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  In 1939, Dr. Dah-You Maa presented a paper entitled "The Distribution of Eigentones in a Rectangular Chamber at Lower Frequency
Ranges" [D. Y. Maa, J. Acoust. Soc. Am. 10, 258 (1939)]. Since then, his interest in room acoustics has not diminished. More than six
decades later, Maa proposed an idea of adding a monopole solution to the normal modal expansion to improve the accuracy in simulating the
near-field sound field in rooms [D. Y. Maa, Acta Acust. (Beijing) 27, 385-388 (2002)]. Following this idea, a hybrid model that combines the
free field Green's function and a modal expansion has been proposed by the authors based on a rigorous mathematical derivation [B. Xu et al, J.
Acoust. Soc. Am.128, 2857-2867 (2010)]. The hybrid modal expansion can be further extended for complex sound sources by introducing the
multipole expansion to the solution. In this paper, the theoretical derivation of the hybrid modal expansion will be reviewed, followed by
examples demonstrating the use of the hybrid modal expansion in real-world applications.
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INTRODUCTION

To ordinary Chinese people, Dr. Dah-You Maa is most well known for his leading role in
designing the acoustics and the audio system of the Great Hall of the People in 1959. Maa’s
interest in architectural acoustics can be traced back to the 1930’s. In one of his earliest JASA
publications, he studied the distribution of normal modes in rooms, which is an important
contribution to the general framework of modal analysis (MA).

Modal analysis has been widely used to study the low-frequency response in enclosed sound
fields. In the literature related to the sound field computation based on MA, distributed sources
on boundaries are often considered, e.g., a piston source mounted on the wall in a room. Small
sources (e.g., point sources) inside an enclosure are not sufficiently studied, partially due to the
very slow convergence rate of MA in the near field. Maa recognized this deficiency in a study on
active noise control (ANC) in rooms (Maa, 1994). Later, in a 2002 paper (Maa, 2002), he proposed
adding the free field monopole solution in the near-field to the classical modal expansion
solution (Morse and Ingard, 1968), which essentially divides the sound field into a direct field
and a reverberant field (Beranek, 1954). Even though this proposed solution generally works
well in many applications, it is not quite the exact solution to the wave equation.

Inspired by Maa’s work, the authors proposed a hybrid model that combines the free-field
Green’s function with a modal expansion based on a rigorous mathematical derivation (Xu and
Sommerfeldt, 2010). The hybrid model can be further extended for complex sound sources by
introducing the multipole expansion to the solution. It has been shown that this hybrid method
not only greatly improves the convergence rate, but also provides an elegant way to study the
physical properties of enclosed sound fields. In this paper, the theoretical derivation of the
hybrid modal expansion will be reviewed, followed by examples demonstrating the use of the
expansion in real-world applications.

SUMMARY OF THE THEORETICAL DERIVATION

The sound field in an enclosure that is generated by a point source satisfies the
nonhomogeneous Helmholtz equation (Pierce, 1989):

∇2 p̂+k2
0 p̂ =−iρ0ω0Q̂s (ω0)δ (r− ro) , (1)

where p is the sound pressure, ω0 is the excitation frequency, k0 is the acoustic wave number, ρ0
is the air density, and Qs represents the source strength of the point source. Here, ·̂ indicates
that the quantity is in the Fourier transform domain.

The boundary condition is usually assumed to be locally reacting and given as follows:

∂p̂
∂n

/
p̂
∣∣∣∣
S
=β=−ik0

ρ0c
z

, (2)

where z is the specific acoustic impedance of the boundary, and β represents the normalized
specific acoustic admittance.

To solve for p̂, it can be written as the sum of the free-field Green’s function, G(r|ro), and a
homogeneous solution [F(r)]:

p̂(r)= iρ0ω0Q̂s

4π
G(r|ro)+F(r), (3)

where
G(r|r0)= 1

|r− ro|
e−iko·(r−ro), (4)
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and F(r) is a solution to the homogeneous Helmholtz equation. Neither G(r|ro) nor F(r) alone
would satisfy the boundary condition represented by Eq. (2), but together they can be
constructed to do so. With the form of Eq. (3), the sound field is actually divided into a direct
field (for a point source), iρ0ω0Q̂s

4π G(r|r0), and a reverberant field, F(r).

F(r) can be solved using a modal expansion,

F =
N∑

n=1
qnψn, (5)

where qn is called the modal amplitude, ψn is a modal function, and N is the total number of
modal functions. Given a complete set of modal functions, qn can be solved from the following
equation, which is obtained by applying the Green’s theorem and the boundary condition
[Eq. (2)]:

∑
n

[(
k2

0 −k2
m

)
Cmn +Dmn

]
qn =− iρ0ω0Q̂s

4π

∮
S
ψ∗

m

(
βG− ∂G

∂n

)
da, (6)

where Cmn =�
V ψ∗

mψn d3x and Dmn =∮
S

(
β−β′)ψ∗

mψn da. Here, β′ represents the normalized
specific acoustic admittance on the boundary that is satisfied by the modal function. The volume
integral covers the entire volume inside the enclosure, and the surface integral is evaluated on
the entire inside surface of the enclosure. Assuming the modal functions are orthogonal, the
matrix form of Eq. (6) reads⎡
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or

A ·Q = B, (7)

where Amn = (
k2

0 −k2
m

)
Cmn +Dmn, Qn = qn, and Bm =− iρ0ω0Q̂s

4π
∮

S ψ∗
m

(
βG− ∂G

∂n

)
da.

Matrix A is nondiagonal, though often sparse and Hermitian. For an exact solution, N is
often required to be infinity, which makes it impossible to solve for the qn’s. In practice,
however, with a set of properly chosen modal functions, ψn, qn often diminishes quickly as n
goes to a large number. It is therefore possible to keep only a finite number of ψn’s as well as
qn’s to obtain a desired accuracy (Xu and Sommerfeldt, 2010).

Bm in Eq. (7) contains a surface integral and may not be easy to evaluate analytically, but a
numerical evaluation should be generally straightforward. In addition, recognizing the
spherical spreading nature of G and ∂G/∂n, one can mesh the surface S accordingly to improve
the efficiency of the computation.

For a complex source that cannot be treated as a monopole, but that is small compared to
the dimensions of the enclosure, the hybrid modal expansion method can be modified to take
into account the free-field radiation p̂0 of the source. Equation (3) becomes

p̂(r)= p̂0 +F(r), (8)

and Eq. (6) becomes ∑
n

[(
k2

0 −k2
m

)
Cmn +Dmn

]
qn =−

∮
S
ψ∗

m

(
βp̂0 − ∂p̂0

∂n

)
da. (9)

If the multipole expansion is known for a source in the free-field, e.g., p̂0 =∑M
m=1 AmΦm, Eq. (9)

can be further modified to the form∑
n

[(
k2

0 −k2
m

)
Cmn +Dmn

]
qn =−

M∑
m=1

Am

∮
S
ψ∗

m

(
βΦm − ∂Φm

∂n

)
da, (10)

where Φm represents the mth multipole and Am stands for the multipole amplitude.
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APPLICATIONS

Effective Absorption Coefficient

The calculation of the effective absorption coefficient αe in rooms has been a long-time topic
in room acoustics, and a variety of formulas have been given (Sabine, 1964; Eyring, 1930; Joyce,
1978, 1980; Hodgson, 1993; Beranek, 2006; Jing and Xiang, 2008). In this example, αe will be
calculated based on the critical-distance results simulated from the hybrid modal expansion.
The effective absorption coefficient is directly tied to the critical distance, the distance from the
source to where the direct sound pressure, p̂0, equals the reverberant sound pressure, F(r):

Rc =
√

Sαe

16π(1−αe)
, (11)

where Rc stands for the critical distance, S is the inner surface area of the room, and αe is the
effective absorption coefficient.

In this example, the critical distances of a set of rooms will be computed based on the hybrid
modal analysis, and thus αe can be solved from Eq. (11). The rooms all have the same
dimensions (

�
15m×πm×5m) but different inner surfaces. The Sabine absorption coefficient

varies from 0.05 to 0.8. The sound fields excited by a randomly placed point source in each room
are computed at five frequencies in the 630 Hz one-third octave band. The computed critical
distances are averaged over ten source locations and then inserted into Eq. (11) to solve for αe.
Figure 1 compares the Rc-based results with Sabine’s formula and Eyring’s formula. The former

FIGURE 1: (Color online) Effective absorption coefficient as a function of Sabine’s absorption coefficient calculated in
a rectangular room for the 630 Hz one-third octave band. “−−−−−−”: prediction based on the hybrid modal expansion and
the critical distance; “−−−−−−”: Sabine’s formula; “−−−···−−−”: Eyring’s formula.

generally fall in the middle of them, which is very similar to the results of Joyce (Joyce, 1978)
(see curve "s = 7/9" in his Fig. 4) and Jing et al. (Jing and Xiang, 2008).

Complex Sources in an Enclosure

In this example, the hybrid modal expansion is applied to compute the enclosed sound fields
excited by two different sources: a dipole source [D(r,φ,θ)= cos(θ)] and a complex source
[D(r,φ,θ)=�

2cos(θ/2)]. Both sources are located at the center of a enclosure (dimensions:
em×πm×2m). The effects of the source directivity are clearly represented by the hybrid modal
expansion (Fig. 2).
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(a)

(b)

(c)

FIGURE 2: Sound pressure level computed by the hybrid modal expansion for (a) a dipole source and (b) a small
complex source in a rectangular room at 400 Hz. Both sources are placed at the center of the room. Pressure fields
on the x-y, y-z and x-z planes that include the source are plotted with the white dots representing the location of the
sources. The directivity pattern of the small complex source is shown in (c).
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Insertion Loss of an Open Rectangular Enclosure

An accurate estimation of the insertion loss (IL) for enclosures with one or more openings is
very important in many noise control applications. A numerical model based on the hybrid
modal analysis was established and used to study the IL below the Schroeder frequency. In this
example, an enclosure with dimensions 1.2m×2m×0.8m and a single opening (0.5m×0.5m) is
studied. The opening is located at the center of the ceiling (1.2m×2m) and a point source is
placed on the floor (in a corner). The IL predictions from the numerical model are compared
with the experimental results. As shown in Fig. 3, the prediction is very good.

FIGURE 3: Insertion loss of a partially opened enclosure. The sound source was placed in the corner furthest from
the aperture. “−−−−−−” the model prediction; “−−−−−−”: the experimental result.
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