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  Modeling the dynamics of large clusters of interacting bubbles requires that the effects of fluid compressibility be taken
into account. Compressibility manifests itself through radiation damping and bubble&#8208;bubble interactions due to
time delays associated with the finite sound speed. The time delays convert the dynamical equations for interacting
bubbles in an incompressible fluid from a system of nonlinear ordinary differential equations to one of delay differential 
equations (DDEs). Special care must be taken when integrating DDEs numerically to maintain acceptable bounds on
errors. The dynamical equations determined to be most suitable for solving as DDEs were obtained using Hamiltonian 
mechanics [Ilinskii et al., J. Acoust. Soc. Am. 121, 786 (2007)]. These first&#8208;order differential equations were
augmented to include time delays in the bubble interaction terms and then solved numerically using a sixth&#8208;order
Runge-Kutta method with a continuous interpolant (DDE_SOLVER). The same equations were also solved without the
time delays but with correction terms that account for mutual radiation damping. Comparison of the results reveals the 
importance of time delay in bubble&#8208;bubble interactions as a function of the size and density of a bubble cluster.
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Introduction

Bubbles have significant effects in shock-wave lithotripsy, high intensity fo-
cused ultrasound, and histotripsy. In order to better understand the impact
that bubbles have on these treatments we need a model that includes bubble
interactions, includes bubble nonlinearity, is robust at high pressures and
very large radial oscillations, and scales to large, distributed clusters. The
ultimate goal is to simulate clusters of more than 1000 bubbles.

Methods

The model employed here is based on the model for interacting bubbles de-
veloped by Ilinskii et al.1 We assume that the bubbles remain spherical and
the bubbles are modeled as coupled nonlinear oscillators. Although it is pos-
sible to allow for bubble translation, translation is not explicitly considered
here. Initially it is assumed that the surrounding fluid is incompressible.
With these assumptions it is possible to obtain equations of motion by a
Hamiltonian formalism.

After the equations of motion have been obtained, the effects of liquid
compressibility are included in an ad hoc fashion. In an incompressible liquid,
bubble interactions are instantaneous. There are two effects that must be
included, radiation damping (energy lost to acoustic radiation) and time
delay in bubble interactions due to acoustic propagation. The equations
of motion for bubbles without time delay in bubble interaction (radiation
damping is included) to first order in R/D are

Ṙi =
1
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, (1b)

where Ri is the bubble radius, Gi is the radial momentum, and Vi = 4πR3
i /3

is the volume of the ith bubble (the Hamiltonian coordinate system is il-
lustrated in Fig. 1). Translation terms have been omitted for brevity. The
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pressure just outside the bubble wall is given by

Pi =

(
P0 +

2σ

R0i

)(
R0i

Ri

)3γ

− 2σ

Ri
, (2)

where σ is the surface tension and R0i is the equilibrium bubble radius of
the ith bubble in the presence of surface tension.

Energy loss from the bubble system due to acoustic radiation produced
by the motion of the bubble wall is called radiation damping. In order to
study the motion of bubbles in a compressibile medium, this effect must
be incorporated into the model of bubble dynamics. Radiation damping is
included with the

...
V i term2 where
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When radiation damping is included in this manner, the expansion of
...
V i

given in Eq. (3) is necessary to maintain system stability in numerical inte-
gration.

This model neglects all interactions of O(R2/D2) and O(R/D)×O(1/c0).
Interactions are considered to O(R/D) and corrections for compressibility do
not include bubble interactions.

When time delays in interactions are included in the model the system
of ODEs becomes a system of delay differential equations (DDEs):
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DDEs require special care in numerical solution. An accurate solution
is required for entire history. Additionally, the inclusion of delays can cause
instability. The model equations are integrated with DDE_SOLVER.3 This
solver uses a sixth-order Runge-Kutta method with continuous interpolant.
It allows for event finding (permitting bubble collisions to be modeled). The
results from direct numerical integration of the model DDEs provide “ground
truth” for analyzing approximations for time delay effects.
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Figure 1: Coordinate system and generalized coordinates for Hamiltonian
bubble model. R is the bubble radius, G is the radial momentum, the posi-
tion vector of the bubble is X. Subscripts are used to distinguish between
bubbles, and Dij is the separation distance between bubbles i and j.

We compare the response predicted by the equations with time delays
to the response predicted without time delays for a system containing 9
bubbles randomly placed in a sphere of radius Rc. The equilibrium radius of
the bubbles is R0 = 1μm, the radius of the enclosing sphere is Rc = 0.5 mm.
The geometry is shown in Fig. 2. The system is excited by the pulse shown
on the left side of Fig. 3. The response predicted by the model with delayed
interactions is compared to the response predicted by the model without
delayed interactions by comparing the effective radius of the system

Reff =

[∑
i

R3
i

]1/3

.

The results are shown on the right side of Fig. 3. It can be seen that the
delayed interactions significantly affect the predicted response.

Although it is possible to integrate the delay differential equations of mo-
tion numerically, the numerical solvers for delay differential equations have
large memory requirements and do not scale or parallelize well. Therefore,
an approximate form of the delay differential equations of motion is sought
to increase the number of bubbles that can be simulated.

The model with delayed bubble interactions is approximated by adding

−
∑
j �=i

ρ0
4πc0

...
V j (5)
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Rc

Figure 2: Bubble system geometry used to compare predicted response with
and without time delays in bubble interactions.

to the pressures inside the parentheses in Eq. (1b) to obtain
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Note that the sum in this expression is now over all the bubbles in the system.
The third-order time derivative of the bubble volume

...
V i is given by Eq. (3).

A modification of this form was used by Ilinskii and Zabolotskaya.2

This modification is motivated by considering the pressure produced by
a bubble:

p(r, t) =

[
V̈

4πρ0r

]
t=t−r/c0

. (7)

In the neighborhood of the bubble, the pressure may be expanded in a Taylor
series about r/c0 = 0:

p(r, t) =
V̈

4πρ0r
−

...
V

4πρ0c0
+O(1/c20) (8)

The interaction between the bubbles is mediated by the pressure. In the
Hamiltonian formulation employed here, the interaction terms in Eqs. (1a)
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Figure 3: Input pressure waveform (left) and effective radius of the predicted
system response (right) with time delays (blue) and without time delays (red)
in bubble interactions.

and (1b) are equivalent to the first term in Eq. (8). The second term in
Eq. (8) is the compressibility correction proposed in the previous paragraph.
The compressibility correction does not depend on distance. Therefore the
correction is only valid for compact clusters (kRc � 1). It is assumed here
that terms of O(R/D)×O(1/c0) are negligible.

Results

The free and forced response predicted by the approximate form of the de-
lay differential equations of motion (Eqs. (1a) and (6)) is compared to the
response predicted by the equations of motion with delay (Eqs. (4)) and the
equations of motion without delay (Eqs. (1)).

Free response

Simulations of the free response are conducted for systems of 10 bubbles
placed randomly within a sphere of radius Rc The simulations are carried
out for a range of values of the cluster radius Rc. The equilibrium radius of
the bubbles is R0 = 1μm. The bubbles are released together from an initial
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Rc

Figure 4: System geometry of 10 bubbles with equilibrium radius R0 = 1μm
used for free response simulations.

amplitude of 2R0. The system geometry used is shown in Fig. 4.
The effective radius for the ten bubble system in free response is shown

in Fig. 5 for three different cluster sizes, Reff = 50 μm, 75 μm, 100 μm
(top, middle, and bottom, respectively). The predictions of three different
bubble models are compared: without delays (red), with approximate delays
(green), and with delays. It can be seen that for the smallest system, the
agreement between the model with the approximate delays and the model
with explicit delays is very good. The model without delays differs from
the other two models. As the cluster size increases the spacing between the
bubbles in the cluster increases and the approximations made in the model
with approximate delays become less appropriate and the approximate delay
equations become less accurate.

Forced response

The predictions of the three models (with delays, with approximate delays,
and without delays) are compared for a larger system driven by an external
acoustic source. The system consists of 30 bubbles with equilibrium radius
R0 = 1μm randomly placed in a sphere with radius Rc = 50μm. The bubbles
are driven by a 10 cycle tone burst at 788 kHz with an amplitude of 1 MPa.
The geometry is shown in Fig. 6. The external pressure signal is shown in
the top of Fig. 7. It should be noted that the multiple scattering effects of
the bubbles are already incorporated into the equations of motion.

The bottom of Fig. 7 shows the effective radius predicted without delays
(red), with the approximate delay corrections (green), and with delays (blue).
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Figure 5: Effective radius predicted by model equations for free-response,
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Figure 6: System of 30 bubbles used to compare the forced response predicted
by the various models. The equilibrium radius of 1 μm and the cluster radius
is 50R0.
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Figure 7: External source pressure (top) and effective radius of the response
of the 30 bubble system shown in Fig. 6 as predicted by the model (bot-
tom) without delays (red), with approximate delays (green), and with delays
(blue).

It can be seen in the figure that the equations with the approximation to
the equations with time delay (green) provide significantly better agreement
with the equations with time delay (blue) than the equations without delay
(red). This suggests that when modeling bubbles in a compressible medium
the model without delays (Eqs. (1)) is not an appropriate choice. Either the
model with delays (Eqs. (4)) or the approximate form given by Eqs. (1a)
and (6) must be used.

Conclusion

It has been shown that the effects of time delay due to fluid compressibility
can be significant even in compact clusters. However, the explicit inclusion
of time delay in the equations of motion limits the size of clusters that can be
simulated. In order to increase the number of bubbles that can be simulated
while retaining the effects of liquid compressibility, an approximate form of
the equations of motion with time delay was developed and compared to
the equations with delays and without. The local approximation for liq-
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Figure 8: Illustration of proposed subclustering algorithm. Bubbles within
subclusters are modeled using the approximation presented here. Delayed
average pressures are used to include the effects of one subcluster on a bubble
in another subcluster.

uid compressibility provides improved agreement with the predictions of the
equations with delays when compared to the predictions of the equations
without delay.

Future work

Future work will require an extension of the approximation for time delays
presented here to account for translation.

The approximation presented here will be incorporated into a subcluster
model for large bubble clusters. A large cluster will be divided into subclus-
ters. The approximate form tested here will be used to model bubbles within
the subclusters. The interaction between bubbles in different subclusters is
included by computing average pressures for each subcluster and delaying
the result. Thus the effect of bubbles in other subclusters acts like an exter-
nal pressure source for bubbles in a subcluster. The subclustering concept
is illustrated in Fig. 8.

The subclustering algorithm will significantly increase the number of bub-
bles that can be simulated. For explicit coupling, computation time scales
as O(N3) where N is the total number of bubbles in a system. For the
subcluster approach, computation time scales as O(N3

bN
2
c ) where Nb is the

number of bubbles per subcluster and Nc is the number of subclusters. Thus
the subclustering approach should significantly increase the attainable sim-
ulation size.
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