic compatibility constraints. We analyze the nucleation process in
a simple 2D model with elastic forces and show that the nucleation process generates critical droplets with
a different structure than the stable phase. This has implications for nucleation in many crystal-crystal
transitions, specifically martensites and shape memory alloys, and for the structure of the final state.
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Nucleation in systems with long-range forces can be
very different [1–5] than the process predicted by clas-
sical theory [6,7]. The reason for the difference is the
presence of a pseudospinodal [8,9] that affects the struc-
ture of the critical droplet [2–4] and alters the dependence
of the nucleation rate on the thermodynamic parameters
[1,10]. An interesting and important class of materials ex-
hibiting pseudospinodal behavior is that involving elastic
forces, a subclass of which undergoes martensitic struc-
tural transitions [11]. Examples of such a transition are
shape memory alloys [12], e.g., FePd, NiTi, and CuAlNi
that transform on cooling from an “austenite” phase at high
temperatures to a mesoscale twin phase (i.e., “martensite”)
below the martensite transition temperature To [13]. This
transition is of first order and takes place via nucleation
[14]. However, the nucleation process in these systems is
not well understood [15–22].

The purpose of this Letter is to present an analysis of
nucleation near the pseudospinodal of a model with elastic
forces. Within a strain only description, a complete specifi-
cation of the critical droplet profile requires, in addition to
the usual bulk terms [3,10], a consideration of elastic com-
patibility constraints. This is, to our knowledge, the first
treatment that describes nucleation near the pseudospin-
odal in this class of materials and is the first indication
that the compatibility constraint plays an essential role in
this nucleation process. In addition, this is the first sugges-
tion that homogeneous nucleation in a crystal-crystal phase
transition takes place with a critical droplet that does not
have the structure of the stable phase (e.g., martensite).

We analyze a model that exhibits a two-dimensional
square to rectangle transition [23] and captures the essen-
tial physics of crystal-crystal transitions in systems with
elastic forces. The order parameter (OP) is a rectangular
or deviatoric strain, which is a symmetry adapted com-
bination of the 2D strain tensor ´mn�m, n � x, y�. The
non-OP, or secondary strain components, are related to
the OP through a compatibility equation. We can write
a Ginzburg-Landau (GL) free energy in the form [23]
F�e� � Fo�e� 1 Fgrad�=e� 1 Fcs�e1, e2�, where
0031-9007�02�88(8)�085701(4)$20.00
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�´xx��r� 2 ´yy��r�� is the OP strain,

e1��r � �
1
p

2
�´xx� �r � 1 ´yy��r ��, e2��r � � ´xy� �r � are the

compression and shear strain, respectively, and t �
�T2Tc�
�To2Tc� , where Tc is the fictitious temperature at which
the relevant elastic constant would completely vanish.
The coefficients A1 and A2 are elastic constants for the
compression and shear, and a and b are strain gradient
coefficients independent of T .

The St. Venant compatibility equations for the sym-
metric strain tensor are = 3 ���= 3 ´� �r ����T � 0. Using
the Lagrangian multiplier formalism [24] in d � 2 we
find for Fourier expandable strains e��k� that e1� �k� and
e2��k� are proportional to e� �k�, the Fourier transform of
e� �r� with �k dependent coefficients. This result allows
us to replace Fcs�e1, e2� in Eq. (3) with an OP poten-
tial Fbulk

cs �e� �
R

d �k Ubulk� �k � je��k �j2, where Ubulk��k� �
�A1�k2

x 2 k2
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xk2
y �. In addition, the

presence of a boundary (i.e., the “habit plane”) between
the high symmetry austenite phase and the low symmetry
martensite phase generates a surface term,

Fsurface
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A2

2

Z
d �k
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so that Fcs � Fbulk
cs 1 Fsurface

cs [23,25]. The integral is
over the wave vector modes of the interface between
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phases, J is independent of �k and depends only on
the ratio A2�2A1, and the orientation factor I� �k� ~

�k2
x 2 k2

y �f�kx , ky� is a known function. Also, kx� y� is

the x� y� component of �k with respect to the underlying
square lattice [23,25] and k � j�kj.

The free energy [Eq. (1)] has the following form: For
t . 4�3 there is one minimum at e � 0. For 1 , t ,

4�3 there are three minima, but e � 0 is the global mini-
mum. At t � 1 there are three degenerate minima. For
0 , t , 1 there are again three minima. The one at
e � 0 (the austenite phase) is metastable while the two
minima, symmetric about e � 0 (the martensite phase),
are stable. The stable martensite phases have twinning and
a striped structure [23,25]. For t , 0 there is no longer
a minimum at e � 0. Note that this analysis does not
consider instabilities to perturbations with nonzero wave
vectors. We return to this point below. We first investi-
gate the nucleation process from the metastable minimum
at e � 0 near the spinodal at t � 0. From the spatially
homogeneous free energy it is simple to calculate the OP
exponent e � tb with b � 1�2. Reinstating the Lapla-
cian term in the free energy it can be seen that the corre-
lation length diverges as j � t2n with n � 1�2. Adding
a spatially homogeneous external field to the free energy
leads to a susceptibility x � t2g with g � 1 [26].

Turning to nucleation near t � 0, we first note that nu-
cleation does not occur in systems with infinite range inter-
actions. That includes mean-field systems [10]. However,
systems with elastic forces do not have infinite range in-
teractions due to the screening from defects [27]. Hence
we are dealing with systems that have the same bulk and
surface interactions except they have an exponential cut-
off of the form exp�2 r

R �, where R ¿ 1 is the interaction
range and r � j �rj. Because of this modification, the con-
tribution in �k space is the convolution of the infinite range
terms with a highly peaked Lorentzian which becomes a
delta function in the limit R ! `.

Since the interaction range is large but finite the system
is no longer mean field but near mean field [28,29]. In
order for the mean-field approach, including the idea of a
spinodal, to be a reasonable approximation when R fi `,
the system must satisfy the Ginzburg criterion [28,29],
namely,

jdx

j2de2 �
t21

Rdt2d�2t
ø 1 . (4)

Note that the correlation length, j, as are all lengths, is
in units of R. The Ginzburg criterion can be rewritten
as Rdt22d�2 � A ¿ 1, where A is a fixed large number.
When the Ginzburg criterion is satisfied, many aspects of
the mean-field spinodal are still present. However, the
singularity has been smeared out [8,9]. The larger the A the
better the spinodal is approximated by the pseudospinodal.
Since A ¿ 1 for these systems the pseudospinodal is very
close to a true spinodal.
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To calculate the nucleation or critical droplet structure
we use saddle point techniques [1,4,6,10,]. Near the pseu-
dospinodal there is an incompletely softened mode that can
be identified by examining the �k coefficient of the Gauss-
ian term in the action. We take the action to be the free
energy in Eqs. (1)–(3) [6] and initially we ignore the sur-
face term. The structure factor S��k� is then

S� �k� �
∑
t 1

6jaj

4
k2 1

b

8
k4 1 Ubulk��k�

∏21

, (5)

where the 1 �2� is for a positive (negative). Consider first
a, b . 0. Since all terms in S� �k� are positive semidefinite,
the only divergence is when k ! 0 and kx � ky . The sur-
face term appears to strongly suppress the fluctuations that
cause the divergence. However, this term was derived for a
sharp surface boundary [23,25]. We need to extend this re-
sult to a surface with width j. The reason for this particu-
lar scale will become clear. We can consider the smooth
surface to be a sequence of sharp surface boundaries or
steps, each one contributing a term to the free energy of
the form given for Fsurface

cs . Since kx � ky, I��k� � 0. We
assume a form for the surface as esurface ~ exp�2r�j� and
j ¿ R. The difference in order parameter amplitude be-
tween steps is

Desurface ~
d
dr

exp�2r�j�dr � 2
exp�2r�j�

j
R ,

where we have chosen our differential step dr � R. This
is justified since all lengths are in units of R and R is the
coarse graining scale in the GL theory [4,10]. Taking k �
j21 and dk � j21, the free energy cost for the surface
is Fsurface � j2e2� �r�

j , where je� �r� scales as e� �k� and the
number of steps in the surface is j�R. As we will see,
the dominant contribution to the free energy F scales asR

d �r te2��r� � j2te2, where by e we mean to include
only the dependence of e� �x� on t. Comparing these two
scaling forms we have Fsurface � F

C
A1�2 ø F, where C

is a constant of order 1 and A ¿ 1 from the Ginzburg
criterion. The Ginzburg criterion also implies that, for a
fixed but large R, t cannot reach zero [10] and the system
remains near mean field. The ratio Fsurface�F � 0 only as
R and hence A ! `.

For the long-range potential we are using, the surface
term is, in general, small enough to neglect. Note that if A
is not infinite, then the surface term is added to S��k� elimi-
nating the divergence at k � 0. Since A ¿ 1 the struc-
ture factor can be extremely large and the true spinodal
is well approximated. In calculating the surface contribu-
tion we have assumed that there is a domain with nonzero
e� �r� with a linear size of the correlation length j embed-
ded in the metastable e� �r� � 0 phase. We now proceed
to demonstrate the existence of this domain. First we note
that a and b in Eq. (2) must have units of length to the
second and fourth powers, respectively, and hence are pro-
portional to R2 and R4 as all lengths must be proportional
085701-2
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to R [10]. The Euler-Lagrange equation for the critical
droplet is obtained by setting the functional derivative of
F�e� in Eqs. (1)–(3) equal to zero to obtain

2
a
2

=2e��r� 1
b
4

=4e��r� 1 2te��r� 2

8e3��r� 1 6e5��r� 1
Z

d �r 0 Ũbulk��r, �r 0�e��r 0� � 0 , (6)

where Ũ��r�bulk is Ubulk��r� multiplied by the exponential
cutoff exp�2 r

R �. We now assume a solution of the form

e��r� �
X
n

cn�t� exp�i �ko,n ? �r�c
µ

�r

L

∂
� G�t, �r�c

µ
�r

L

∂
,

(7)

where L ¿ R, �ko,0 is the value of �ko,n at which the
mean-field structure factor [Eq. (5)] diverges, and c0�t� ¿
cn�t� for n fi 0. For t � 0 the cn for n fi 0 can be
neglected [29]. We are near a pronounced pseudospin-
odal so that we expect the critical droplet to have an inte-
rior structure similar to spinodal critical fluctuations [4,10]
[see Eq. (5)]. Since a . 0 implies �ko,0 � 0, with the as-
sumed form for e� �r� in Eq. (7), the Euler-Lagrange equa-
tion becomes
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a

2
=2c

µ
�r

L

∂
1

b

4
=4c

µ
�r

L

∂
1 2tc

µ
�r

L

∂
2

8c3

µ
�r
L

∂
1 6c5

µ
�r
L

∂
� 0 . (8)

Since kx � ky the term involving Ũbulk gives no con-
tribution and the c0�t� are chosen so that G3�t, �r� �
G�t, �r � [4,30].

Since t � 0 the solution of Eq. (8) has the scaled form

c� �r� � Dt1�2c̃

µ
B�r
j

∂
, (9)

where the =4c� �r
L � and c5� �r

L � terms have been neglected
since they are higher order in t, B and D are constants
determined from Eq. (8), and L � j. This form of the
solution is what we assumed when we calculated the
contribution of the surface term for a smooth surface.
Hence the omission of the surface term is justified self-
consistently as is the scaling of the bulk free energy used
to compare with the surface contribution.

The nucleation barrier, DF, is calculated by insert-
ing the critical droplet solution, Eq. (7), into the free en-
ergy [6], Eqs. (1)–(3). It is straightforward to see that
DF ~ Rdt22d�2 � A. Therefore, if A � ` the system
is mean field, rather than near mean field, and there is no
nucleation.

Note that the saddle point object which is the nucleation
droplet shows no evidence of the twin stripes seen in the
simulation of the stable phase of this model [23]. The criti-
cal droplets near the pseudospinodal are unstable [2,10]
and differ from the metastable phase by a strain order of
085701-3
magnitude given by t1�2 � 0. Their initial growth phase
is a “filling in” or an increase in the order parameter differ-
ence [2,10]. The filled in droplet has a sharp interface and
hence must have twinning [23]. Therefore, the symmetry
breaking which results in the twin stripes must appear in
the growth phase. As we will see, if a, the coefficient of
the ���=e��r����2 term, is negative the case is somewhat differ-
ent. We treat this next.

For a , 0 and b . 0 we take the minus sign in the
structure factor in Eq. (5). Since Ubulk��k� is independent
of k, the value of k where the structure factor diverges is

k � 6
1
p

b

∑
jaj

4
6

µ
jaj2

16
2

�t 1 to�b
2

∂1�2∏1�2

, (10)

where 0 # to # 4r is a fixed value of Ubulk��k�. For
t .

jaj2

8b 2 to there is no divergence for real k and hence
no instability. Since the largest value of t for which there
is an instability is the spinodal, then for a , 0 the spin-
odal is at ts �

jaj2

8b . 0. The structure factor will now di-
verge at a nonzero value of k � ko , where ko is given by
Eq. (10) with to � 0. Note that the additional instability
generated by a , 0 is at a value of t greater than t � 0
expected from a simple thermodynamics calculation. It is
straightforward to calculate the exponents of the correla-
tion length and the order parameter which have the same
values as those at the t � 0 spinodal for a . 0.

Turning to the nucleation problem for a , 0 and ini-
tially ignoring the surface term, the Euler-Lagrange equa-
tion has the formZ

d �r 0 S̃21��r 0�e��r 2 �r 0� 2 4e3� �r� 1 6e5� �r� � 0 ,

where S̃21��r� is given by the Fourier transform of the
inverse of S��k� in Eq. (5) with Ubulk� �k� replaced by
Ũbulk� �k�. We again assume a solution of the form given in
Eq. (7) where �ko,0 is the vector at which the structure fac-
tor diverges with a , 0. Since to � 0 implies kx � ky

and j�ko,0j is given by Eq. (10), �ko,0 is specified. We now
expand c� �r2�r 0

L � in a gradient expansion about
�r
L to obtain

2jaj
2

g2=2c

µ
�r
L

∂
1 �t 2 ts�g0c

µ
�r
L

∂
2 4c3

µ
�r
L

∂
� 0 ,

(11)

where, anticipating the scaling, higher order derivatives
and higher powers of c� �r

L � have been neglected. The con-
stants g0 and g2 are

R
d �r �exp�i �ko,0 ? �r� 1 exp�2i �ko,0 ?

�r��S̃21��r� and
R

d �r r2�exp�i �ko,0 ? �r� 1 exp�2i �ko,0 ?
�r��S̃21��r�, respectively. As above, the cn have been cho-
sen so that G3�t, �r� � G�t, �r�. The solution of Eq. (11)
is of the form

c

µ
�r

L

∂
� A�t 2 ts�1�2c̃

µ
B�r

j

∂
, (12)

justifying the omission of higher order terms.
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The strain field of the critical droplet

e��r� � A�t 2 ts�1�2

3 �exp�i �ko,0 ? �r� 1 exp�2i �ko,0 ? �r��c̃
µ

B�r

j

∂
,

where we have neglected terms with n fi 0, is not that of
the stable phase but does exhibit a spatial modulation of
regions where e� �r� fi 0. Consequently, the stable phase
structure, as in the case a . 0 where there is no spa-
tial variation in the strain, must evolve during the growth
phase. Note that the solution, Eq. (12), justifies the omis-
sion of the surface term via an argument virtually identical
to the one given above.

We have calculated the first critical droplet structures
for nucleation from an austenitelike phase to a twinned
martensitelike phase near the pseudospinodal in a system
with elastic forces. The droplets do not have the stable
phase structure as expected from classical nucleation [6,7]
and in the a . 0 case (e.g., V3Si, Nb3Sn) exhibit no spatial
modulation. Martensitic materials such as FePd and InTl,
with a , 0 (and b . 0) determined from their phonon
dispersion curves, are known [17]. Droplets that do not
have the stable phase structure have been predicted in the
nucleation of the crystal from the melt [4,5], but this is
the first indication of such a droplet structure in a crystal-
crystal transition. It is also the first result that demonstrates
the importance of the compatibility constraints to the phase
transition kinetics.

It is important to note in systems with R ¿ 1 that
classical nucleation is strongly suppressed. In the classical
case the nucleation rate is proportional to exp�2 Rdsd

Dfd21 �
[6,7] where s is the surface tension between the droplet
and the surrounding metastable state and Df is the
free energy density difference between the stable and
metastable states. For classical nucleation, near the
coexistence curve, s � 1 so that for R ¿ 1 nucleation is
severely suppressed. In order to have nucleation in a rea-
sonable time frame the quench must bring the system close
to the pseudospinodal where s ø 1. Therefore, nuclea-
tion near the pseudospinodal will dominate the phase
transition process in realistic experiments [14]. Finally,
the form of nucleation discussed in this Letter allows the
possibility of evolution into metastable crystallites with
structures different than the stable phase.
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