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  In existing models for single bubble dynamics it is necessary to account for radiation damping, a consequence of fluid 
compressibility. A similar correction is necessary when modeling systems of coupled bubbles. The coupling alters the 
collective dynamics and therefore the acoustic power radiated. In the linear approximation and for compact clusters in
which the bubbles pulsate in phase, the radiation damping per bubble increases in proportion to the number N of bubbles
in the cluster, and the acoustic power is N times greater than is radiated by the cluster in the absence of bubble interaction.
The latter effect is relevant to passive detection of cavitation noise as an indicator of the onset and degree of cavitation in 
therapeutic applications such as shock wave lithotripsy and high&#8208;intensity focused ultrasound. The effect that 
collective radiation damping has on the dynamics of several simple systems is considered for both small and large pulsa-
tions. [Work supported by the ARL:UT McKinney Fellowship in Acoustics and NIH DK070618.]
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Motivation
The primary motivation for this research is shock wave lithotripsy (SWL), a procedure for treating kidney 
disease.  In SWL, a high-amplitude shock wave is generated outside the body and focused on the kidney 
stone.  Repeated application of shock waves results in comminution of the stone.  It has been shown that 
the lithotripsy shock waves produce cavitation bubbles, and that the bubble activity impacts the 
treatment.1 However comparison between model and experiment has been primarily qualitative.  The 
goal of this research is to develop a more accurate model for interacting bubbles in a compressible 
medium that can be used to better understand the relevant processes in lithotripsy.

A model for the dynamics of bubbles observed in lithotripsy experiments requires the ability to model the 
complex, highly nonlinear motion of the bubbles in response to the high-amplitude pressures observed in 
lithotripsy. Rather than solve the governing partial differential equations for the fluid and the bubbles, the 
bubbles are modeled as coupled oscillators.

Theory
Prototypical equations of motion for the bubble radius are 

����� + 32 ���� = �� 	 �
� + �
�4�� 	 4� ����� + ��� 	 � ���4������� 
(1)

based on the assumption that propagation delays can be neglected, but that radiation damping must be 
included, and

���� � + 32 ���� = �� 	 �
� + �
�4�� 	 4� ����� + ��� 	 �� ���4������� 
�

����� ��
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which includes the propagation delays in bubble interactions.  In both equations, �� is the bubble radius, ��� is the separation distance between bubbles i and k, � is the small-signalllj sound speed in the liquid 
without the bubbles, ! is the liquid shear viscosity coefficient, �� is the pressure inside the ith bubble and��� is the effect of an external source as given in Eq. (36) of Ilinskii et al.2 Overdots are used to indicate 
differentiation with respect to time.  As proposed by Ilinskii and Zabolotskaya3 the radiation damping is 
included with the �
 term.  The volume derivatives are related to the bubble radius by  �� = 4����� + 8���� �,

�
 = 4����
 + 24���� �� +  8��� ".
Bubble translation is neglected here. Equation (2) represents a set of coupled delay differential equations 
(DDEs).  In order to use the model equations in Eq. (2), it is necessary to solve a large system of coupled 
DDEs.

Direct solution of the delay differential equations of motion (Eq. (2)) for large numbers of bubbles is 
computationally prohibitive.  To overcome this limitation, we propose to model a large bubble cluster as a 
system of smaller, coupled subclusters.  The subclustering concept is illustrated in Fig. (1). Rather than 
considering the direct, delayed interaction of all bubbles in the cluster, a set of ordinary differential 
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equations (ODEs) that approximate Eq. (2) for closely spaced bubbles (small delays) is used for bubbles 
within a subcluster (green cell in the figure).  The action of the bubbles in the red cell on the bubbles in 
the green cell is found by computing the average pressure produced by the motion of the bubbles in the 
red cell and treating this pressure as an external source in the motion of the bubbles in the green cell.  This 
approach dramatically reduces the number of delayed quantities that must be considered, especially for 
dense clusters.

Figure 1: Bubble cluster with grid for subcluster divisions.  The dynamics of bubbles within each subcluster are modeled 
with an approximation (Eq. (4)) to the delay differential equations (Eq. (2)), while delayed, averaged values are used to 
account for delayed interactions with bubbles in other subclusters.

We now seek an approximation to Eq. (2) for use within the subclusters. For systems of closely spaced 
bubbles, the delayed interaction terms on the right hand side can be expanded in a Taylor series about ��� �� = 0:

�� ���4������� 
�

����� ��
# � $ ���4���� 	 �
�4��% .

��� (3)

This expansion for delayed terms was proposed by Ilinskii and Zabolotskaya. The approximate form of 
Eq. (2) for closely spaced bubbles is.

���� � + 32 ���� = �� 	 �
� + �
�4�� 	 4� ����� + ��� 	 � ���4�������
+ � �
�4�����

. (4)

The leading-order derivatives in Eqs. (1), (2), and (4) are multiplied by small coefficients, and thus all 
three equations represent singular problems which are numerically unstable for time-domain integration.  
This instability is due to the approximation that produced the third-order derivatives.  In order to obtain a 
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stable form, an iterative substitution procedure is used to eliminate the third-order derivatives.  In this 
procedure, the governing equation is solved for ��� and differentiated to obtain an expression for ��
 . The 
result is substituted into the governing equation and terms of a desired order are retained.  If necessary, 
the procedure is repeated.  For the problem at hand, compressibility terms are retained to &(1 �� ) and 
interaction terms are retained to &(� '� ).  It is assumed that terms of &(� '� ) that are also multiplied by 1/� are negligible.  For a single bubble, this procedure produces the Keller-Miksis equation. The 
resulting expression for �
�/4�� is

�
�4�� = 1� ��* -�� 5�� 	 �
� + 12 �� ��67 + & 9 1��; + & 91�; × & 9�';. (5)

With the approximation given in Eq. (5), Eq. (4) becomes

���� � + 32 ���� = �� 	 �
� 	 4� ����� + ��� 	 � ���4�������
+ � 1� ��* -�� 5�� 	 �
� + 12 ����67

�
. (6)

Note that in Eq. (6), the first sum is over all bubbles in the system except the current bubble (< = >) while 
the second sum is over all bubbles in the system. The second sum represents “mutual compressibility”
effects in the system; that is, corrections to the equations of motion due to interaction effects in a 
compressible liquid.

Results
In order to compare the dynamics predicted by Eq. (1) to those predicted by Eq. (6), we consider a simple 
system.  The chosen system consists of two bubbles of equilibrium radii �
? and �
�. The natural 
frequency of bubble 1 is @
. The bubble centers are separated by 10�
?, subjected to a tone burst of 
amplitude AB with a duration of 10 times the period of bubble 1 (C
 = 2�/@
) at a frequency of @. The 
system geometry is shown in Fig. 2. The bubbles are oriented so that the pulse arrives at both bubbles at 
the same time.  The response of the system is simulated for the following parameter values:

• �
�/�
? ranges from ½ to 2 

• Drive amplitude AB ranges from 10-3 to 2 atm

• Drive frequency @ ranges from @
/2 to 2@


Figure 2: Bubble system geometry used in simulations presented in Figs. 3-5. The bubbles are oriented so that both 
bubbles experience the same pressure at the same time.
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The responses of the systems are compared by calculating the total energy in each system, which is the 
sum of the potential energy stored in the compressed gas inside the bubble and the kinetic energy due to 
the motion of the fluid surrounding bubble. The normalized, relative energy is calculated by subtracting 
the equilibrium energy of the bubble system (D
) from the total energy and then dividing the result by D
.
The equilibrium energy is found by evaluating the energy expressions given by Ilinskii et al.2 with all 
bubbles in the system at rest.  The normalized, relative energy predicted by Eq. (1) (labeled single) and 
Eq. (6) (labeled mutual) is shown in Figs. 3-5 for a range of parameters.  In all three figures, the time 
when the source is turned on is marked by dashed lines and a tan background.

Figure 3 shows the normalized relative energy in the bubble system as a function of nondimensional time 
(E = *@
/2�)  in response to ten cycle pulses at the natural frequency of the single bubbles (@ @
� = 1)
for a range of pressure amplitudes (AB/�
=9.87e-4, 6.59e-1, 1.32, 1.97).  The two bubbles have the same 
equilibrium size (�
�/�
?  = 1). It can be seen that for low amplitude excitation (top left of Fig. (3)), the 
mutual compressibility effects increase the damping in the system as predicted by Feuillade.4 For 
moderate amplitude excitation (top right and bottom left of Fig. 3), the predicted dynamics are somewhat 
similar for both models although the change in damping can be seen after the source is turned off at E = 11. It can be seen that the dynamics predicted by Eq. (6) increase the strength of the coupling 
between the source and the bubble system.  As the amplitude increases, the predicted dynamics diverge 
dramatically (bottom right of Fig. 3).
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Figure 3: Normalized relative energy in the bubble system as a function of nondimensional time (F = GHI/JK)  in 
response to ten-cycle pulses at the natural frequency of the single bubbles (H HI� = L) for a range of pressure amplitudes 
(MN/OI=9.87×10-4, 6.59×10-1, 1.32, 1.97).  The two bubbles have the same equilibrium size (PIJ/PIL  = L).

Figure 4 shows the normalized relative energy in the bubble system driven by the same external pressure 
amplitude as in the bottom right of Fig. 3 (AB/�
  = 1.97).  The bubbles are again the same size, but the 
driving frequency ranges from @ @
� = 0.5 to @ @
� = 1.2. The bottom left part of Fig. 4 has the same 
parameters as the bottom right part of Fig. 3.  The only difference is the scale of the vertical axis.  Again 
it can be seen that the inclusion of corrections for mutual compressibility (blue lines) impacts the 
predicted dynamics as compared to the equations of motion with only single bubble compressibility 
effects (single bubble radiation damping) (green lines).
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Figure 4:  Normalized relative energy in the bubble system as a function of nondimensional time (F = GHI/JK)  in 
response to pulses at a range of frequencies (H HI� = I. T, I. UT, L, L. J ) for a pressure amplitude  MN/OI= 1.97.  The 
pulses are ten times as long as the natural period of a single bubble.  The two bubbles have the same equilibrium size 
(PIJ/PIL  = L).

Figure 5 shows results of simulations for a variety of equilibrium bubble sizes.  The bubbles are driven by 
the same external pressure amplitude as in the bottom right of Fig. 3 (AB/�
  = 1.97).  The relative 
equilibrium size of the bubbles has a range of values (�
�/�
? between 0.5 and 2).  The driving 
frequency is the natural frequency of a single bubble (@ @
� = 1). Again it is observed that the inclusion 
of corrections for mutual compressibility (blue lines) impacts the predicted dynamics as compared to the 
equations of motion with only single bubble compressibility effects (green lines) even more dramatically
than the previous figure.
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Figure 5: Normalized relative energy in the bubble system as a function of nondimensional time (F = GHI/JK)  in 
response to ten-cycle pulses at the natural frequency of the single bubbles (H HI� = L)  for  pressure amplitude MN/OI=
1.97.  The two bubbles have a range of relative equilibrium sizes (PIJ/PIL).

Conclusions and future work
An approximate model for the coupled dynamics of a system of closely space bubbles in a compressible 
medium (Eq. (6)) undergoing nonlinear oscillations was developed and integrated in the time domain.
Previous work on coupled bubbles in a compressible liquid has relied primarily on linearized equations, 
and has largely been conducted in the frequency domain, or has neglected the effects of propagation 
delays. A subclustering algorithm by which delayed interactions might be included in simulations of 
large bubble systems was presented.  The approximate equations of motion presented here (Eq. (6)) are 
intended to be used within subclusters, while average pressure quantities for each subcluster will be 
explicitly delayed.

It was shown that even for closely spaced bubbles (small delays) the delay in bubble interaction can 
strongly impact the predicted dynamics over a range of parameters.  Thus, for large amplitude oscillations
of closely spaced bubbles, the delays should not be neglected.  This implies that Eqs. (2) and (6) are to be 
preferred over Eq. (1) when modeling bubble systems.

Future work will require a numerical solver to integrate Eq. (2).  Numerical solution of Eq. (2) requires a 
solver specialized for delay differential equations.  The results of numerical integration of Eq. (2) will 
then be used to benchmark the model equations discussed here (Eq. (6)), and eventually, the subclustering 
algorithm presented here.
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