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The study of collisional processes in plasmas produced by neutral-atom injection into magnetic mirror
fields is described. The emphasis is on the many collisional processes which occur as the plasma density
increases. Experimental and theoretical results are given. The experimental results are discussed first
in terms of a simple model which assumes a Maxwellian electron distribution and a monoenergetic ion
component of much higher energy. Analytical solutions may be obtained for this model. Also presented
is a more complete theory employing two time-dependent Fokker-Planck equations to describe the be-
havior of the electron and jon distribution functions. Both models are in good agreement with measured
values of the electron temperature and plasma potential. The equilibrium values of these two quantities
are found to vary as the # power of the ratio of the plasma density to the background-gas density.

1. INTRODUCTION

In plasmas contained by “open-ended” or magnetic
mirror systems, particles may be lost from the system
by collisions that scatter the particles into the mirror
loss cones. Chandrasekhar! has considered similar scat-
tering effects for stellar collisions. Spitzer,? by extend-
ing Chandrasekhar’s theory to an ionized plasma, has
shown that the characteristic time for loss of a charged
particle by scattering is proportional to the § power of
the particle energy. Therefore, unless the charge species
of the plasma have the same energy, the scattering loss
times generally will be different; and an electrostatic
potential then develops to balance the loss rates, re-
sulting in approximate charge neutrality.

In magnetic mirror systems where the ion energy is
large compared with the mean electron energy a posi-
tive plasma potential develops, retarding the electron
loss but increasing the ion loss. In an early investigation,
Kaufman® assumed that the magnetic field configura-
tion could be approximated by a ‘“‘square well.” He
found that electrons either were confined or had their
loss cones reduced by a positive potential. For ions, how-
ever, the loss cone was increased; and a minimum
energy was found to exist for which there was no con-
finement due to expulsion by the positive potential.
Other authors*7 have included a variation of the elec-
trostatic potential along the direction of the magnetic
field lines, instead of starting from Kaufman’s “square-
well” assumption.

To describe the electron temperature and electro-
static potential of a plasma produced by neutral-atom
injection into a magnetic mirror field, additional source
and loss terms are necessary. A simple model including
these extra terms was presented in an earlier paper by
three of the present authors.® This model, which assumes
a Maxwellian electron distribution and a monoenergetic
ion component of a much higher energy, employs two
buildup equations (first-order differential equations)
to describe the collisional processes affecting the ion
and electron densities. The success of this approach in
describing the measured electron temperature and

plasma potential has led to refinement of the original
model to include, for the previous approximation
exp(—e¢/kT.), the substitution of an exact expression
for the fraction of electrons that have energy greater
than e¢. In addition, the ion scattering term is not ne-
glected now, and the initial electron energy is assumed to
have a value other than zero.

If the distribution function for a particular plasma
species is expected to change in an unknown way, then
the ordinary differential equation describing the density
of that species must be replaced by a partial differential
equation describing the distribution function of that
species in velocity space. The most suitable mathemati-
cal description comes from the Fokker-Planck equa-
tion. This is because the dominant mechanism for
energy transfer among the particles is by long-range
Coulomb interactions. The Fokker-Planck equation for
the distribution functions of several species of particles,
where the two-body force is an inverse square law, has
been derived by Rosenbluth, MacDonald, and Judd.?
This equation has been used by many authors for nu-
merical calculations of end-loss rates.” 1014

In the present work, the Fokker-Planck equation
serves as a tool for understanding the time dependence
of plasma parameters such as density, electron temper-
ature, electrostatic potential, and the distribution func-
tions. Two time-dependent Fokker-Planck equations
are employed to describe the behavior of the electron
and ion distribution functions. The Fokker-Planck
equations and the method for obtaining numerical solu-
tions have previously been described.®

The theory describing the collisional processes in
a plasma produced by neutral-atom injection in a mag-
netic mirror field is described in Sec. IT, where it is dis-
cussed in terms of buildup equations for the density of
the ion and electron plasma components and also in
terms of the corresponding Fokker-Planck equations
for the distribution functions. In Sec. III, the experi-
mental measurements of the plasma potential ¢ and
the electron temperature T, are described. The plasma
potential measurements were obtained by monitoring
the parallel energy of the slow ions leaving the plasma
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along the magnetic axis.!® Relative measurements of the
electron temperature were obtained from the amplitude
of microwave radiation emitted at the electron cyclotron
frequency.

In Sec. IV, we compare theoretical calculations and
experimental measurements. Some additional results
on collisional broadening of the ion distribution func-
tion are discussed in Sec. V. All experimental and theo-
retical results in this paper assume the plasma ions to
be protons. Section VI contains some concluding re-
marks.

II. THEORY

A. Simple Model Employing First-Order
Differential Equations

The electron temperature T, and plasma potential ¢
of a plasma produced by neutral-atom injection into a
magnetic mirror field may be obtained by considering
the buildup equations for the ion density #; and the
electron density #n, of the plasma. These equations,
which assume a Mazxwellian electron distribution and
a monoenergetic ion component, describe the collisional
processes in the plasma in terms of cross sections aver-
aged over the relative velocities of the interacting par-
ticles.

The energetic neutral-atom beam I is trapped by
Lorentz ionization of excited neutral atoms produced
by charge-exchange collisions in a gas or vapor. Other
trapping processes include ionizing collisions with the
background gas and with previously trapped ions and
electrons. Cross sections for these processes are repre-
sented by ", ¢, and o, respectively. Cross sections
for ion losses by charge-exchange collisions and by
scattering into the mirror loss cone are represented by
o.- and ¢.*. The cross section for electrons lost by scat-
tering into the loss cone is ¢,°. Electrons are also formed
by ionizing collisions of ion and electrons with the back-
ground gas; these collisions are described by the cross
sections o;f and ., respectively.

For a background-gas density #, the differential
equations for the ion and electron density become

dn; If* IL (a—,"T,)
—_—— — N ,

di Vv vV

) PR — S
+n.~ ("I‘/—v (Uti‘v«r"‘aﬁcvr)_Wc:v>—ni2°'liv) (1)

e I L (o)
a v v

L . R
+”e (I_/; (a't‘vr+0'tevr)+n0(0'itv+0'i¢vc))

~niGE)F (o), @
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where F(e¢/kT.) is the fraction of electrons with
energy greater than eg. The beam velocity, the rela-
tive velocity between colliding particles, and the elec-
tron velocity are given by v, v,, and v, respectively. The
path length of the beam through the plasma volume V
is given by L, and the fraction of the beam that is
ionized by the Lorentz force of the magnetic field is
given by f*. Throughout this paper, #, refers to the
number of molecules per cubic centimeter. We assume
the background gas to be hydrogen.

In Egs. (1) and (2), we assumed quasineutrality
(i.e., n;~m,) and neglected the charge exchange of the
trapped ions with the neutral beam. This latter process,
which replaces one hot ion by another, has no net effect
on spatially independent equations such as Eqs. (1)
and (2). It has been shown that charge exchange of the
trapped ions with the neutral beam may be regarded
as a diffusion of the ions across the magnetic field lines
for a finite plasma.® For a distribution function which
is not monoenergetic, this process tends to sharpen the
trapped distribution.”

The rate at which electrons leave the plasma by Cou-
lomb scattering into the loss cones may be estimated by
saying that the only effect of the plasma potential ¢ is
to eliminate the loss of electrons with energy less than
e¢. The fraction of scattered electrons having sufficient
energy to escape over the potential barrier is

)=+ ) e (- )0 ()
F(kTe)_H-'rr”z i) P\ )t
(3)

where ®(e¢/kT,) is the probability integral. Combin-
ing (3) with the scattering rate gives the last term of
Eq. (2).

In the following analysis, we make the additional
assumption that the plasma “growth rate” is slow com-
pared with the collisional relaxation times of the elec-
trons; i.e., the electron temperature and scattering rates
are in quasiequilibrium with the existing plasma den-
sity. The electrical neutrality of a plasma implies that

dn,- dn,
R (4)
By equating Egs. (1) and (2), we obtain
— RiMgO et — 3o = neno(o v+ iv,)
—nd(a.'v,)F (ed/kT,). (5)
Rearranging terms and equating #; to #n,, we have
F (3)= Mot oitetout) | o (6)
kT, n; ( T4%, ) 5%,

A plasma contained in a magnetic mirror field is ex-
pected to generate a positive electrostatic potential
if the ion energy is greater than the electron energy.
Since the positive potential restricts electron escape,
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the electrons are held by the plasma until they receive
sufficient energy from collisions with the energetic
ions to overcome the plasma potential. The electrons
may then escape by scattering into the mirror loss cone.
Thus, the plasma potential may be estimated by di-
viding the average energy the electrons obtain before
escaping the plasma by the electronic charge; e¢ is
approximately equal to the average energy of the escap-
ing electrons.

If the ion energy W is much greater than kT, the
energy transfer rate from the protons to the electrons®
is

dW _ 1.8X10-n W o
da (kT

where the ion energy and kT, are expressed in keV,
From Eq. (5), the average lifetime of an electron is
given by

re=[no(oiv+ 00,4 00av) + 10,0 1. (8)

Therefore the average energy of the escaping electrons
is

aw
ep= —dTTO+E0r (9)
or
SX 1012 W
o6 LEX10 +E, (10)

= (T Tholo vt o vitood) F:00]

where E, is the energy with which the electrons are
born. Equations (6) and (10) may be solved by an
iterative process for the two unknowns ¢ and T.,.

If F(e¢/kT,) is approximated by

exp(—eg¢/kT,) (11)

and the initial electron energy E, is neglected, then the
following closed-form expressions for k7, and e¢ are
obtained:

BT =( —1.8X 107, W )’/“
* \[no(osv+ 00,00t + 10,91 InK (09, 15)/ ’
(12)
6¢=—kTa an(”O: no’): (13)
where
_ (mo(oifvtoivctoua) ;E_)
K(no, "")—( n‘(m) + ;ﬂ: . (14)

The foregoing state that the electron temperature and
electrostatic potential are slowly varying functions of
the ion density, i.e.,

Ty o (1:/m9)?® (15)
and

G (ns/m)® (16)
if we neglect the dependence given by the logarithmic
factor.
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B. Fokker-Planck Equations

Replacing the two first-order differential equations
of Sec. ITA with time-dependent Fokker-Planck equa-
tions for the ion and electron distribution functions
enables us to solve a wider range of problems. Of par-
ticular interest are problems with time dependence and
those which involve a change in the ion distribution
function. The calculated electron distribution functions
were always found to be Maxwellian in nature for den-
sities above 107 particles/cm?®.

As noted, the Fokker-Planck equation for an inverse-
square force is derived in the paper of Rosenbluth,
MacDonald, and Judd.? In Eq. (31) of that paper,
the result is given in spherical polar coordinates in

TITTTI T I TTTTTrTT) 1L Oprrrrr T T T T T T T
1'5.' t=lx10-4$ec—:' F f=1><|0-459c5
no=1x10° 1 : n=1x10° 7
1.0 ¢ 3 s ! 3 A
*“EY electron/cm i1 ¢ 0.5 ions/em” 3
f 05':—E_=‘0.‘ev —’_" E E+=‘03‘ev 3
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6 ”“"'[""""'d :Tlllllln l'lllll!l‘lllllll-
t=2 ]x10-3sec: 600'5_ t = 0.6 sec 8_5'
[} n,=7.05x10° 3 o ny=1.06x10° 3
f electrons/em” J g 3 jons/cm E
2:. E_=10.1eV ‘:E 2005_ +=98'| eV 3
0 VS FEETEY 3 c-E... AT |1I|lll|lllll|lE
_" |'|"I'|"|" . 800J‘TTI’||‘ llll'lll'l""l"_
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[ e 3 -
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b EmE7eV G . E,=954eV ]
° :‘ ) ol N gl
-'H'Vll”"l”'l"': 900- ERAREAN) Y]1lll|ll]¥lll|'
150 1=2.01 sec - r=2.01sec_ 3
E\ et oof ni=2.7x108 3
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Fic. 1. Electron and ion distribution functions as a function
of v/ve for various times. The initial electron energy is 10 eV,
and the initial ion energy is 1 keV.
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velocity space, assuming azimuthal symmetry. We
further assume that the distribution functions are
isotropic in velocity space; i.e., there is no 8 dependence.
The functions depend only on », the magnitude of the
velocity, and ¢, the time. We have also modified the
Fokker-Planck equation to include source and loss
terms, so that for both the electron and ion distribution
functions the equation takes the form
Ofa %, ofs

ot ~Age T8y, tUHD.
The ion-loss term includes both Coulomb scattering
into the loss cone and charge exchange. Additional dis-
cussion of this equation is given in the Appendix.

(17)

107 r—rer—g—r— T
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10 U W TN [ U T T (N YOS Y S S W
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P [ T VA R R T PR

i

il "
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3 E
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F16. 2. Plasma parameters n;, E_, E,, and ¢ as a function of
time, for an injection energy of 15 keV. The beam is turned off
at a)time corresponding to approximately 8.5 (dimensionless
units).

The numerical code we employed is capable of pro-
viding graphical output plus numerical data. Figure 1
shows typical ion and electron distributions as a func-
tion of the normalized velocity »/7 for various times
during the buildup process. In this case, a 1-keV neutral
beam consisting of 6.2X10% atoms/sec was assumed
to have a Lorentz trapping fraction, f* equal to
4.2X1075 The plasma volume V was 7.5 liters. Pa-
rameters such as plasma density (#;), average electron
energy (E_), average ion energy (E.), and the plasma
potential (¢) also can be plotted as a function of time,
as shown in Fig. 2, The results here are for a 15-keV
plasma reaching equilibrium between trapping and loss
processes at approximately 5108 ions/cm?,

III. EXPERIMENTAL METHOD

A. Measurement of the Plasma Potential

In the Livermore neutral-injection experiment Alice,
the potential of the plasma was determined experi-

1545

H® beam
X

Mirror coil

Plasma

Fast-atom
detector

H¢ 4
L 7 Slow~ion
detector

S
R D

Microwave

tic fi
horn Magnetic field

lines

F16. 3. Drawing showing location of detectors in relation to
the plasma and the coil used to create the magnetic mirrors.
The coil is wound in the shape of the seam on a baseball. The
two main processes for producing slow ions are shown
schematically.

mentally by monitoring the parallel energy of the slow
ions leaving the plasma along the magnetic axis. The
parallel ion energy is a measure of the plasma potential
because the slow ions, born in the plasma, are pushed
out along the magnetic field lines by the positive po-
tential, thus gaining energy by an amount correspond-
ing to the potential. We assume the perpendicular
energy of these ions to be small compared with their
final parallel energy.

These slow ions are produced mainly by two types
of processes. The first is the charge exchange of the
trapped fast ions on the background gas, shown sche-

Relative amplitude of slow-ion signal

0 L 1
0 50 100 150

Retarding bias — V.
Fic. 4. Slow-ion amplitude versus retarding bias, as measured

by the gridded slow-ion detector. The intercept labeled ¢ is con-
sidered the plasma potential.
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F16. 5. Schematic diagram of the experimental apparatus for
measuring electron temperature.

matically just above the center of Fig. 3. The second
is ionization of the background gas, by either the
trapped fast ions or the trapped electrons. Ionization by
the ions is shown just below the center in Fig. 3. In both
types of processes the production rate of slow ions is
proportional to the trapped-particle density.

The slow-ion detector is a collector plate preceded
by three grids (see Fig. 3). Voltages are applied to the
grids to sort out ions from electrons and also to measure
the maximum parallel energy of the ions (by deter-
mining the retarding bias needed to quench the ion
signal).

The retarding bias is swept at a rate of about 10 Hz,
resulting in many plots like that of Fig. 4 during each
plasma containment time. At least two factors cause
the decrease in slow-ion amplitude to be somewhat
gradual. First, the slow ions reaching the detector are
born at various positions in the plasma, thus originat-
ing over a range of potential values. Second, the shape
of the plot may be influenced to some extent by the
small spread of bias across the holes in the retarding
grid, each of area 7.00X10~? cm? This second effect is
estimated to be relatively small, and will be neglected.

We approximate the maximum value of the potential
in the plasma by the downward extension of the sharply
falling portion of the retarding-bias plot, as shown in
Fig. 4. In this manner we obtain intercepts whose values
are quoted in Sec. IV as the plasma potential ¢.

FOOTE, GARDNER, AND KILLEEN

In Sec. IV we compare the decay time of the plasma
potential, after the neutral beam is turned off, with
the decay time of the trapped-ion density. We monitor
ion density by observing the rate at which fast charge-
exchange neutral particles leave the plasma. The fast-
atom detector is a secondary-electron-emission type,
positioned as shown in Fig. 3.

B. Electron Temperature Measurements

Measurements of the electron cyclotron radiation
emitted from the plasma were made using a radiometer
similar to that of Dicke.” For a tenuous plasma, the
electron cyclotron radiation is proportional to the
product of the electron density and the electron tem-
perature.® Since measurements of the plasma density
are available from other detectors, relative measure-
ments of the electron temperature may easily be ob-
tained from the intensity of the electron—cyclotron
radiation.

Figure S is a schematic diagram of the apparatus
used for the present measurements in the range 10.2-
11.6 GHz. A circular horn 15 cm in diameter receives
circularly polarized radiation from the plasma. A
polarizer converts this circularly polarized radiation
into linearly polarized radiation, preventing the loss of
signal in the transition to rectangular wave guide. A
manual switch permits radiation from either the plasma
or a noise source to enter a latching circulator capable
of switching rates up to 10 kHz. This device (with
20-dB isolation and 0.3-dB insertion loss) alternately
passes or stops the incoming radiation, producing a
square-wave modulation of the signal. (The “off” por-

100

e €

o

R I T S B A A

IALIIIIL, 1 i

Electron cyclotron radiation (n_ T ) — relative units

'l ]
108 10

Plasma density (ni) - ions/cm3
Fic. 6. Intensity of radiation emitted at the electron cyclotron

frequency as a function of #;, for hot-ion energies of 8 and 2
keV.
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tion of the square wave corresponds to radiation from
the matched load, which is at room temperature.)

The radiation then enters a balanced mixer preampli-
fier. The electrically tunable local oscillator has a fre-
quency automatically tuned to track the electron
cyclotron frequency in a selected portion of the plasma,
in spite of unavoidable variations in the current of the
confining-field magnet. The gain stability of the ampli-
fying system is improved by feedback from the crystal
current of the balanced mixer to control the output
power from the local oscillator. Both sidebands of the
mixer output are used. The signal then passes through
an IF amplifier having a bandwidth of 40 MHz and a
center frequency of 60 MHz. The plasma region sampled
(neglecting Doppler broadening, etc.) thus is repre-
sented by the volumes in the “wall thickness” of two
nested closed shells. The wall thickness of each shell
corresponds to the 40-MHz bandwidth, and the un-
sampled volume between the shells corresponds to the
80-MHz separation of the inner edges of the two side-
bands. Doppler broadening, which blurs the boundaries
of the sampled volume, is assumed to have a negligible
over-all effect since the radiation shifted into the ac-
cepted bands approximately equals that shifted out.
The wide bandwidth of the receiver tends to iron out
the effect of variations in the coupling of the horn
antenna to the plasma which arise because of cavity
resonances in the complicated vacuum chamber.

The detected output from the IF amplifier is modu-
lated at the switching frequency of the latching cir-
culator. The signal is fed into a narrow band ac ampli-
fier and synchronous detector which is phase-locked to
the same switching frequency. A low pass filter con-
verts the output from the synchronous detector to a dc
signal which is then recorded on magnetic tape.

In the present measurements, for which the plasma

20“( T T T T T T T T T [T 200

b
P [e)
2|
2 L 4
5 I ]
[ - X 4 >
It o= 1]
2 (910 msec) | 5
§ X { 5

x b
'tg) —— ni \X\— 8
.0 ]
L (415 msec) £
<] S
[V [~
" 1 1 | 1 ' 1 1 laad 1 1 [ L L 'Io
0 500 1000 1500
Time after beam turnoff — msec

F16. 7. Behavior of the plasma potential and fast-ion density
durm_g one plasma decay. Numbers in parentheses are char-
acteristic decay time constants.
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is tenuous, the electron cyclotron radiation is propor-
tional to the product of the electron density and the
electron temperature. According to Eq. (15), T, is
proportional to (#;/n)%*. Therefore, the intensity of
the radiation emitted is proportional to »,'. In prac-
tice, some variation in the background gas density
could not be avoided; however, this dependence is elim-
inated by dividing the intensity of the emitted electron
cyclotron radiation by 7..*%, where 7., is the charac-
teristic decay time due to charge exchange and is in-
versely proportional to #,. Following this procedure, we
obtain the results shown in Fig. 6 when the electron
radiation is plotted as a function of #,. The dependence
on n; for measurements made at ion energies of 8 and
2 keV is in good agreement with the #,'* dependence
expected from theory. These results are discussed below
at greater length.

IV. COMPARISON OF THEORY AND
EXPERIMENT

A. Equilibrium Case

In this section we compare the experimental resuits
with predictions of the simple-mode! theory of Sec. II,
which employs first-order differential equations. Com-
parison is also made between results of the simple-model
theory and those of the Fokker-Planck equations. We
concentrate here on the equilibrium situation, i.e.,
where changes in the plasma density are slow compared
with the collisional relaxation time of the electrons.

The outstanding characteristic of the experimental
data is that they agree with the easy-to-remember
theoretical result that the plasma potential and electron
temperature vary as (n;/n9)?5. This behavior as a func-
tion of the trapped-ion and background-gas densities
was given by Egs. (15) and (16), approximating the
more complete theory represented by Eqgs. (6) and (10).

We first discuss the results of the plasma-potential
measurements. The experimental method for obtaining
these data was presented in Sec. ITIA. Following beam
turnoff, the plasma density may be represented by

(18)

where 7., is the plasma density at the time of beam
turnoff and 7., is the characteristic charge-exchange
decay time constant. By substituting Eq. (18) into
the relationship ¢ « (#,/#0)%/5, one obtains the condition
that the plasma potential decays with a time constant
equal to 2.57.;. This assumes quasiequilibrium condi-
tions and a constant ny. Figure 7 shows the experimental
behavior of the plasma potential and the fast-proton
density during one of our plasma decays. We observe
that the potential decreases at a much slower rate after
beam turnoff than the ion density, with the ratio of the
time constants approaching the predicted value of 2.5.
(These data, like the rest of the experimental plasma-

1= teq eXpP(—1/70cs),
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F16. 8, Plasma potential and electron temperature vs n:/no
from both experiment and theory. The numbers beside the circles
give the background-gas densities for the individual decays in
units of 107 molecules/cmd. All the results here represent plasma-
potential behavior except the upper data, which show relative
T, behavior.

potential results discussed here, were obtained at 15-keV
injection energy.)

Several of these decays have been analyzed and the
data summarized in Fig. 8. There we show results,
both experimental and theoretical, of potential vs
n;/ng. The circle at the right end of each individual
experimental decay represents the earliest point on the
decay after beam turnoff at which the plasma has
settled down. After that, the fast-ion and plasma-po-
tential decay times are about constant. We disregard
the period directly after beam termination, during
which the plasma potential often behaves erratically.
The erratic behavior probably is due to the unstable
condition of the plasma just before beam turnoff and
to the nonequilibrium effect following beam turnoff.
This latter effect will be discussed later.

The arrow starting at a given circle and pointing to
the lower left shows the measured behavior of the po-
tential during the rest of that plasma decay. The at-
tached arrowhead is positioned at the end of the ana-
lyzed data. The numbers by the circles give the back-
ground-gas densities in units of 107 molecules/cm?® for
the various examples of plasma decay, assuming hy-
drogen molecules as the main constituent. These den-
sities range over a factor of 12, from 1.3X107 to 1.6 X 103
cm™?, The fast-proton densities represented by the data
extend over a factor of 58, from 8.0X 108 to 4.6X 103
jons/cm® (All ion densities cited are peak densities.)

The slope of the dashed line in Fig. 8, arbitrarily
normalized to fit the data, is that of the predicted
(mi/no)¥6 variation. It is in agreement with the general
trend of the experimental data. We will make a more
quantitative comparison shortly.

Also shown in Fig. 8 are the results predicted by the
more complete theory represented by Egs. (6) and
(10), which yield a magnitude as well as a slope. In
these calculations we use 15 keV for the proton energy
and 0.015 keV for E,, the energy with which the elec-

FOOTE, GARDNER, AND KILLEEN

trons are born. Also, we use for ¢,%, the value for elec-
trons at energy e¢ rather than at some other energy,
such as kT.. From these calculations, one again ob-
serves that the predicted slope is in approximate agree-
ment with the data. One also notices that the predicted
magnitude of the plasma potential lies close to the
plotted experimental values. In general, the agreement
between experiment and theory is good. It is better
toward the lower left of the plot than might be expected,
considering that the uncertainties both in theory and
experiment become more dominant there.

We now examine the agreement between the data
and theory more quantitatively. From the slope of each
plasma decay in Fig. 8, we can calculate a value for the
exponent in the power law relating the plasma potential
and fast-ion density. The average for the eight experi-
mental values is 0.4540.06, as compared to the basic
predicted value of £ or 0.40. A value of 0.48 is obtained
from the more refined calculation based on Egs. (6)
and (10).

The good agreement here may be somewhat fortui-
tous because of the various uncertainties involved,
such as uncertainty about the composition of the back-
ground gas, uncertainties in measuring the experi-
mental ion-density and plasma-potential decay char-
acteristics, and approximations in the theory. Also,
the equations were derived for the equilibrium situation,
thus representing the plasma during decay only if the
time-dependent effects are negligible. The period di-
rectly after beam turnoff is not included in these data,
to minimize the effects of the nonequilibrium during
this period (see Sec. IVB). Despite the uncertainties,
the average of the data falls close to theoretical pre-
dictions.

In the results presented here, we have emphasized
agreement of the data with the »,2% theoretical predic-
tion. From Fig. 8, one can also note the predicted ns2/®
variation. The data for the eight decays, although
representing a factor-of-12 variation in n, still cluster
around the predicted dashed slope. A variation with
1o much different from the —% power would not have
given this result. Some of the observed data scatter
may be due to variations in the background-gas com-
position, not considered in the calculation of .

Also shown in Fig. 8 are measurements of the electron
temperature (at 8 keV) taken by the technique in
Sec. IIIB. This technique gives relative and not ab-
solute values. The electron-temperature data are arbi-
trarily placed high on the plot, so as not to interfere
with presentation of the plasma-potential data. Once
again, the average slope, indicated by the straight-line
fit to the data, is the predicted (#:/n)*® behavior, a
further experimental verification of the theory.

We now turn to comparing the results of the simple
differential-equation model with those of the Fokker—
Planck equations. The Fokker-Planck results were
obtained at 1 keV, so the comparison is made at a lower
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energy than the 8-15-keV range discussed above. The
Fokker-Planck calculations and analytical results are
given in Fig. 9. Comparing the electron-temperature
calculations from the analytical solutions with those
from the Fokker-Planck equations shows reasonable
agreement. The plasma-potential results in both cases,
as expected, scale as (n/70)¥5; although the absolute
magnitudes are not in as good agreement as for the k7T,
calculations. A difference of this magnitude is not un-
expected, probably resulting from the use of average
cross sections in the analytical calculations. In the
Fokker-Planck equations, the more significant cross

]000 T L T_rlr T T T T 7
- Analytical calculations .
| ~= == Fokker-Planck solutions ..
|
>
[ )]
|
-
o
-
s 100
—®
X

Lt i1 L
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F16. 9. Comparison of the analytical calculations of the
electron temperature and plasma potential with the numerical
solutions of the Fokker-Planck equations, for a 1-keV hot-ion
plasma.

sections (e.g., 0% 0., and o..) are treated correctly as
a function of energy.

B. Nonequilibrium Case

Some important physical processes of interest in
high-temperature plasmas are time-dependent or of
a nonequilibrium nature. In this section we explain how
solutions of the time-dependent Fokker-Planck equa-
tions are helpful in interpreting experimental data. We
limit our discussion to a specific example, in which a
changing electron temperature is a factor influencing
the stability of an electrostatic “Harris-type’ mode in
the plasma.

The behavior of a 15-keV plasma produced by in-
jection and trapping of energetic neutral atoms is
shown in Fig. 10 under conditions of strong instability
activity. The neutral atom beam is on for approximately
3 sec. During this time the plasma density builds up
and becomes strongly unstable. This unstable behavior
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F16. 10. Comparison of plasma density, plasma potential, and
rf amplitude versus time, for a 15-keV hot-ion plasma. These
measurements indicate that the plasma is stable during most
of the decay following beam turnoff.

results in plasma losses correlated with rf activity and
large excursions of the plasma potential. The plasma is
observed to be stable over most of its decay following
beam turnoff. The plasma-potential signal in Fig. 10
is not the slow-ion cutoff signal discussed elsewhere in
this article. This electrostatic pickup signal results
from the instability, and is much larger than the dc-
potential signal.

In an earlier paper, it was suggested that the quies-
cent period between bursts, and also the stable decay,
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F1o. 11. Average electron energy E. as a function of ni/ne
during plasma buildup to an equilibrium density of 5X108
ions/cm® and during the plasma decay following beam turnoff.
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F16. 12. Electron temperature and plasma density vs time during
the decay of a 8-keV hot-jon plasma.

might be associated with a change in the electron dis-
tribution function.? Additional results now indicate
that an increase in the electron temperature plays a
significant role in stabilizing the plasma during the
decay following beam turnoff. One example is the
Fokker-Planck results displayed in Fig, 2. The param-
eters for these calculations were chosen to correspond
to the experimental parameters of the plasma produced
by the beam pulse of Fig. 10.

As exhibited by the Fokker-Planck calculations of
Fig. 2, the average electron energy is seen to increase
during the plasma decay following beam turnoff. The
time-dependent or nonequilibrium nature of these cal-
culations is clearly indicated by replotting the data
from Fig. 2 in the form shown in Fig. 11. The lower
curve gives the electron energy during buildup of the
plasma density, and the upper curve gives the electron
energy during the decay following beam turnoff. The
electron energy is not just a function of the ratio #./n,,
as in the equilibrium case, but increases following beam
turnoff and is significantly higher during plasma decay
than during buildup.

An increasing electron temperature following beam
turnoff is expected from a consideration of the simple
heat balance equation

3 _.dn. 3 dT,

d
— (3 — - —_ - —_—
7 GnekTe)= kT + omk

= -—[nf(m)F(ed’/kTe)](e‘ﬁ)
+nnGW, T.), (19)

where F(e¢/kT.) is defined in Sec. ITA and G(W, T.)
is a function of the ion and electron energies. The
first term on the right-hand side of Eq. (19) represents
the rate at which electrons remove heat from the plasma
by escaping over the potential barrier; the second term
is the rate at which electrons gain energy by collisions

FOOTE, GARDNER, AND KILLEEN

with the ions. In this equation we neglect the energy
with which the electrons are born. At equilibrium,
the left side of Eq. (19) must be equal to zero since
neither », or T, are changing with time; therefore, the
right side also is zero. Also, the right side is zero im-
mediately after beam turnoff, and remains approxi-
mately zero during the initial decay since both the
ion~electron transfer rate and the electron loss rate are
binary processes. Therefore, the left side is still zero
following beam turnoff, and we have

(20)

where 7. is the characteristic charge-exchange time.
The electron temperature thus increases temporarily
after beam turnoff on a time scale 7.

We also have experimental measurements showing
an increase in electron temperature following beam
turnoff. Both the plasma density #; and the electron
temperature T, are plotted in Fig. 12 as a function of
time following beam turnoff. The electron temperature
was obtained from microwave measurements of the
emitted radiation at the electron cyclotron frequency,
as described in Sec. IT1. The measured value of T, was
normalized to a calculated value of 7, at the time of
beam turnoff. Figure 12 shows that 7T, does not increase
indefinitely, but begins to decrease after a time follow-
ing beam turnoff comparable to 7.

Further experimental evidence for the nonequilibrium
condition of the plasma directly after beam turnoff is
the temporary increase in electrostatic potential fre-
quently observed at that time. Here again, the parallel
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F16. 13. Threshold for instability in terms of the density param-
eter (wpi/wei)? vs kT./Wi.
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energy of the slow ions is the measure of potential. As
in the case of T,, the transient increase in potential is
followed by the customary gradual decay.

In Fig. 13 we replot the experimental data of Fig. 12
and make a comparison with instability-threshold data.
The solid straight line of Fig. 13 gives the average in-
stability threshold for the ion-cyclotron instability
observed in the Livermore neutral-injection experi-
ment in terms of the density parameter e= (wpi/we;)?
as a function of the ratio ¥T,/W,, where W, is the ion
energy.? This instability-threshold line is obtained by
replotting the average experimental boundary line
given in Fig. 2a of Ref. 22 as a function of k7,/W;
instead of egpm/W; A theoretical value for the ratio
kT,/edy is used in making this transformation. Indi-
vidual threshold values are found to deviate from the
average experimental boundary line by an amount
clearly outside the error assignments. The perpen-
dicular component of the propagation vector £. is shown
to be quantized, with deviations from the average
boundary line resulting from k. taking on different
quantized values. The dashed lines of Fig. 13 correspond
to the maximum and minimum values observed for %..
We have used the same ratio of kT./e¢x in these trans-
formations as in the transformation of the average
threshold line.

The triangle at the top in Fig. 13 shows the equilib-
rium density attained for 8-keV neutral injection. The
achieved density lies above the threshold for the in-
stability. Following an instability burst, the electron
temperature increases; the point characterizing the
plasma (Fig. 13) moves to the right from its equilibrium
position toward the average stable threshold line, as
indicated by the arrow. After the instability activity,
the temperature relaxes back toward its equilibrium
value until the plasma again becomes unstable. Follow-
ing beam turnoff, the plasma then decays, following
the curved path indicated on Fig. 13 and reaching the
average instability-threshold line at ¢=0.032. If the
electron temperature varied as expected for equilibrium
conditions, i.e., T, proportional to (nt)¥%, the plasma
would decay following a straight line of slope 2.5 and
reach the average instability-threshold line at ¢=0.0074.

The evidence at this time indicates that the changing
electron distribution is a significant factor in deter-
mining the stability of the plasma between bursts and
during the decay following beam turnoff. The experi-
mental curve in Fig. 13 shows how the increasing elec-
tron temperature after beam turnoff enables the
plasma quickly to reach the stable region. The electrons
may play more of a role in determining stability than
indicated by the comparison in Fig. 13, since the cri-
terion for determining stability during decay cannot
be the same as that applied to determine the threshold
curve. The threshold curve was determined by requiring
a total absence of instability bursts for approximately
three charge-exchange times, while during decay the
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F16. 14. Comparison of various ion distributions for a mirror
ratio of 2. The Fokker-Planck calculations contain a source and
charge-exchange loss term.

plasma would have reached the stable region in a time
short compared with 37...

V. COLLISIONAL BROADENING OF THE ION
DISTRIBUTION FUNCTION

Plasmas formed in neutral injection experiments by
the trapping of neutral atoms in the energy range 5-20
keV have been subject to velocity-space instabilities
resulting from the nearly monoenergetic and highly
anisotropic nature of the ion distribution function.-%
An important objective of the Livermore neutral-
injection experiment Alice is to reduce the injection
energy to a sufficiently low value such that Coulomb
collisions broaden the ion distribution function, thereby
reducing the driving terms of the instability. A sig-
nificant broadening of the distribution function is pre-
dicted when the charge-exchange time 7., equals the
Coulomb scattering time, 7,2 This equality has been
used to determine the required beam and vacuum
conditions.

Fokker-Planck calculations appropriate to low-
energy injection were undertaken to determine the
ion and electron distribution functions more accurately
in the presence of the source, charge-exchange losses,
and scattering losses. The various input parameters
correspond to the injection and trapping of neutral
hydrogen atoms having an energy of 1 keV. The cal-
culations reported here do not include the effect of
charge exchange between protons and beam atoms. This
process, which is negligible for the present calculations,
tends to sharpen the trapped distribution.

Figure 14 compares the various ion distribution func-
tions. The dashed curve is the analytical loss-cone distri-
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bution for a mirror ratio of 2 as obtained by BenDaniel
and ‘Allis.” The equilibrium ion distribution from the
Fokker-Planck calculations containing a source and
both charge-exchange and scattering losses is shown
by a solid line. Using the formula of Post and Damm,*
we determined the input parameters for the Fokker-
Planck problem by the condition that 7,=7,. The
charge-exchange time 7., was chosen to be 40 sec and
independent of energy. The mirror ratio was 2. The
Fokker-Planck results gave a large energy spread and
an end-loss rate three times greater than would be ex-
pected from the analytical expression for the scattering
cross section.

The experimental curve in Fig. 14 indicates the rela-
tive spreading of the distribution function in the pres-
ence of the instability. This curve was obtained at
15 keV; the velocity is scaled down such that the peak
of the distribution occurs at a velocity corresponding
to 1 keV. At 1 keV, a significant loss of ion energy to
the electrons occurs, resulting in a shift of the distribu-
tion peak to a lower velocity (as indicated by the other
curves).

The Fokker-Planck calculations of Fig. 14 correspond
to an equilibrium ion density of 108 ions/cm?. At low
densities, both the equilibrium ion density and the
width of the ion distribution function increase as the
injected beam current is increased. As a measure of the
relative width of the distribution, we use An/%, the
full-width at half-maximum divided by the velocity
at the peak of the distribution. Figure 15 shows how
this quantity varies as a function of the equilibrium
ion density. Both the loss-cone limit and the spreading
produced by a velocity-space instability in the Liver-
more neutral-injection experiment are indicated on
Fig. 15 for comparison. At 1 keV, the relative spread-
ing produced by collisions should be at least as large
as the relative instability spreading observed at the
higher energies, if the charge-exchange time is as large
as 40 sec. (Diagnostics are not available at present for
making this measurement.)
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VI. CONCLUDING REMARKS

We have described collisional processes in high-
temperature plasmas in terms of a self-consistent theory
which relates basic plasma parameters such as the
electron temperature, ion energy, and plasma potential
to the plasma density. A simple model describing
plasmas in quasiequilibrium, for which analytical solu-
tions may be obtained, has been shown to give the
correct relationship between many plasma parameters.
Experimental measurements of the plasma potential
¢ and the electron temperature T, are in good agree-
ment with this simple model. Both T, and ¢ are found to
scale with the # power of the ratio n;/n,, as expected.

Fokker—Planck results agree with the simple theory,
and the calculations follow the same # scaling law under
equilibrium conditions. The Fokker-Planck equations
were solved to study the nonequilibrium nature of the
electron temperature and plasma potential during
plasma decay. These calculations indicate that the
initial increase in electron temperature following beam
turnoff is a significant factor in the stability of the
plasma during decay. Electron-temperature measure-
ments have been presented which have the same time-
dependent behavior during plasma decay as predicted
by the Fokker-Planck calculations.

Numerical solutions of the Fokker-Planck equations
have been used to determine the plasma density neces-
sary to approach a loss-cone distribution for the ions.
These results give a larger energy spread and end loss
than indicated by earlier calculations.?® This difference
is partially explained by degradation of the ion energy,
which results from collisions with the electrons. The
earlier calculations, in which the ion energy was con-
sidered constant, did not take into account this effect.
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APPENDIX

As discussed in Sec. IIB, we have modified the
Fokker-Planck equation to include source and loss
terms. The collisional loss rate may be written in terms
of the distribution function f,(v, ¢) for particles of
type “a.” We use the form given by BenDaniel and
Allis 8 ie.,

dn,
dt

=—(4x)? /wja(v, t)e?
0

X <Z /: ka(, v )fo (v, £)0" dv’) dv, (A1)

b
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where
1-3(v?/*) 220,
EBo(p, v") = To(Aa/20%) (A2)
$(v/v) V<Y,
and

Aa= (logieRe) 1,

The effective mirror ratio, R, is given by
R*=R[ 1= (m,/m,) (v2/e®) 1,

except Rtf=1 when Eq. (A4) gives values of R°!! less
than unity and greater than zero; Rp!'= » for nega-
tive values of R, In Eq. (A4), R is the true mirror
ratio; the sign is chosen to correspond to the sign of the
particle being scattered.

The velocity v, is determined by the condition that
the electron kinetic energy is just equal to the plasma
potential, i.e.,

(A3)

(A4)

ep=1imy2. (AS)

We define the constant I', by the equation
L= (4met/mg?) InD., (A6)

The quantity D is the ratio of the Debye length to the
classical distance of closest approach. We consider
electrons and ions of Z=1. We introduce

fa= (4m06*/ K o) fa,

where K, is determined from the equation

n:(0)=K, /“f,,(x, 0)x? dx,

0
where x=v/v. The constant vy is a characteristic ve-
locity. We introduce the dimensionless variable ,
where 7= (}T,K,/1®)¢, and define functionals

M= [ Ly,

(A7)

(A8)

N(f)= f Ll Ty, (A9)

and

E(f)= / “fuly, DA dy. (A10)

In terms of these new variables, the Fokker-Planck
equation for the distribution functions becomes!®

Lo aZip®icin, )
where
A=3 3 Ky/KLW/E()+M(W)]
B=(4/3%) T Ko/ KL(3/22) (mo/ m)N (1)
—(1/22)E( fo)+M( )],
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and
-2 () 3 G- 5

X (2 W)= 55 EGOAM(f) )= Hle, 7).

The term D(x, 7) describes the time-dependent sources
and H,(x, ) is the charge-exchange loss term, which
is zero for electrons.

At any time step we can determine the number den-
sity and average energy of each type of particle. Let
I5(7) and I#(r) be the second and fourth moments
of the distribution functions, i.e.,

Ie()= [ fuw mata, (A12)
0
Te(r)= f ¥ 1o, 1)k ds. (A13)
0
The number density is given by
1. ()= K.I#(r), (Al14)
and the mean energy is given by
E (r)=%kT,=3m[12(r)/I2(r)]. (A15)

We assume that the injected particles have a velocity
distribution defined by S,(«). The source terms D(x, 7)

are given by ’
D(x,7)= S(x)() GNI(S)(d”“), (A16)

where (dn,/dt) is the trapping rate for particles of
type “a.” We can include up to 10 sources of the type
given by Eq. (A16), corresponding to multiple beam
injection at different energies.

In the above discussion of source terms, the (ov)
terms were treated as constants; however, the cross
sections have a velocity dependence determined by
experimental measurements. We have polynomial de-
scriptions for these functions so the terms gvn(r) can
be replaced by integrals involving the distributions.

The critical velocity #. is determined by the following
procedure. At every time step #.(r) and #;(7) are com-
puted, and the difference | #;(r)—n.(7) | is also com-
puted. Since we wish to keep #,(7)=#n,(r), the above
difference is compared to a pre-assigned small number.
If the difference exceeds this number, then %, is in-
creased by an amount Ax. if #;(r)—#n.(7) is positive,
or decreased by an amount Ax, if #;(r)—#n.(7) is nega-
tive. The time step is then repeated. This process is
repeated until | #;(r)—n.(7) | is sufficiently small; the
calculation is then continued.

The coupled nonlinear partial differential equations
for the functions f,(v, ¢) are solved numerically using
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finite-difference methods. The equations are not lin-
earized, i.e., the coefficients involving moments of the
distribution functions are computed at each time step.
An implicit difference scheme is used, that is, the ve-
locity derivatives are replaced by difference quotients
taken at the new time step, while the coefficients are
evaluated by use of the distribution function of the
previous time step and then extrapolated. The scheme
is numerically stable in practice, with no restriction on
the time step. This is an essential part of the calcula-
tions because as the electron temperature increases,
the transfer rate decreases; the time step At therefore
must be increased continually for the calculation to
progress toward equilibrium in a sensible manner. A
more detailed description of this method for obtaining
numerical solutions is given in Ref. 15.
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