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Itinerant Ferromagnetism I 
B. T. HALPERIN, Chairman 

New Approach to the Theory of Itinerant Electron Ferromagnets with 
Local-Moment Characteristics* 

W. E. EVENSON, J. R. SCHRIEFFER, AND S. Q. WANG 

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 

The understanding of ferromagnets, like iron, which exhibit localized moment behavior above 
the Curie point yet show itinerancy has long stood as a major theoretical problem. An account will 
be given of recent progress on this problem which was achieved through functional integral methods. 
This technique transforms the interacting electron system into an average over a system of non­
interacting electrons moving in a Gaussian-weighted external "magnetic" field which acts only on 
the electronic spins. For a single magnetic impurity in a free electron metal, a single approximation 
allows one to go from Pauli paramagnetism to localized moment behavior in a smooth manner as 
the atomic exchange interaction is increased. The two impurity problem leads to an effective exchange 
coupling as in the Heisenberg model, which is antiferromagnetic for the nondegenerate orbital case 
studied here. Application of the technique to homogeneous systems leads to damped spin waves in 
the ferromagnet in lowest approximation. 

I. INTRODUCTION 

There has been a long-standing debate whether the 
"d electrons" in Fe, Co, and Ni are better described in 
zero order by a localized (Heisenberg) model or by an 
itinerant (band) model. Some of the experimental 
evidence has been summarized by Herring.1 While 
much of the experimental evidence originally quoted in 
support of one or the other limiting model is in fact well 
accounted for by either limit, the bulk of the relevant 
data, with a few notable exceptions, supports the 
itinerant theory. Evidence supporting the band limit 
includes the large electronic specific heat, nonintegral 
magneton numbers observed in saturation moments, 
the magnetoresistance, and Hall effect, etc. for the three 
elements. This evidence leads to the inescapable 
conclusion that the d electrons must exhibit at least 
some itinerant character. 

To our knowledge only for Fe is there any evidence 
which unambiguously favors the localized model. 
Small additions of Cu, Zn, AI, etc. to Ni lower the 
saturation moment per atom by an amount propor­
tional to the number of valence electrons per solute 
atom, while addition of these elements to Fe reduces the 
moment by roughly 2.2 MB (the saturation moment per 
atom in pure Fe) irrespective of valence.2 ,3 This 
behavior suggests that a reasonably well-developed 
localized moment resides on each Fe atom, while the 
moment on Ni is strongly influenced by its environment, 
as one expects in a band scheme. Co appears to be closer 
to Ni in this respect. In addition, it appears that the 
ratio of the Curie constant [C= (T-8)x] and the 
saturation moment observed for Fe is too small to be 
accounted for by any reasonable choice of parameters 
in a purely band theoretic model. On the other hand, the 

can be treated in zero order by a band model with 
effective exchange interaction parameters, Fe should 
be viewed as an intermediate coupling case for which 
neither the band nor localized limits form good zero­
order approximations. This is not to say that many 
properties of Fe cannot be well accounted for by a band 
model. Rather most observed properties of Fe are 
relatively insensitive to its intermediate coupling 
nature. A viable theory should be able to account for 
these features plus the apparent "localized moments" 
as seen in the alloy experiments and in the paramag­
netic susceptibility. 

Recently, the beginnings of a theory to handle this 
intermediate coupling (or schizophrenic electron) 
regime have been worked out by Wang, Evenson, and 
Schrieffer.5 The theory is still in its formative stages 
yet the general features of the approach look quite 
promising. In essence, by using an identity of Stratono­
vich,6 one can exactly transform the partition function 
for the interacting assembly of d electrons to a partition 
function for noninteracting electrons moving in a space­
and time-varying externally applied "magnetic field," 
the field being averaged over with Gaussian weight. 
The method, when applied to the problem of a single 
impurity atom with intra-atomic exchange (the 
Anderson model)1 gives in lowest approximation a 
continuous variation of the susceptibility from enhanced 
Pauli paramagnetism (for weak exchange) to an ideal 
Curie law (for strong exchange), all within an itinerant 
scheme. Thus, one has hope that a careful application 
of the technique to a system like pure Fe will adequately 
treat both its itinerant and localized aspects. 

II. THE FUNCTIONAL INTEGRAL FORMULATION 
OF THE HUBBARD MODEL 

band model gives a rather better account of this ratio The model we choose to consider for the ferromag­
for Ni,4 Thus, it appears that while Ni (and possibly Co) netic system is the multiorbital Hubbard model,8 but 

1199 
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1200 EVENSON, SCHRIEFFER, AND WANG 

for simplicity to begin with we will neglect the de­
generacy of the d band and look at the nondegenerate­
orbital Hubbard model. (In practice Hund's rule 
coupling due to orbital degeneracy is an important 
effect, needed to produce ferromagnetic rather than 
antiferromagnetic coupling between atoms. However, 
the essential localized-moment features of our problem 
are already contained in the simple case from which we 
start.) The Hamiltonian is 

H=Ho+HI , (2.1a) 
with 

Ho= L TitCia+Cja (2.1b) 
ijfT 

and 
H 1= L Uinilnq, (2.1c) , 

where D i is the Coulomb interaction, assumed to act 
only when electrons are on the same atom (i.e., Wannier 
state). U i = U for the pure metal; the impurity problem 
corresponds to Ui varying over the lattice. The Cia+, Cia 
are creation and annihilation operators for electrons in 
Wannier state i with z component of spin cr/2=±!. 
The Ti/ include the usual transfer interaction, i.e., 
hopping integrals, and Zeeman energy for an externally 
applied field. We measure all energies relative to the 
chemical potential, p.. 

If all the U i were zero, H would be a one-body 
operator which could be exactly diagonalized in terms of 
the correct scattering states (or Bloch functions) which 
properly mix the Wannier states for the many sites. 
This would give an energy band picture for the resulting 
metallic system with the usual nearly temperature­
independent Pauli susceptibility. On the other hand, if 
the hopping were zero, and there were one electron per 
site, one would have an insulating system. Then the 
susceptibility would be a spin-! Curie law, x"'{3. These 
are the two important limiting cases: no localized 
moments or perfectly localized moments, depending on 
the size of the ratio TIU, where T is the nearest­
neighbor hopping. As discussed above, for a system like 
iron one is dealing basically with an intermediate 
situation in which the magnetic effects appear to be 
close to the localized (insulator) limit, while transport 
properties are those of a metal. Unfortunately, it is just 
in this interesting case that it becomes very difficult to 
solve this problem. Perturbation theory in the appropri­
ate small parameter, TIU or UIT, will not treat the 
regime where T IU '" 1, and moreover, perturbation 
theory will not take us through the Mott transition 
where the system goes metallic from the small TIU 
insulator. We have hopes that the functional integral 
formulation of the problem will allow in a natural way 
those approximations which are useful in the regime 
TIU~1. 

To study the magnetic behavior of this system, 
it is convenient to calculate the grand partition function, 

Z, for the Hamiltonian in the presence of an external 
field. Then we get the susceptibility, x, for example, 
by differentiation of 10gZ with field h, where Z = 
Tr exp[ -(3(H-p.N)]. 

Stratonvich,6 then Hubbard9 and Miihlschlegel,1O 
developed a functional integral method for calculating 
Z which begins with the identity (valid for any bounded 
operator a) 

exp(II'a2) = L: dx exp( -7rx2+27rax), (2.2) 

as seen by completing the square in the exponent. To 
use this identity we can rewrite HI in any of several 
ways, e.g., 

since nia2= nia for fermion occupation number operators. 
Alternatively, we could write, as Hamannll did recently, 

or by writing the fermion operators in terms of spin 
operators 

We will not discuss the relative merits of these ways of 
writing HI, but in our present discussion we will use the 
first expression. We take the second term in (2.3) into 
Ho so that 

Ho= L Ti/Cia+Cjq, 
#u 

HI = - L !Ui(nil-ni 1)2. 
i 

(2.6b) 

Now if Ho and HI commuted, one could write 
exp( -(3H) as exp( -(3Ho) exp( -(3HI ). One could then 
use the Stratonovich identity to write 

exp[{3!U i(nil-ni .)2J 

= L: d~i exp[ -7r~i2+ (27r{3Ui)1/2(nil-nq)~;]. (2.7) 

U~fortunately fIo and fII do not commute, so before we 
can linearize the exponential we need to use the Feyn­
man time-ordering trick: 

eA+B= T exp (l dT(AT+BT)) , (2.8) 

where T is a fictitious "time;" T is the chronological 
ordering operator, which orders products like ATBT' AT" 
chronologically with larger "times" to the left. The AT 
and B T , can be treated as commuting operators so long as 
they are acted on by the T operator in the end. Using 
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ITINERANT LOCALIZED ELECTRON FERRO MAGNETS 1201 

this time-ordering trick then, the f d~i becomes a 
functional integral over all possible functions ~i (T), and 

exp( -(3H) = T f If ~~i(T) exp (- {dT'{{3HoT' 

+ ~ [7r~i2(T')-ci~i(T')(ni!T'-nilT')]I) (2.9a) 

with 
(2.9b) 

The significant point here is that one has reduced the 
density matrix exp( -(3H) for a system with the two­
body Coulomb interaction to the average over the 
density matrix for a system with only one-body terms 
but in a random "magnetic" field ~i( T) in the z direction. 
[Notice ~i(T) enters H(~i) with Sz to contribute a 
Zeeman-like energy, where ~i(T) looks like a magnetic 
field.] Thus we replace the exchange field one electron 
exerts on another by a fictitious external field which 
varies in time and from site to site, but which is so 
arranged as to reproduce exactly the effect of the actual 
interaction. 

The TrT in Z is ~pplied only to the quantum­
mechanical operators, Ho and nia, and is not affected by 
the variable ~i( T). Therefore we can interchange the 
order of doing the functional integral and the TrT to 
obtain Z as a Gaussian functional average 

Z= f IJ- ~~i(T) exp (- {liT' L, 7r~i2(T'») 

of a partition functional 

Z(~l, ~2,·· ., ~N) == TrT 

XZ(~I, ~2,···, ~N) (2.10) 

This is an exact expression for Z. There are now two 
major pieces in the problem of evaluating Z from this 
expression: (1) evaluate Z(~I, ~2,···, ~N) for arbitrary 
fields t;(T), 0<T<1, and (2) carry out the functional 
average of Z (h, ~2,· .. , ~N). Notice that the functional 
integral is normalized so that if Z (~1, ~2,· •• , ~N) is 
independent of the ~i, say it =Zo, then Z=Zo. This is 
the case, for example, if all U i = O. 

III. FORMAL EXPRESSION FOR Z(h, ~2' ••• '~N) 

Differentiation of 10gZx with respect to A yields 

a 10gZx (11 
) / -- = TrT dT ~ (J"Ci~i(T)niaT0. TrT0. 

all. 0 W 

(3.1) 

where the identity on the right-hand side defines ( )x. 
Since Z(h,···, ~N) =ZX=I, we would like to integrate 
(3.1) using the fact that ZX=O is easy to find since it 
corresponds to U i= O. At this point one introduces 
Green functions to determine (niar )x. We define 

Gi/a( T, T') == - TrT(ciarciar'+0.) /TrT0., (3.2) 

so that 
(3.3) 

To find GX we write its equation of motion. By Fourier 
transforming all quantities, it is possible to formally 
solve for GX. The A integral can then be done exactly so 
that we finally obtain a simple formal expression for 
Z(h, b,···, ~N): 

Z(h, ~2,···. ~N) =Zo exp[Sp log(1-K)], (3.4) 

where Zo is the partition function for all Ci=O. [Zo just 
leads to the Pauli susceptibity for the metal with the 
U;/2 shift in level position, so exp[Sp log(l-K)] 
contains the interesting physics of local moments if 
they occur.] K is a known matrix defined by 

(3.5) 
where 

co 

~i(T) = L, ~i. exp( -27rivT) , 

and gil (n) is the zero-order one-electron Green function 
Sp means trace in (J", i, and n variables. 

We will find later in considering which approximations 
are necessary to evaluate Z that it is useful to treat the 
zero-frequency part of the effective potential, -(J"Ci~iO, 
separately (and exactly) in zero order. To do this, let 
K==Vg= (Vo+V')g, where 

thus 

Sp 10g(1-K) = Sp log(1- Vog) 

+Sp log[1- V'g(l- Vog)-I]. (3.7) 

Now define a new zero-order Green function by the 
Dyson-like equation 

To evaluate Z(h,···, ~N) we introduce a coupling g==g(l- Vog)-l, (3.8) 

constant A multiplying the Ci. Then the density matrix and let Ko== Vog, K'== V'g; then 
0.(h, ~2,·· ., ~N) is just 

exp _( ~1 dT{3Hxr). 

Sp 10g(1+K) = Sp 10g(1-Ko)+Sp 10g(1-K'). (3.9) 

When we put this form back into the functional 
integral (2.10) to get Z, it is convenient to express the 
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1202 EVENSON, SCHRIEFFER, AND WANG 

functional integral in the ~ip variables as we have done given by 
for Z(h, ~2"··, ~N). Then (4.2) 

where ~ip*=~i,-p and d2~ip denotes an integral over the 
complex ~ip plane. We now have an exact formal ex­
pression for Z which consists of an integral which is 
infinite-dimensional in Fourier space and N-dimensional 
in coordinate space (N = number of atoms in solid). At 
this point we must introduce approximations. 

In considering the full N-center problem, there are 
three somewhat distinct physical effects. The first is the 
formation of a quasi-localized moment; the second 
is the form of the interaction between these moments; 
and the third is the cooperative behavior of the total 
system. We discuss each of these effects below: the first 
question is considered in some detail in Sec. IV, while 
brief discussion of the other two is given in Secs. V and 
VI. 

IV. THE ONE-CENTER PROBLEM 

A. The Anderson Model 

We begin our study of ferromagnets with local­
moment behavior above Tc by considering temperatures 
Tc«T«TF • (For iron Tc"-'1043°K, and T F ,,-,20 ODO°K.) 
At these high temperatures there is little short-range 
order in the spin system, so we can to lowest order con­
sider the problem of the ferromagnet to be a collection 
of one-center problems, i.e., our chosen center thinks it 
is all alone in some "effective energy band" made up of 
all the spin-orientation averaged electronic orbitals of 
the system. We will see that the results are relatively 
insensitive to the precise nature of this effective band. 
Then our model has Ui = 0 except at the particular site 
we focus on where U i = U and in fact reduces to the 
usual Anderson model with 

Ho= L Ekunk.+ L E,wndo+ L [V kdCku+Cdu+ Vkd*Cdu+Cku], 
ku ku 

( 4.1) 
E,w'=' Edu+ U /2, 

H1= -tU(nat-na~)2, 

where V kd is the hopping potential from d to k, reflecting 
the fact that an electron initially on the d state in a 
localized orbital will decay into the band. The Eku is the 
effective band mentioned above. The Til of the Hub­
bard model can be thought of as Fourier components of 
the Eku expanded in the complete set of Wannier func­
tions for a single band. 

For a band density of states N(E), the width of the 
"virtual level" on the d state, i.e., the inverse lifetime of 
the state with a single electron on the "impurity," is 

Here the interesting number which takes us from the 
local moment to the completely delocalized state is 
U /rr r. ( Note: One is not obliged to go over to the 
Anderson model language, but we could stick with the 
Hubbard form while taking only one of the uirsO. The 
advantage of the Anderson model in this case is its 
familiarity and the ready physical interpretation of the 
terms. The results are identical if one makes a careful 
correspondence of the various terms in the two repre­
sentations of the model.) 

B. The Static Approximation 

For general ~p we do not know how to calculate 
Sp 10g(1-K) in an exact way, even in this simpler 
problem. Also, we still need to do the functional integral. 
MtihlschlegallO showed that if one considers only ~o, 
neglecting all ~p for finite p in Z (~), then Z is exact for 
Uhrr=o and for 7rr/u=o. This approximation has 
been termed the "static approximation" for obvious 
reasons. It also gives a smooth interpolation for Z 
between the two exact limits. 

When we set ~prso=O, V----J.vo which is automatically 
diagonal in the u and n variables; then 

Sp log(l-K)--+Sp 10g(1-Ko) = L 10g(1+uc~ognu). 
u,n 

( 4.3) 

If we take h= 0, {3r large, and assume the so-called 
symmetric case where Ea= - U /2, we obtain 

log Z (~o) = 2c~o tan-1 c~o _ {3r log [1 + (~~O)2J. (4.4) 
Zo 7r {3r 7r \{3r 

[For general values of (3r, Ed, and h, Z(~o) can be 
expressed in terms of digamma functions.] 

In the static approximation, then, 

Z= L: d~o exp( _7r~02)Z(~O) 

= L: d~o exp[ -(3Fst (to)], (4.5) 

and the integral must be done numerically. (3F8t (to) = 
- 10gZ (~o) +7r~o2 is plotted in Fig. 1 for U /7r r = 0.2,0.5, 
1.0, and 5.0. For U /7rr«1, only small fluctuations of ~o 
about the origin enter with appreciable weight, cor­
responding to weakly exchange-enhanced Pauli para­
magnetism. For u/7rr~0.5, minima,develop symmet­
rically about the origin and a wide range of ~o values 
enters with appreciable weight, corresponding to large 
amplitude localized spin fluctuations. U /7rr»1 is the 
strongly localized-moment regime, the two minima 
corresponding to the up and down spin states.12 Un­
fortunately, the static approximation, while having 
many features which are correct (e.g., smooth transition 
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ITINERANT LOCALIZED ELECTRON FERROMAGNETS 1203 

from Pauli to Curie law susceptibility), does not give 
proper leading order corrections in the two extreme 
cases. 

C. The" RPA Prime" 

We can improve on the static approximation by 
enlarging the class of functions H T) which we consider. 
In particular, we can include for each value of ~o all 
Gaussian fluctuations of H T) about that average value. 
We then get proper leading corrections for U /n-r«1 
and the leading corrections in the other limit are brought 
closer to the exact ones. By analogy to the random 
phase approximation (RPA), we call this scheme the 
"RPA'." 

The RP A corresponds to retaining only the K2 terms 
in the Sp log(1-K) occurring in (3.4). This gives a free 
energy arising entirely from Gaussian fluctuations in the 
"time-varying magnetic field." While this approxima­
tion is valid for small U, as U /7rr approaches unity, the 
free energy functional becomes strongly anharmonic as 
shown in Fig. 1 for ~o. It is in fact this anharmonic 
nature of F which ultimately leads to the Curie law for 
U/7rr»1. 

To evaluate the RP A' we retain the Sp log (1- K') 
term in (3.9) to second order in K', while keeping the 
Sp log(1-Ko) exactly. The ~.+o integrals, being 
Gaussian, can be performed, and one finds 

(3FRPA'(~O) ={3F8t(~0)+:E log[1- (C2/7I")q,.(~0)J, (4.6) 
.>0 

where q,.(~o) is the "polarization bubble" 

q,.(~o) == -! :E gnUgn+.u• 
u,n 

(4.7) 

The first term in (4.6) is just the free energy due to the 
mean value of the fluctuating field, while the second 
term represents the free energy of the fluctuations about 
this mean. Clearly, this approximation is reasonable if 

0, 

FIG. 1. Effective free energy FBI for a r-independent field ~o, as 
given by (4.4). The curves are labeled by U/trr. c is (2tr{jU)1/2. 

100 tD 

5.0 

40 

20 

20 40 60 80 100 

/3r 
FIG. 2. Plots of the dimensionless quantities (X-Xband) r /}.IB2 

versus (jr. The full lines are calculated directly from (4.9a) and 
(4.9b) within RPA'; the dashed lines are calculated by the static 
approximation. The asymptote for large U /trr is the correct Curie 
law for a free spin !. For small U /trr, the correct exchange­
enhanced Pauli susceptibility is obtained. 

the fluctuations are sufficiently small, as is the case 
when U /7I"r«1. As U /7I"r increases toward unity, the 
fluctuations become large, and hence non-Gaussian. 
Then the Gaussian terms included in RP A' are not even 
sufficient to make the ~o-integral converge. However, 
when U /71" r becomes very large, the free energy func­
tional develops sharp minima. For reasonable tem­
peratures, the only important contributions to the ~o 
integral must come from the neighborhood of these 
minima, so the integral can be restricted to that 
neighborhood. Then RP A' again gives well-behaved 
results. 

D. The Magnetic Susceptibility 

X={3~1(a210gZ/ah2) Ih~O. 

The applied field, h, will clearly enter Zh(~) / ZOh 
additively with the fictitious field ~o. Hence, 

Zh(~O, ~'#J) Zh~O(~O+{3f.LBh/c, ~'#J) 

ZOh ZOh 

Therefore, we put ~o' = ~o+{3f.LBh/ c, and 

Zh = 100 

d~o' f(rr 2d2~.) 
ZOh -00 .>0 

X exp[ -71" (~o' - (3f.LBh/ c) 2J exp[Sp log (1-K) J, ( 4.8) 

the only h dependence being displayed explicitly in the 
Gaussian weight factor. Then 

(4.9a) 
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1204 EVENSON, SCHRIEFFER, AND WANG 

where 

X exp[Sp log(l-K)], (4.9b) 

and Xband is the Pauli susceptibility for the band elec­
trons. Numerical results for X are shown in Fig. 2 for 
several values of U /rr r. 

To our knowledge, this approach achieves, for the 
first time, a Curie-like susceptibility at high tem­
peratures in the interesting region without starting from 
a zero-order approximation which already contains a 
moment. Rather, this theory deduces a Curie law which 
does not rest on such assumptions. This was one of our 
original important objectives for this first stage of the 
problem, and it became clear that in order to obtain a 
Curie-like susceptibility for temperatures Tc«T«U, 
there would have to be some sort of "collective degrees 
of freedom" associated with the magnetization. The 
fluctuations in this collective mode (i.e., the localized 
spin fluctuations in the system) should occur on a time 
scale that is much slower than the time scale set by the 
band width (i.e., the.1evel width of the virtual state in 
the one-center problem). At first sight the ~o might be 
considered to be the only important collective degree of 
freedom, all other variables undergoing small fluctua­
tions about the value of ~o in question. The breakdown of 
RP A' for U /11" r "-' 1 underlines the fact that in the 
intermediate coupling regime a number of variables 
undergo large non-Gaussian .fluctuations. Presumably, 
the ~. for a range of frequencies, v, much smaller than 
Br will enter on approximately the same footing, while 
the large v terms will serve mainly to produce an increase 
in the effective level width. We are pursuing these 
questions as well as problems including orbital de­
generacy in the model. 

V. THE TWO-CENTER PROBLEM 

To investigate a Heisenberg-like description of the 
system in which quasi-localized moments are coupled 
via a pairwise interaction, one can study the problem of 
two magnetic atoms imbedded in a nonmagnetic host; 
i.e., Ua= Vb= U, U;=O if i;z6.a or b in (2.6). Within the 
static approximation, one again retains only ~iO (i = a or 
b). Proceeding as in the one-center problem, when a 
and b are nearest neighbors, one finds an antiferro­
magnetic coupling. Presumably by including orbital 
degeneracy one would, under suitable circumstances, 
obtain ferromagnetic coupling.13 Due to the fact that 
the scalar ~ field within the static approximation does 
not account for transverse fluctuations of the moments, 
the coupling is of the Ising form. For two widely spaced 
impurities the interaction is of the RKKY form, while 
for intermediate separations several terms of compar­
able order complicate the interaction.l4 

VI. THE N-CENTER PROBLEM 

. The treatment of cooperative effects is very natural 
within the functional integral representation. I5 In the 
ferromagnetic state, the presence of long-range magnetic 
order enters through the special importance of the 
time- and space-averaged ~i( T), ~q~o •• ~o, which plays the 
role of a molecular field. Collective excitations (damped 
spin waves) enter if one treats the remaining parts of 
the ~i( T) field within a Gaussian approximation analo­
gous to the RP A' discussed in Sec. IVe. Since the spin 
waves involve transverse fluctuations of the ordered 
moments, and since approximations do not necessarily 
preserve the rotational invariance of the system, it is 
important that one treat the problem in a manifestly 
rotationally invariant fashion to insure that the spin­
wave energies properly go to zero for long wavelengths. 
This can be accomplished by writing the two-body 
interaction as in (2.5). The interaction is now linearized 
by a vector field, ~i( T). Treating ~q~o •• ~o in zero order, 
the RP A' gives the free energy of the ferromagnetic 
state in terms of the ~oo average of the usual RPA 
partition function in a molecular field, ~OO. This ap­
proximation does not include the localized-moment 
behavior, and one must combine the collective effects 
with those treated in the two preceding sections to 
obtain a more faithful picture of the intermediate­
coupling ferromagnet. 

While there are yet many difficulties to overcome in 
finally working out the detailed, quantitative theory of 
ferromagnetism in iron, we believe that this functional 
integral technique holds good promise in this and in other 
very difficult many-body problems where large fluctua­
tions playa crucial role. 

* Work supported in part by the National Science Foundation 
and the Advanced Research Projects Agency. 

1 C. Herring in Magnetism G. T. Rado and H. Suhl, Eds. (Aca­
demic Press Inc., New York, 1966), Vol. IV, Chap. VI. 

2 W. Hume-Rothery and B. R. Coles, Advan. Phys. 3, 149 
(1954) • 

3 N. F. Mott and K. W. H. Stevens, Phil. Mag. 2,1366 (1957). 
4 P. Rhodes and E. P. Wohlfarth, Proc. Roy. Soc. (London) 

A273, 256 (1963). 
6 S. Q. Wang, W. E. Evenson, and J. R. Schrieffer, Phys. Rev. 

Lett. 23, 92 (1969). 
6 R. L. Stratonovitch, DokJ. Akad. Nauk SSSR 115, 1097 

(1957); [English trans!.: Soviet Phys.-Doklady 2, 416 (1958).J 
7 P. W. Anderson, Phys. Rev. 125,41 (1961). 
8 J. Hubbard, Proc. Roy. Soc. (London) A276, 283 (1963); 

A277,237 (1964); A281, 401 (1964). 
9 J. Hubbard, Phys. Rev. Lett. 3, 77 (1959). 
10 B. Miihlschlegal, University of Pennsylvania, 1965 (un­

pu blished lecture notes) . 
11 D. R. Hamann, Phys. Rev. Lett. 23, 95 (1969). 
12 Notice that we are considering only the high-temperature 

paramagnetic state, and our discussion may not apply in the low­
temperature Kondo regime. 

13 See, for example, J. C. Slater, H. Statz, and G. F. Koster, 
Phys. Rev. 91, 1323 (1953); J. R. Schrieffer and D. C. Mattis, 
Phys. Rev. 140, A1412 (1965); D. C. Mattis, The Theory of 
Magnetism (Harper and Row, Inc., New York, 1965). 

14 A more detailed account of this phase of the problem is in 
preparation by the present authors. 

16 J. R. Schrieffer, unpublished lecture notes, Canadian Associa­
tion of Physics, Summer School, Banff, 1969. 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.187.97.20 On: Thu, 03 Apr 2014 04:57:01


