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Rare-earth alloy®RAg, _,In, (whereR=La, Ce, and Brare improper ferroelastic materials with the CsCl
structure. A weakly first-order phase transition occurs with the softening of a zone-edgeokle that drives
the material from a cubic phase to a tetragonal phase. Based on Ginzburg-Landau theory, we utilize the
complete free-energy density, constructed from a six-dimensional primary order pardstetfile that
couples to strain, to study domain formation. The model allows the study of complex antiphase structures that
appear in this cubic-to-tetragonal phase transition. With the help of numerical techniques, the order-parameter
profiles across antiphase boundaries of different orientations and their temperature dependence are calculated.
We find a single set of two coupled dimensionless governing equations, which are applicable to order-
parameter profiles across all antiphase boundaries for this transition.
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. INTRODUCTION change?*31t has been shown that the two formulations are
equivalent and can be converted from one to the other by a
Landau theory was originally developed for a second-otation of basis within OP spacéln this paper, we use the
order phase transition for which the amplitude of the soft-lattice-dynamical formulation, which was also checked
mode phonon becomes dominant near the phase-transiti@gainst the group-theoretical approach using the program
temperaturé. This expansion method of using only the am- ISOTROPY.*®
plitude of the dominant mode is also applicable to the case of The soft phonon mode in La(Ag.In,) (x=0.2) has
a weakly first-order phase transitié.To account for the been measured by several grodds-8Specifically, the trans-
inhomogeneous structures that occur as a result of the phaserse acousti¢TA) phonon mode of the parent phase with

transition,_ an energy term associgteq with order—paramgte;,(,ave vectork=[1,1,0](/a) and polarization in th€110]

(OP) gradients was introduced, which is often called the Gin-gjrection softens as the transition temperature is approached
zburg term: The simple formulation of Ginzburg-Landau gom above. This TA mode is degenerate with the longitudi-
(GL) theory has proven to be successful for the descrlptlorhal acoustigLA) mode with wave vectok=[1,1,0](/a)

of many phase transitions and inhomogeneous structureg, 4 polarization if110]. By comparing the softening of the

such as domains, domain walls, and !nterfé_bbfs.most of  shear modulusC’=(C,;—C;,)/2 and temperature depen-
the cases reported in the literature, simplified one- or two- . . .

. : dence of other elastic constants with the TA mode softening,
dimensional models are often used that, although easy t

solve mathematically, often miss many interesting physicaﬁ]e conclusion is reached that the atomic shuffles are the

phenomena associated with the phase transition, such as pd&imary cause for the transformation and the strains play a
sible lower symmetry phases and antiphase structures, whicfcondary role. Any softening of elastic moduli is a result of
are of particular interest here. anharmonic couph_ng of the primary OP to Fhe strains.

As a general rule, the formulation of the GL free energy In Fhe next sectlor!, we present the details of the free en-
should be based on the symmetry relations between the pa@f9y in terms of a six-component shuffle order parameter.
ent and product phases. There are two routes of constructinffe incorporate coupling of the primary OP with the strain as
the GL theory and they differ in the method of selection ofwell as the Ginzburgnonlocal gradientterms. Section I
the basis for the order parameter. The lattice-dynamical apdescribes the homogeneous solutions. In Sec. IV, the general
proach follows the idea of using the modes obtained from thgorocedure is developed for using a phonon mode order pa-
diagonalization of the dynamical matrix. The amplitudes orrameter in more than three dimensiofes six-component
phase angles of the relevant modes are chosen as the ordeector” ) to describe antiphase microstructures. We present
parameter to describe the phase transitidh. Another the various antiphase boundary solutions. A single set of
equivalent and convenient approach is to generate the fremupled nonlinear equations that provide OP profiles for all
energy and the displacement modes from the basis vectors pbssible antiphase domain relationships for this transition are
irreducible representations of the space group of the parembtained. Section V contains a brief discussion and connec-
phase. The OP then has its foundation in the symmetry reldion to experimental data in order to determine the param-
tionship between the parent and product phases and the asters of the Ginzburg-Landau model. Finally, we summarize
sociated representation that induces the symmetrthe main results in Sec. VI.
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Il. GINZBURG-LANDAU FREE ENERGY Z‘
The materials of interest her®Ag; _,In, (RiLa, Ce, . d
Pr), have the CsCl structurspace grouf;, Pm3m) with I i / oLa
two atoms per unit cell in the cubic phase and undergo an f v ’;/»’ O (Ag,In)
improper ferroelastic transition to a tetragonally distorted i T® e
phase(space grou}/,, |4/mmn) with primitive cell qua- °
drupling. Using lattice dynamics, one can derive the six de- X ; )/&

]
f

o

generate eigenvectors which correspond to the mibde* )
We denote the equilibrium atomic positions kil «) = x(1) X
+x(«), wherex(l)=la+1,b+1,c and x(«)=(1/2)(xk—1)
(a+b+c). Here,l ,=integer (@=x,y,z), and labels the ori-
gin of thelth unit cell in multiples of the lattice constaaf
k=1,2 denotes the two sublattices of the CsCl structare; fe. x5
=ax, b=a§/, andc=az are the crystallographic axes of the x/

primitive cubic lattice. For periodic boundary conditions, all
atomic displacements(lx) from the equilibrium positions : .
may be expanded in a Fourier series with respect to the nof?ents in k domain state.
mal coordinate€)(k\) according to

¢
e’\
V4

e
X\@
)

N

FIG. 1. Doubly extended CsCI structure with atomic displace-

8
QSZLZl [uouy(L)+vou,(L)](—=1)v*'7,

1 )
N % e (k[kn) e*XOQ(kn),

whereM . (k=1,2) denotes the masses of the two types of

atoms and the sum is extended over all wave vedtarsthe Qs= ;1 [Uou(L) +uouy(L)](~ 1)z,
first Brillouin zone and over all branchas(=1,2, . .. ,6 for

the CsCI structure of the associated phonon-dispersion
curves. The expansion coefficierds(«|k\) are the eigen-
vectors of the dynamical matrix. Thus, from the orthonor-
mality of e,(x|k\),

Ug(lK)=

8

whereu andv are the normalized displacements of the two
sublattices Ip_,Ag, and La, respectively, and the summa-
tion is over eight parent primitive unit cells §2X2) la-
beled byL which make up the supercell required by kéee
Fig. 1). Furthermore,

Q(k\)= iN ZI M &% (k| kN Uy (1c)e ™k *D.

The primary OP driving the transition here is a softening M
phonon mode and consists of the set of normal mode coor-

dinatesQ=(Q;,Q,,Q3,Q,4,Q5,Q¢) that belong to the star

of the wave vectok at theM point. Thek,, star has three M 2M
arms and the mode corresponding to each arm of the star has Up=— "\ /—1 U=\ /—2
twofold degeneracy. Th@,’s are given by M+ 22M, M1+ %M,

8 where the parametérdepends on the interatomic force con-
Q.= 2 [uouX(L)+vovy(L)](—l)|x+|y, stants of the relevant mode, amd; and M, denote the
L=1 masses of the two types of atoms (IRAg, and L3 in the
unit cell (see Fig. 1 The quantitiess; andv, appear in Eq.
8 (10) below (Sec. ) where atomic displacements are ex-
_ gt pressed in terms of the normal mode amplitu@gs

Q2 ;1 [Uotty(L)+oouy(L)J(= 1), Using the above six eigenvectors and (hkspace group

symmetry operations, the total GL free-energy density can be

. written in the following form®®

Q3= 2, [UgU (L) +vou,(L)](— 1)t

L=1
1) F=F +Fg+Fc+Fg, ®)
8
_ UnU(L) 4+ L)](— 1)t where the Landau free enerdy, , contains the primary OP
Qs ;1[ ot L) +vova(L)](=1) contributions from the M normal mode coordinates,
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FL=A(Q%+Q5+ Q3+ Q5+ Q3+Q3) +By(QI+Q3+Q5+Q5+Q2+Qh)?
+B(QIQ5+ QIQE+Q3Q5+ Q3Q5 + Q3Q5+ Q4Q8) + Ba(QIQF + Q5Q2+Q3Q%) + B4(QIQ5 + Q5Q3+Q7Q2)
+Bs(QIQ5+ Q5Q4+Q3Q%) + C1(QT+ Q5+ Q5+ Q5+ Q3+ Q3)°
+Co(Q7+ Q5+ Q3+ Q4+ Q2+ QP (QIQ3+ QIQE+ Q3Q5+ Q5Q4 + Q3Q5 + Q4Q7)
+Ca(QI+ Q5+ Q3+ Qi+ Q3+ Q5 (QIQ4+Q3Q2+Q35Q%)
+C4(QF+ Q3+ Q5+ Q4+ Qe +Q7)(QIQ5 + Q5Q5+Q7Q2)
+Cs(QF+ Q3+ Q5+ Q7+ Qe +Q5)(QTQ3 + Q3Q5+ Q2Q7)
+Cel (Q7+ Q5 Q53— Q1) (QIQ5+Q3Q5— Q3Q5 - Q4Q%) +(Q3+Q5— Q5 — Q5)(Q3Q5+Q3Q% - QIQ5 - Q3Q%)
+(Q3+ Q75— Q5—Q3)(Q7Q5+Q5Q% — QIQE— Q3Q3)]
+Co[(Q1~ QD (Q3+QE- Q53— Q) +(Q;— QD) (QI+Q5 - Q35— QF) +(Q3— Q9)(QT+Qi— Q- Q)]
+Ce[(Q1—Q8)(Q3+ Q53— Q5 —Q2) +(Q;— Q3 (QI+ Q5 — Q5 Q3) +(Q3— Q2)(Q3+Q5- Qi —QF)]
+Co[ (Q1—Q3)(Q3+ Q75— Q&— Q5 +(Q3— QMN(QE+Q5—QF —Q3) +(Q5— Q)(QT+Q5— Q35— Q)]
+C1d(Q1Q2Q3Q4Q5Q6) + C11 (Qa+ Q) (Q1+Q2)*(Qs+Q6) >+ (Q— Q1)*(Qs— Q)%
+(Q4—Q2)H(Q1+Q2)%(Qs—Qs)?+(Q2—Q1)%(Qs+Qg) . (33

Fe contains the secondary OP elastic contributieee the ~The OP gradient terms describe the generalized “exchange”
definitions of the strains in Eq$4a)—(4f) below, interaction between neighboring domains in a material with
spatially varying OP.
C1y S Cu '!'he s_ymmetry-adapted strain tensor componexntare
Fe,=7e§+ 7(e§+ ed)+ 7(e§+ ei+el). (3b  defined in terms of the conventionajeometrically linear
strain sijzé[(aui/axj)ﬂ&uj /9%;)] by the following rela-
F. contains terms that couple the phonon modes with thé'ons'
elastic strains, 1
e1=—=(exyyteytess), 4
Fe=D;e:(Q3+Q3+Q3+Q5+ Q2+ Q) 1 e e e

+D,f V3e,(QE+ Q23— Q35— Q)

1
e=—=(eyx—&yy), (4b)
+e5(Q3+ Qi+ Qi+ Q5 —2QF-2Q))] R
+Dale,{(Q4— Q9 +(QE— Q8 —2(Q3-QD)} 1
e3=— +eyy—2857), 4c
+\3es{(Q3- Q) ~ (Q3- Q)] SN 49
+D + + . 3
4(84Q5Q6+€5Q3Q4+€5Q1Q2) (30) C1=tyy, (4d)
The gradientor Ginzburg energyF s, with a subscript pre- B
ceded by a comma denoting partial differentiation, is given €5=2yz, (4¢)
b 19
y €6= Exz, (4f)
Fe=01(Q4,+Q5,+ Q5+ Q3,+Q2,+Q5,) and the elastic constanty are given by
+02(Q3,+0Q7,+Q3,+Q3 +Q3,+Q2 .
gZ(QS,x Q4,z Q2)< Ql,y Qe,y Q5,z) = Cll+ 2012, (49)
+03(QF,+ Q3+ Q3+ Q7+ Q5+ Q5 .
C20=C117 Cy2, 4h
+04(QaQuz* Quy Qo+ Qs.Qey) 2 o Crz (an
+05(Q3,Q4x+ Q1xQ2y+Q5yQ62)- (3d) Cag=4Cyy. (4i)
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TABLE I. Homogeneous solutions corresponding to the tetragonal product phase.

Tetragonal Domain  Tetragonal Displacement direction of the atom at
axis No. state Order parameter  x(«)=[0,0,0]a x(k)=1/241,1,1a
X 3 Iy (0.Q0.,Q0,0,0,0) [011] [100]
6 ”X (01_Q07Q0x0:010) [OTl] Not mOVing
9 I”X (01Q01_Q0101010) [Ol?] Not mOVing
12 IVX (0,_Q0,_Q0,0,0,0) [01—1] [TOO]
y 2 ly (Q0,0,0,0,0Q0) [101] [010]
5 Iy (Q0,0,0,0,07-Qg) [101] Not moving
8 i, (—Q0,0,0,0,0Q) [101] Not moving
11 IV, (—Q0,0,0,0,0-- Qp) [101] [010]
z 1 I, (0,0,0-Qp,—Qo,0) [110] [001]
4 I, (0,0,0~Q0,Q0.0) [110] Not moving
7 I, (0,0,0Q0,—Q,,0) [110] Not moving
10 IVZ (Orolov_QOV_QOIO) [HO] [OOT]
Note that the shear straies=e;=ez=0 for the cubic- =Gt 3D, (02+ 02— 02— 02
to-tetragonal transition. Only the gradient energy of the pri- 2 e 3 2(QeF Q6 Q5 Q4
mary OP is considered here and the elastic energy is kept +13D3(Q1+Q5-Q3-Q)), (6b)

only up to the second order in strain. All energy expansion

coefficients are assumed to be temperature-independent ex- - P P 5 )
ceptA= ao(T—T,). HereT, is the(fictitious) temperature at 03=Cp83+ Dp(Q3+ Q3+ Q5+ Qs—2Q1—2Q))
which the mode frequency would become zero. The Landau 2. 12121 A2_5A2_oA2
portion,F , of the free energy is essentially the same as that TD3(Q1F Q2 Q4+ Q5~2Q5-2Q%), 69
obtained in Ref. 14(Note that the 11th invariant of the sixth R

degreg[see Eq.(3a in Sec. Il| was inadvertently left out in 04=Cys84+D,Q5Q6, (6d)
Tables 4a and 4b of this referenc&he Ginzburg terms,
F¢, were not contained in that reference and are important
contributions to the description of antiphase domains, as we
will see in Sec. IV below.

05=Cys85+ D4Q3Q4, (6¢)

06=Cy486 1t D4Q1Q>. (6f)
lll. HOMOGENEOUS SOLUTIONS In a homogeneous phase, the stress is zero everywhere, i.e.,
For a homogeneous system, the gradient energy contribws, =0, therefore, for equilibrium single domain states, the
tion vanishes so that the solutions are determined by minisix strain components; can be expressed in terms of the six
mizing the free energy of the first three terms in E2). order-parameter component®;. These expressions for
Using the variational technique, one can derive the Eulerstrain are then substituted back irfig andF . As a result,
Lagrange equations, which are six coupled partial differenwe obtain an effective free energy just of the fofmin Eq.
tial equations inQ; and six more equations for the elastic (3a), with “renormalized” coefficients. Minima of this ef-
strain, fective free energy yield lower symmetry domain states.
There are twelve single domain states for our tetragonal
p= p= phase. These are given in Table | in terms of the OP vector
}— —=0, (5a) Q=(0Q1,Q,,Q3,Q4,Q5,Q¢). As shown in Table I, four de-
IQim| Qi generate states exist for each of the three principal tetragonal
axes. We label these solutions by a domain nunfrem
P ( IF aex) ISOTROPY) and by a capital Roman numeral letter with a

9
= 9%

=0 (m=1,23;i,A=12,...,6. subscript indicating the corresponding tetragonal axis.

For a first-order transition the expansion must be at least
to sixth degredin the absence of third order invariant$he
transition temperaturé, and the spontaneous OP valQg

Define o, =dF/de, to be the generalized stress tensor(at T,) are given by
corresponding to the strain definition of E¢). Then,

(5b)

b2
160{0(4Cl+ C4_ C7_ Cg) ’

To=Tc+ (7a)

o1=C1:8;+ D1(QI+ Q3+ Q3+ Q3+Q2+Q3), (6a
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b

2 _
Qs 4(4C,+C4—C;—Cy)’ (7b)
where
407 4
b=4B;+B,—| — + —(D,+3D3)?|. (8
Ciz  Cx .
For other temperatures beloW, the amplitude of the OP, ,
Qo, in a single tetragonal domain state can be relate@ o 7 A w
through the following relation: C O
® I ® 1 O
\/ SRV ER e N
= —l1+\/1--
O/' U '\ y
_T-T. ob
. (9b) N

The normal mode amplitud®, is linked to the atomic
displacement of the two atoms through Et). Since we are
working in theQ space, it is useful to invert Eql),

U= (U /VBML(= D)y Qo+ (=1)* e Q).
(108

FIG. 2. 2D projection of lattice displacement pattetason the

L) _ fan I+l I+

u§, )_(ull BM[(=1)"y Qp+(=1)¥"z Qs], z=0 plane with tetragonal axis in thedirection for domain state

(100 I, (b) on thex=0 plane with tetragonal axis in thedirection for
domain state,l, and(c) on they=0 plane with tetragonal axis in

Ul =(uy /VBM[(—1)x*'2 Qg+ (—1)v*'2 Qe](y ) the z direction for domain state, |

109

w_ TV TR EPNE moves along the arrow direction in the plane in the low-
vy = (W1 /NBM)[(= 1)y Q+(=1)x"z Q3] temperature phase. The shaded lattice in the center of the
(10d  ynit cell is half a unit higher above the base plane, i.e., at the
w_ BT 1) PN z=a/2 plane. The displacement patterns far, Illl,, and
vy =01 /V8M)[(=1)*"y Qi+ (—=1)¥"= Qg 0 IV, can be obtained by a translation of the coordinate system
(109 by a vector of[0,a,0], [a,0,0], and[a,a,0], respectively.
Figures 2b) and Zc) correspond to domain statesand |,
(L_ AN \F( — 13kt _ gt i :
vy =01 /VBM)[(—1) Qut(=1)¥ Q5]'(10f) respectively, with other patterns (Illl,,IV, and

Il,,1,,1V,) obtained via translation by appropriate vectors.
Hereu") andv(") are displacement components of the two

sublattices af0,0,0] and[a/2,a/2,a/2], respectively. The su-
perscript,L=1,2, ... ,8,represents labeling of the unit cells
which make up our expanded superdske Fig. 1 The existence of four variants for each tetragonal orienta-

The last two columns of Table | give the lattice displace-tion, related by a fractional translatidqwhich is not a body
ment direction for the two atoms in the unit cell that is lo- center point, i.e[1/2,1/2,1/2) of the new structure, will cre-
cated at the origin of our coordinate system. One can easilsite antiphase variant structures. An antiphase boundary
generate the lattice displacement pattern for the supercelAPB) is the (planar or curvegsurface where two such do-
from the pattern of the first cell together with E§0). For  main states meet. We choose the first group of solutions in
example, for domain statg | the three-dimensional lattice Table | as examples for the analysis. Antiphase structures
displacement pattern is shown in Fig. 1 and the patterm,for allow different domain relationships to form, distinct from
was given in Fig. 1 of Ref. 14. ferroelastic domains, since the requirement of strain compat-

Since the three-dimensional respresentation is difficult tability is automatically satisfied. A few special orientations of
plot unambiguously, it is useful to use the 2D projection ofthe APBs are studied here to illustrate the associated richness
these states. Shown in Fig(a2 is the projection plot on the of the atomic structure and the corresponding continuum de-
z=0 plane for the domain state.l There are four such do- scription of the antiphase boundaries. For mathematical sim-
main states having the tetragonal axis in xhdirection. The  plicity, we will only study planar APBs so that the problem
dot (cross in the center of a lattice circle represents that thecan be rendered quasi-one-dimensional for each given an-
lattice point also moves ufdown) at the same time as it tiphase structure.

IV. ANTIPHASE BOUNDARY SOLUTIONS
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91Q2yy=AQ,+2B1Q,(Q3+ Q3) +B4Q,Q3

+3C1Q2(Q5+Q3)?
+(C4—C7—Co)(2Q5+Q3)Q,Q5+D1e:Q;
—2D,e5Q,+Ds(e3—3e,)Q,, (119
93Qayy=AQs+2B1Q;(Q5+ Q%) +B4QsQ5
+3C;Q3(Q5+Q3)?
+(C4—C7—Co)(2Q3+Q3)Q3Q5+D1:Q5
—2D363Q3+ Dy(e3— 1/3€,)Q5. (11b

Eq. (11). For the IL—1, antiphase structure,

lim (Q2,Q3)=(=Q,Q0); (129

y—

for the Ill,—1, antiphase structure,

X Ix TIIx
lim (Q2,Q5)=(Qo,=Qo); (12h)
y—*o»
y and for the I\,— I, antiphase structure,
ol b "
: lim (Q2,Q3)=(+Qo,=Qy). (129
(© y—*e
°19
In order to solve for a general case, we follow the proce-
T dure of Refs. 10,11 and 20 to normalize the order parameter
and define
x A’=D,el—2(D,+3D3)e;
FIG. 3. lllustration of lattice displacement pattern in three dif- 2D,—2(D,— /3D 2D.+D,++/3D
ferent antiphase structures with APBs oriented alongythitrec- + [\/— 1~ 20 \/A— 3)](A\/— L 2 \/_ 3 (2),
tion: (@) l,— I, (b) L,—Ill,, and L—1V,. C11+2Cy
(13a
A. Antiphase boundary oriented along[010]
,_ (\2D;—2D,+23Dy)?
As examples we take the four domain states given in Bi=- A(Cyyt 285) ' (130
Table I, with the tegragonal axis along tkelirection. APBs Hoe2
can orient in many directions, for example with normals,
- - +
[100], [010], [110], [011], etc. Any two of the four states can B"lz[\/EDl 2(D, A\EDSA)](\/EDl 4D2), (130
be paired up with an APB along these orientations. For sim- 2(cy1t2cy)
plicity, let us first study the case of the APB oriented along
[010]. A few combinations of antiphase structures age | A"=D,ef—2(Dy+3D3)€}
=1, L=, and L—IV, as shown in Figs. @-3(c). At
the L—Il, antiphase boundary, the Agln, atoms shift N (\2D;+4D,) (2D + D+ y3Dy) Q2
along thez direction; for the case of thg+Ill, antiphase C11t2C5) o
boundary, the Ag ,In, atoms shift along the/ direction; (149
while for the case of the,+ 1V, antiphase boundary, the
Ag;_4In, atoms stay put. 2D+ +4D.)2
Under the quasi-10Q1D) approximation, the physical 'iz(\/—Al—AZ), (14b)
guantities are a function of space variagl®enly and only 4(cq1+2C3))
two componentsQ, and Qs are nonzero. ThereforeQ L
=(0,Q4(y),Q5(y),0,0,0. From Eq.(5a), we have B4=By. (149

024106-6
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Using these definitions, the equilibrium conditions of Eq.
(11) become

9:1Qzy,=(A+A")Q,+2(B; +B})Q3
+(2B3+B,+B})Q,Q3+3C;Q,(Q3+Q%)?
+(C4—C7—Co)(2Q3Q3+ Q,Q3), (159

95Qsyy=(A+A")Q3+2(B,+B;)Q3
+(2B3+B,+B;)Q3Q5+3C;Q3(Q3+Q3%)?
+(C4—C7—Co)(2Q3Q3+ Q3Q3). (15b)

Now, we define dimensionless functiong,q, and space
variable ¢ as the following:

(Q2,Q3)=Qc(d2,03), (163
y= ¢, (16b)
2= Vglg3, (160
Ac
whereA.=ag(To—T,).
The final dimensionless equations are
d0pee= 7202~ a,03— a30,03+ Ba3
B
+ 1_§)(2ngg+%qg), (179
E — _ 3_ 1 2+ 5
d O3¢:= 7303~ @303~ a30303+ Bd3
B
+ 1—§)<2q§q§+q3q;‘>. (170

Similarly, one can normalize the boundary conditions, Eq
(12). The dimensionless parameters in ELy?) are given by

S "
a2:8(BlT+Bi), (18b)
a2:4(281+b|34+ B,) | 180
T3=T7+ 2—:, (180
03:%, (189
RN -

PHYSICAL REVIEW B 64 024106

g )

d= (189
3
3C,
(18h)

A=4c,+c,—C,-Cy'

where the parametds is given in Eq.(8). The equilibrium

values forg,,qs; are
. " 2 3
laz|=laz|= 5 1+ 1_27' =0o- (19

We find that Eq(17) becomes identical to the case solved in
Ref. 11. Solving Eq(17) under different boundary condi-
tions, given by Eq(12), gives us three different antiphase
structures for J—Il,, I,—Ill,, and L—1V, with the APB
oriented in[010]. The solutions for the choice af=1, 7
=—4, ri=71=—4.1, ap=a3=21, a;=a;=1.8, andpB
=10 are given in Figs. 4-6.

In Fig. 4, we depict the antiphase boundary solutions in
terms of (,,q3) for the three different boundary conditions.
Figure 4a) shows thaf, is a kinklike andqs; is a bell-like
soliton for the }—Il, antiphase structure. For the-lIl
antiphase structurg=ig. 4(b)] the roles are reversed, i.€j,
is a bell-like andqs is a kinklike soliton. In Figs. &) and
4(d), both g, and g5 profiles are kinklike for the 1V,
antiphase structure. The difference depicted in these figures
is that in Fig. 4c), the two solutions overlap because we
assumed no coupling betweep andqs, i.e., a,=a3=0
andB=0. In general, the two kinks do not overlap as shown
in Fig. 4(d) due to the cross coupling betwegp andqs;.

Figure 5 shows the influence of the gradient coefficidnt,
on the order-parameter profiles for the—lll, antiphase
structure. In general, domain-wall thickness monotonically
increases wittd. Figure 6 depicts the effect of the variation
in the sixth-order coefficienB. An APB becomes narrower
with increasingB. In addition, the bell-like order-parameter
profile flips to a hump shape at a critical value@fFigure 7
shows the effect of temperature, on the shape and ampli-
tude of | — 11, APB. It reveals that as temperature decreases,
the amplitude of the order parameter increases while the
thickness of the APB decreases.

The discontinuous atomic displacement patterns corre-
sponding to the three different boundary conditions, Egs.
(1289—(120), are given in Fig. 3. Because of the constraints
of the gradient energy, the actual displacement pattern
changes continuously as shown by the continuum profiles of
g, andqgs in Figs. 4-7.

B. Antiphase boundaries of other orientations

Because the elastic strains are compatible in antiphase
structures, there are several possible orientations for the an-
tiphase boundary corresponding to certain lattice planes. The
discontinuous lattice displacement patterns for antiphase
structures with APBs on thé11) and (101) lattice planes
are illustrated in Fig. 8.

For antiphase structures consisting of domain states with
the x direction as the tetragonal axis, the order-parameter
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FIG. 5. Effect of the gradient coefficiend on the order-
parameter profiles of the antiphase structure betwgand Il with
APB oriented in[010].

profile is governed by two coupled differential equations for
Q, andQ; as in Eqs(153 and(15b). The only difference is

in the parametera’,A”,B;,B],B,, andB. These param-
eters are given in Table Il for different APB orientations and
are determined by material properties.

After normalization, all equations have the identical di-
mensionless form of Eq$17a and (17b). Therefore, Egs.
(179 and(17b) areuniversal equationfor antiphase bound-
aries in this transition. One point that must be emphasized is
that the Q1D treatment should always choose the indepen-
dent space variable to be perpendicular to the APB plane.
For example, while calculating the antiphase structures with
APB oriented in011] and[101], the system must be rotated
45 degrees around.00] and[010], respectively, so that the
problem can be rendered Q1D.

In general, the existence of several allowed orientations
for APB in a variety of materials and their relatively small
energy makes it difficult to maintain the APB on one of the
lattice planes through an entire sample. Instead, APBs are
often observett?3as curved or jointed boundaries resulting
from several differently oriented APBs joining together.
Moreover, the thickness of the domain wall can be on the

2 — —r—

Order Parameter

-1.5

Normalized Space Variable

ent antiphase structures illustrated in Fig. (@ I,—1l,, (b) I,

=1y, (c) I,—1IV, without coupling betweem, and qs, and (d) FIG. 6. Effect of the six degree energy expansion coeffiggnt
I,— 1V, with the coupling between, andqgs;. The domain state on on the order-parameter profiles of the antiphase structure betyeen |
the right hand side is | and I, with APB oriented in[010].
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FIG. 7. Temperature dependence of the order-parameter profiles
across the antiphase structure betwgesmd Il, with APB oriented
in [010].

order of a fraction of a unit cell to several unit cells. In
simulationé® for lead phosphate, the trace of the APB was
on the same order as tha\"” wall.

FIG. 8. lllustration of lattice displacement pattern in two differ-
V. DETERMINATION OF THE EXPANSION ent antiphase structures with the APB oriented alph@l] and
COEFFICIENTS [011], respectively.

The coefficients of the Landau portion of the free energy  the nonlinear expansion coefficierBsand C can be de-
can be determined from the available Ia_ttlce parameter dat@ mined by the temperature dependence of structuralata.
measured by x-ray and neutron scattering as a function 0k; the transition temperature, we can relate the value of the

temperature. The coefficients of the Ginzbdirg., gradient order parameter to the Landau free-energy coefficiei@fs:
terms are obtained from the phonon-dispersion data near the3B/4C and ag(T.— To) = 3BZ/16C. Thus, we find
c . ’

soft mode M as described below. There is only a limited
amount of data for this transition, primarily contained in
Refs. 17 and 18. B 4ap(Tc—To) co Bag(Te—To)
Q@ Q¢

A. Coefficients for the Landau energy
pecifically, by comparing with the atomic displacements
easured for the tetragonal phase, the two model parameters
?Qc,g) may be determined from the two atomic displace-
mentse and § for La and Ag _,In,, respectively, according

For the cubic-to-tetragonal transition, we have expande
the free energy to the sixth degree. The form for the effectiv
free energy isF =A(T)Q?+BQ*+CQ®% where A(T)
= ao(T—To) =M, andm=923.39 kg/m is the mass den-

sity. The coefficientsyg and T, can be determined from the 0

temperature dependence of the soft phonon &g 6 in

Ref. 17. T, is the temperature at which the frequency of the Q.= 2VM1(23,0)2+ M,(cie)?, (= Ct€ )
softening phonon would go to zero ang is the slope of the 2a;6

linear approach to zerd, is the temperature at which the ) )

first-order transition takes place. For LaAgln, (x=0.2), ~ We find the following values:

the cubic lattice parametéat 300 K) is a.=7.65 A, and the

tetragonal lattice parametefat 100 K) area,=7.56 A and Q2=3.8823<10 * kgn?,  (=1.01045,
c,=7.75 A. In the tetragonal phase at 100 K, the shuifie

units of the cubic lattice paramejeof La atoms ise and

=0.0285 and the shuffle of Ag,In, atoms is6=0.0139

(Fig. 4 in Ref. 17. We find the slope of the soft modg

=8.294x 10°YK (secf. Since ap=mS we obtain the fol- B=3.9455¢ 10 ., C=7.622<10"° .
lowing values for these three constants: m’(kg)? m®(kg)®

Note that the units of,, B, andC contain masgkg) in the
denominator since the order paramet@r,in Eq. (1), has

T.=120 K, Ty=125 K, a=7.6587<10%® .
¢ 0 0 m° kg K units of (kg)“>m.
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TABLE II. CoefficientsA’, A", B}, B}, B}, and B} for antiphase boundary betweép and Il,.. Heree]=—(2D,/¢,)Q3, €5
=[3(D2+\3D3)/C2,]Q5, ande; =[(D,+ \3D3)/C2] Q3.

Wall orientation A’
2D,—2(D,—+3D 2D,+D,++3D
(010 D6 2(Dy+ 3D e + L1201~ 2Dz~ {3D5)](V2D, + Do+ 3Dy
C11t2Cy
2D;—2(D,++/3D3)]?
[100] D1e°1°—2(D2+\/§D3)e°3°+[\/— L ( z V3Dy)] Q32
Ciy1t+ 2022
2(y2D;+D,+/3D3)?
[011] D.ef—2(D,+3D3)e; + (J—A L2 J_ ) 2
2Cq1t Cort6Cyy
2D3
[101] D&l + ———Q2
C111+3Cay
Wall orientation A"
2D, +4D,)(y2D;+D,++/3D
(010] D —2(Dy+ 3D )EE+ (\2D, 2?(\/— 1+ D, V3D5) o
C111+2Co
[100] A
[011] A’
[101] A’
Wall orientation B; B,
[010] _ (V2D;-2D,+243D3)° [2D;-2(D,~ 3D3)](v2D,+4D,)
4(Cqy4+2Cy)) 2(Cq1+2C5))
(100 [(Y2D1-2(D,+23D4))” 281
4(Cyq+2Cy)
[011] _ 2(J2D;+D,+Dy)*  (V3D,—Dy)? - 2(J§D1+D2+D3)2+ (\3D,-Ds)?
2(2Cq+ Cop+ 6Cy9) C2 (2C11+ Copt 6Cyy) C2
D2 D,+ 3D3)2 2B;
[101] _ _ 1 _ +( 2 ’\\/_ 3)
2(Cq1t3C49) 2Cy
Wall orientation B/ B
2D, +4D,)? Ba
[010] _(‘/_Al—AZ)
4(cq1+2Cyy)
[100] B; B,
[011] B; B,
[101] B; B,
B. Gradient terms and phonon dispersion - AF +Fg) 9 JE -
The gradient coefficients are related to the curvature of m Z[ON 70X\ dQy B
the dispersion surface near the soft mddend the disper- ]
sion relation can be measured by inelastic neutron-scattering (A=1-6j=1-3), (20)

experiments.
Starting with the Euler-Lagrange equation with explicit wherem is the effective-mass density of atoms associated
time dependence, with the M5 mode. For small amplitude oscillations, we can
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ignore the nonlinear terms by keeping only the lowest-order mw?’Q=GQ, (21)
terms in the order parameter. Thus, the above six linearized

equations have the following harmonic solution§, Where

=Q%exdi(ky-x—wt)], wherek,, is one of the arms of the G, 0 0

starky, . The M; mode is sixfold-degenerate and it splits G=| 0 G, 0] (223
into several distinct modes if thHe value deviates from that 0 0 G,

at the first Brillouin-zone edge. For example kit ky,—q,
then Eq.(20) results in the following eigenvalue problem: and the 22 G; matrices are given by

o 2A+29,05+ 29,05+ 29303 (94+05)0102 ) (220
! (94+ 950102 2A+29,07+ 20,05+ 29305

o [ 2AT 20:01+ 20305+ 20103 (94+95)0105 ) (229
2 (9a+0s)0103 2A+ 20,05+ 20503+ 20,93/

o [ 2AT 2001+ 20,05+ 2005 (94+95)G203 ) (22
° (94+95)00s 2A+20305+20,05+ 20,93/

The matrix G is in block-diagonal form and the three combinationsgy;+ g, andg,+gs by fitting the 300-K data in
blocks are equivalent when we choose different arms of théhe M-I" direction[Fig. 4 (left column, middle pang] for the
starky, . The gradient energy causes the two coupled mode®ngitudinal acousti¢LA) mode for LaAg in Ref. 18 to Eq.
of a givenk value to split when moving away from thd (233 and Fig. 5 for the second transverse acoustic mode
point. We can use one of the blocks @to derive the dis- (T,A) for LaAg; _,In, in Ref. 18 to Eq.(23b). If we denote
persion relations by introducing a small perturbation to thethe slopes for these two dispersions, respectively, by
wave vector along the high-symmetry directions in the first
Brillouin zone. Let us choose the first blo€k;, which in- S$,=2(91+092) +(94+9s), S=2(911+92) —(9s+9s),

volves the order-parameter compone@ts and Q, and the we find S;=2.253% 10° J/n? and S,=2.1747x 10° J/n?.

wave vectom:_zw/a[llo]. o ) Thus, the two combinations of gradient coefficients are
In theM-I" direction, the perturbation g=q[ 1,1,0] with

the amplitudeg<27/a. The perturbation causes mode split- J
ting: 01+0,=3(S+S,)=1.107 15 10° —,
m

Mwi=2A+(20:+20,+ds+0s)0’, (23
J
mws=2A+(29,+29,—gs— Js)0>. (23b) 9a+0s=32(S;—S)=3.96 107@-

In the M-X direction of the _Brillpuin zoneq=q[010]  Note that we can determine the temperature dependence of
and we can get two more relations: S,, since the temperature dependence of phonon dispersion
for the TA branch of2, symmetry has also been measured
2_ 2 2
Mw3=2A+20,9", (249 (Fig. 5 in Ref. 18. As discussed above and depicted in Fig.
5 5 5, the thickness of the antiphase boundaries is proportional to
M, =2A+20,9". (24D the square root of the gradient coefficients. The thickness can
Finally, in theM-R direction,q=g[001], we get be on the order of a fraction of a unit cell to several unit-cell
dimensions. Unfortunately, there are insufficient data to de-
mw§=2A+ 2959°. (240 termine each gradient coefficient and thus the value for pa-

rameterd in Eq. (189, which determines the domain-wall
Since below the transition temperatuwe<0, phonon stabil-  thickness.

ity requires that the slopes of the above five dispersion

curves be positi\_/e. The§e fi_ve equations give_ us enough com- V1. SUMMARY AND CONCLUSIONS

binations to derive all five independent gradient coefficients

gi in Eq. (3d). However, the phonon dispersions along the Using a Ginzburg-Landau model with a six-dimensional
M-X and M-R directions have not been measured forphonon order parameter, we provide, a general formulation
LaAg; _,In, .18 Therefore, we can obtain only the two of the antiphase structures BAg; _,In, (whereR=La, Ce,

024106-11



WENWU CAO, AVADH SAXENA, AND DORIAN M. HATCH PHYSICAL REVIEW B 64 024106

and Py that can form in a cubicQﬁ,Pm?m) to tetragonal  Previously for a first-_order ferroelectr!c phqse transition,
(Dﬂ, |4/mmmn) improper ferroelastic phase transition the order parameter is only a three—d|men§|onal vector; the
driven by the M zone boundary mode of the CsClI structure.APB SOIUI'On. in that case can also be Qescr|bed b_y the same
There are four independent domain states for each of th et of equat'lons as given in EQLD). It IS speculative but
three possible tetragonal axes in the low-temperature phas 'ese_equatlo_ns may be a representatlve form for all APB
constituting 12 domain states in total. omain walls in other transitions .

Antiphase boundaries are formed between any two do- Some of the expansion coefﬁcu_ants in the GL model, Eq.
main states of the same tetragonal axis. Using the quasi-lg’)’ can be extra(_:ted from exp_e_rlmental measurements. In
approximation, we treated four differently oriented APBs particular, we derived the coefflmer!ts of the effective Laf"
and found that equilibrium conditions for the OP profiles cand2U frée energy and the relationships between the gradient
be related to a single set of two dimensionless coupled dif¢e€fficients and the phonon-dispersion curves near the M
ferential equations involving two components of the OP. The>°ft mode. Note that the an.aly?s presented here is applicable
relationships between the parameters in the common set & the cubic to orthorhombicz,, Pmm3 transition(see
equations[Eq. (17)] and the free-energy expansion coeffi- Second entry in Table 7 of Ref. 14n AuCd and NiTi-M
cients in Eq.(3) were derived for the case of the tetragonal (M =Fe,Al,Cu) shape memory alloys®
axis along thex direction. These results are also applicable to
the cases with the tetragonal axis along thand z direc-
tions.

It is interesting to note that all of the final differential ~ We are grateful to Professor G. R. Barsch for numerous
equations reduce to the same universal set of equations withsightful discussions and suggestions. This work was sup-
proper normalization constants. This is also true for otheported in part by NSF Grant No. DNS9704714 and in part by
systems that can be described by a Ginzburg-Landau modéhe U.S. Department of Energy under Contract No. W-7405-
although the order parameter may be different. As showrfENG-36.
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