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N u m e r i c a l  Mode l ing  of N o n - N e u t r a l  P lasmas  

Ross L. Spencer 
Department of Physics and Astronomy 

Brigham Young University 
Provo, Utah 84602 

Several numerical tools for modeling non-neutral plasmas 
have been developed at Brigham Young University, including 
codes for computing equilibria, for simulating plasmas, and for 
computing mode frequencies with numerical eigenvalue methods. 
Our hope is that these programs will allow us to make careful 
comparisons between theory and experiment and allow us also to 
investigate the differences between various plasma models. This 
talk will summarize this work and give examples of physical ap- 
plications. 

I. INTRODUCTION 

Non-neutral plasma experiments are performed in a wide variety of confine- 
ment geometries and on plasmas with widely varying parameters. As in the 
rest of plasma physics, it is unlikely that analytic theory alone will be capable 
of handling all of the interesting physics in these systems. Furthermore, plasma 
theory routinely produces equations that are practically impossible to solve, 
making it difficult to test the utility of our theoretical models. So it seems 
that  the numerical work performed by various members of our community will 
continue to be important to the future of non-neutral plasma physics. 

Our plasma theory group has developed, and is continuing to develop, 
codes that can be used to study non-neutral plasmas. Among the codes that 
have been developed are the following: (a) a general purpose axisymmetric 
equilibrium code, (b) an axisymmetric (rz) particle-in-cell simulation, (c) an 
rO simulation for studying E • B drift dynamics, and (d) an eigenvalue code 
that  finds linear mode frequencies for two-dimensional (rz) equilibria with 
perturbations proportional to exp (imO). In the remainder of this talk these 
codes will be briefly described and examples of their application to physical 
problems will be given. 

II. EQUILIBRIUM 

The equilibrium code that we have developed uses Successive-0ver- 
Relaxation to solve non-linear Poisson equations of the form 
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R. L. S p e n c e r  205 

V2r = - q n ( r ,  r (1) 
s 

in cylindrical geometry. 1 The boundary conditions can be specified in a variety 
of ways, including confining rings of arbitrary length and location as well as 
internal conducting structures of any shape (so long as they are axisymmetric). 
It also computes equilibria in three different ways. (1) It computes global 
thermal equilibria, in which both the radial and axial density profiles are self- 
consistently determined. 2 (2) It computes equilibria with a specified midplane 
radial profile. And (3), it computes equilibria whose line-density profile h(r) = 
f n(r ,z)dz  is specified, as would be appropriate for analyzing experiments 
where the plasma is diagnosed by dumping it onto charge collectors at the end 
of the confinement region. 

As an example, Fig. 1 shows contours of constant density and electrostatic 
potential for a plasma equilibrium that matches a measured line-density pro- 
file in the positron trap experiments of Surko, Greaves, and Tinkle at the 
University of California at San Diego. a 
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FIG. 1. Contours of constant density (clustered in the center) and constant elec- 
trostatic potential for a computed equilibrium whose line-density profile matches an 
experimentally measured profile. 
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206 Numerical  Modeling of Non-Neutral  P la smas  

III. SIMULATIONS 

Two types of two-dimensional simulations have been developed for use 
with non-neutral plasmas: vO simulations for infinitely-long plasmas, and an 
r z  simulation for finite-length axisymmetric plasmas. Only the latter will be 
discussed here. 
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FIG. 2. Spectrum obtained from an r z  simulation of "drumhead" modes in a 

pancake-fike plasma in the geometry of the experiments of Weimer, et. al., at the 
National Institute of Science and Technology at Boulder. The peaks are labeled 
with their (~,m) designations in Dubin's notation; the initial perturbation for the 
run was based on Dubin's eigenfunction for the (5,0) mode. 

The rz simulation is a particle-in-cell code, with the particles moving in a 
three-dimensional phase space (v, z, Vz), although since the plasma is axisym- 
metric and drift motion is assumed in the plane perpendicular to the confining 
magnetic field, the r-positions of the particles never change once they are 
loaded. This code takes as input the geometry and plasma computed by the 
equilibrium code, after which perturbations are added to study various phys- 
ical processes. This program simulated the axisymmetric vibrational motions 
of the plasmas produced in the positron trap experiments of Surko, Greaves, 
and Tinkle 3 where it was used to study the possibility of using ratios between 
mode frequencies as a non-destructive diagnostic. The simulation was able to 
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give information about  the variation of mode frequencies with t empera tu re ,  
functioning as a very sophisticated, but very slow, digital the rmometer .  This  
simulation has also been used to study the modes of vibration of the very th in  
pancake-like plasmas studied by Weimer, et. al., at the National Ins t i tu te  of 
Science and Technology at Boulder. 4 By seeding the plasma with offsets in the  
z-direction appropr ia te  to the modes calculated by Dubin for these plasmas s, 
the simulation can detect  several of these modes in the real geometry  of the 
experiment  (to the extent  that  the experiment was axisymmetric,  of course). 
Figure 2 shows the spectrum obtained from the simulation when a mode  with 
g = 5 and m = 0 (Dubin 's  notation) was seeded. (The modes we can s tudy are 
like the axisymmetr ic  vibration modes of a drumhead.)  The detect ion diag- 
nostic picked up not only the mode that was seeded, but  several neighboring 
modes as well, which gives a fortunate saving of computer  time. This work is 
part of an ongoing s tudy by Grant Mason on the suitability of mode f requency 
ratios in these pancake-like plasmas to measure their aspect ratios. 

IV.  E I G E N V A L U E  C A L C U L A T I O N  

Simulations are a nice tool, but,  like experiments,  they are sometimes hard  
to interpret .  For instance, it is difficult to find mode eigenfunctions, and it can 
be tricky to properly identify the peaks that  come from a spec t rum like tha t  
given in Fig. 2. The  best thing is to be able to compare simulations with other  
kinds of theory, like per turbat ion analysis, to more fully explore the  models  
used to describe plasmas. 

To t ry  to get a be t te r  theoretical description of the normal modes of non- 
neutral  plasmas, and to explore the predictions of various models, we have 
begun to develop an eigenvalue code. Our hope is that  we will be able to 
explore many  different plasma models with this tool, but  we have begun with 
a very simple one: the finite-temperature drift-fluid model. It assumes E x B 
drift motion perpendicular  to the confining magnetic field and an adiabat ic  
fluid response parallel to the confining field. The fluid equations corresponding 
to this description are 

On 0 Op 0__s _ Ov z 
0--/+ Vd" Vn  + (nVz)  = 0 ; 0--7 + Vd" Vp + V z o z  --  --"/P--~-Z (2) 

- V e x  ~ . M n  Vz + V .  VVz  = - q n  o z  Oz (3) V d  = U ~ 

where rz is the particle density, v d is the drift velocity perpendicular  to the 
magnetic  field B,  Vz is the fluid velocity parallel to B,  r is the electrostat ic  
potential ,  M is the particle mass, q is the particle charge, p is the fluid pressure 
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208 Numer ica l  Model ing of Non-Neut ra l  P l a s m a s  

give information about the variation of mode frequencies with temperature, 
functioning as a very sophisticated, but very slow, digital thermometer. This 
simulation has also been used to study the modes of vibration of the very thin 
pancake-like plasmas studied by Weimer, et. al., at the National Institute of 
Science and Technology at Boulder3 By seeding the plasma with offsets in the 
z-direction appropriate to the modes calculated by Dubin for these plasmas s, 
the simulation can detect several of these modes in the real geometry of the 
experiment (to the extent that the experiment was axisymmetric, of course). 
Figure 2 shows the spectrum obtained from the simulation when a mode with 

= 5 and m = 0 (Dubin's notation) was seeded. (The modes we can study are 
like the axisymmetric vibration modes of a drumhead.) The detection diag- 
nostic picked up not only the mode that was seeded, but several neighboring 
modes as well, which gives a fortunate saving of computer time. This work is 
part of an ongoing study by Grant Mason on the suitability of mode frequency 
ratios in these pancake-like plasmas to measure their aspect ratios. 

IV. EIGENVALUE C A L C U L A T I O N  

Simulations are a nice tool, but they are fairly crude. For instance, it is 
difficult to find mode eigenfunctions from simulations, and it can be tricky 
to properly identify the peaks that come from a spectrum like that given in 
Fig. 2. In fact, perhaps the best way to think about simulations is as well- 
diagnosed experiments in a world with simplified and controllable physical 
laws. Simulations can guide theory, but they are not theory. 

To try to get a better theoretical description of the normal modes of non- 
neutral plasmas, and to explore the predictions of various models, we have 
begun to develop an eigenvalue code. Our hope is that we will be able to 
explore many different plasma models with this tool, but we have begun with 
a very simple one: the finite-temperature drift-fluid model. It assumes E x B 
drift motion perpendicular to the confining magnetic field and an adiabatic 
fluid response parallel to the confining field. The fluid equations corresponding 
to this description are 

On ~ Op Op Ovz 
0- - - /+  Vd �9 V n  @ ( n v z ) = 0  ; Oq--[-I -Vd'VP-t-VzOz - "/P'~z (2) 

- V C x ~ ?  . M n  vz + v .  VVz = " q n  oz  Oz (3) Vd : B ' 

where n is the particle density, Vd is the drift velocity perpendicular to the 
magnetic field B, vz is the fluid velocity parallel to B, r is the electrostatic 
potential, M is the particle mass, q is the particle charge, p is the fluid pressure 
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R. L. Spencer  209 

parallel to B, and where "7 is the adiabatic exponent, which we take to be 3 
because the strong magnetic field limits the kinetic response of the plasma to 
just one dimension. 

When these equations are linearized to describe small perturbations 
about a non-neutral plasma equilibrium described by unperturbed density 
no = no(r , z )  and unperturbed electrostatic potential r = r  the 
following mode equation results (assuming perturbations proportional to 
exp (imO -- iwt): 

. [V z 
{ an~ All ("r-i)mv~t, 0 rvoFo rs I (q'--l)mv~h D'~- V ~ z  knoo( . . . . .  )w/]  rwc ~ , ~  az  - a-7 [  o~ ( . . . . .  ) ]  + 

(~ ~ ~ 1 6 2  V - r . . . . .  = , 

w h e r e  -~D is the Debye length obtained from the central density noo, k T  is the 
temperature (assumed independent of r and z) in energy units, Fo : q r  

x / k T / M  is the thermal speed, wc is the cyclotron frequency, and where Vth 
Wo = Wo(r, z) : vd / r  is t h e  equilibrium-drift rotation frequency. The quantity 
V which appears throughout the equation is given by 

V(r, z) -- w - mWo + (~ - 1)v~h \ ( w  - mwo) (5) 

It is perhaps worth noting that this mode equation in infinitely-long geometry 
works very well, giving essentially the same dispersion relation as the corre- 
sponding kinetic-theory calculation until Landau damping becomes important.  
Note also that as the temperature approaches zero only the last three terms 
in Eq. (4) survive and V approaches unity, recovering the cold mode equation 
given by Prasad and O'Neil% 

We have so far only solved the mode equation for axlsymmetric modes 
(m = 0). The solution method we use has been developed by Johnny Jennings 
and K. C. Hansen, and consists of replacing the homogeneous problem given 
in Eq. (4) with an inhomogeneous problem, and then looking for the values of 
aJ for which the problem becomes singular, as described below. Equation (4), 
which is of the form 

L(w)r = 0 , (6) 

is made inhomogeneous by replacing the zero on the right hand side by some 
convenient function p(r, z): 

L(w)r = p(r, z) (7) 

The function p is chosen to be similar to the structure of the mode being 
sought, i.e., p has the same number of radial and axial nodes as the mode. 
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210 N u m e r i c a l  Mode l ing  of N o n - N e u t r a l  P l a s m a s  

This removes the difficulty that  the equation is homogeneous, tempting the 
computer  always to return r = 0 as the solution, and also shades the solutions 
found by the computer  toward the desired mode. The  mode frequencies w are 
simply de termined by varying w, solving Eq. (7), and finding the values of w 
which make its solution infinite (or at least very large). This works because 
the eigenvalues of a matr ix are the values tha t  make it singular. 

(x 10 -4) Frequency Scon 

1.0 = (10,0,0) 

.... L ,  r 
A 

0.0 

-1 .0  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

FIG. 3. The result of solving the finite-temperature mode equation for 1200 dif- 
ferent values ofw and watching for singularities (zeroes of 1 / <  r >) where < r > is 
the volume average of the mode potential over the computing region. The labelling 
of the various modes follows the pattern (gz, g~, m), where gz is the number of axial 
nodes along the cylinder axis and where gT is the number of radial nodes in the 
plasma midplane. 

We use a finite-difference approximation to turn the operator  L(w) into a 
large square mat r ix  with side-dimension equal to the number  of points in the 
two-dimensional r z  grid used to describe the plasma equilibrium. Fortunately 
the mat r ix  is banded, but it is still huge, and because the system is nearly 
singular, the usual iterative solution methods that  work so well for elliptic 
problems can ' t  be used here. The best we have been able to do so far is 
just  to use a banded system solver and use lots of memory. The memory  
required by the calculation on a grid with nr radial points and nz axial points 
is nr x n z  x (4n~ + 1) x 8 bytes (double precision). The calculations we have 
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R. L. Spencer  211 

done so far are limited by the 128 Mbytes of memory on our computer to grids 
of order 100 • 200. 

Figure 3 gives an example of this procedure of scanning the frequency and 
watching for singularities. The plasma equilibrium used is in a long cylinder 
with the radius of the plasma half as large as the cylinder radius and with the 
plasma half-length 5 times the plasma radius (the aspect ratio is 5). It is a 
global thermal equilibrium with a Debye length that is 6% of the plasma radius. 
The function p was chosen to have 2 axial nodes (s = 2) and no radial nodes 
(~ -- 0), corresponding to Dubin's gvalue having the value (2 = s + 2s = 2). 
The mode identifications given in the figure are based on the appearance of 
the computed eigenfunction as a singular point is approached. As can be seen, 
the reciprocal of the volume-averaged mode potential 1 / <  r ~ passes through 
zero several times, and one of these prominent zeroes corresponds to the (2,0) 
mode. Choosing the function p appropriately can make certain modes stand 
out, but the system will be singular near other modes as well, as can be seen 
in the figure. The modes sought don't always stand out as cleanly as the 
main ones do in Fig. 3, but they often do, making it possible sometimes to use 
zero-finding methods to find w instead of scanning. 

We have tested the eigenvalue code against other methods and typically 
find agreement to within 1-2%. For example, we have numerically computed 
the modes found analytically by Dubin (for the case of cold plasmas ~) by 
analyzing several warm equilibria and extrapolating down to T -- 0, and find 
agreement to about 1%. We have also compared with the experimental results 
and the simulations reported by Tinkle, et. al.. 3 Using the same equilibria 
employed in the simulations the eigenvalue code gives mode frequencies that 
are within 2% of the frequencies observed in the experiments. 

A. Cold  Cyl indrical  P l a s m a s  

The eigenvalue calculation has been used to study the cold axisymmet- 
ric modes of non-neutral plasmas surrounded by cylindrical conducting walls. 
A similar calculation was done by Prasad and O'Neil, but without taking 
into account the correct equilibrium shape of the plasmas. 6 We employed the 
technique of computing modes for several different temperatures, then ex- 
trapolating to T = 0. In all we performed about 400 singularity searches to 
find about 100 cold mode frequencies for various plasma radii, various plasma 
lengths, and for modes with ~ = 0 and f, = 1. We find that for plasmas with 
lengths much shorter than the wall radius, Dubin's analysis 5 gives accurate 
mode frequencies, i.e., image charge effects are unimportant for such plasmas. 
For plasmas whose lengths are about the same as the conducting wall radius, 
things are complicated and numerical calculations are probably required. But 
for plasmas whose lengths are longer than the wall radius, we find that a sim- 
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212 Numerica l  Modeling of Non-Neutra l  P lasmas  

ple adjustment to the Trivelpiece-Gould dispersion relation for infinitely-long 
plasmas 7 gives the same frequencies as the complicated numerical calculations 
to within 1%, or better. The Trivelpiece-Gould dispersion relation is obtained 
by assuming an infinitely long cold plasma with constant density so that the 
modes are proportional to exp ( ikz) ,  resulting in the relation 

L(k~ , )~ ,~o(k~)  - Ko(k~,)~o(k,-~)  - ~ ' ~  ' 
(8) 

where the I 's and K's are modified Bessel functions, where rp is the plasma 

radius, where rw is the conducting wall radius, and where/3 = ~/w~/w 2 - 1. 
Given a choice for k, this equation can be solved for the mode frequency w. 
The adjustment uses the idea of an effective length for the plasma, similar 
to the use of an effective length for an open tube to accurately compute its 
resonant acoustic frequencies. To lowest order, there is a potential antinode 
at the end of the plasma, 6 so the k of the mode is approximately 

~ez 
k -  2zp ' (9) 

where zp is the half-length of the plasma. An analyis of the numerical results 
for modes with either gr = 0 or gr = 1 shows that the Trivelpiece-Gould 
dispersion relation can reproduce all of the numerical results for plasmas with 
rp/rw = 0.25, 0.5, 0.75 and with aspect ratios zp/rp greater than 3 if the formula 
for the wavenumber to use in Eq. (8) is modified by adding a simple correction 
to the plasma length, empirically determined from the numerical data: 

with 

cl = 0.3 ; 

k = , ( 1 0 )  
2zp + clr~ + c2rp 

c2=0.7  for gr = 0  and Cl =--0 .2  ; c2=0.9  for gr = 1  

(11) 

This makes it much easier accurately to compute mode frequencies for such 
plasmas, and future work will concentrate on trying to find similar simple con- 
nections to infinitely-long cylinder results when finite temperature and radial 
profile effects are included. 

B. A c o u s t i c  R e s o n a n c e s  

A natural calculation to perform with the eigenvalue code is the extension 
of Dubin's spheroidal study to finite temperature. To this end the equilibrium 
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R. L. Spencer 213 

and eigenvalue codes were modified to handle spheroids in infinite space  and  
w was scanned to look for modes. Figure 4 shows the result for a spher ica l  
p lasma with  the r ight-hand side of the mode  equation chosen to look for the  
mode with  (gr,gz) = (2,0).  It  looks like there should be a p r o m i n e n t  m o d e  
near 0.9 x l0 s s -1, but  a bunch of ex t ra  modes seems to have go t t en  in the  
way. 

(E-3) Residual 
2 

1 

-1 

-2 
0.4 0.6 0.8 1.0 1.2 

8) 

FIG. 4. The reciprocal of the volume-averaged potential vs. frequency is shown 
for a spheroidal plasma with aspect ratio 1 and a ratio of the Debye length to the 
plasma radius of 0.15. The mode being sought is the (2,0,0) mode, and its frequency 
at zero temperature is 0.775 • 108s -1. The zig-zags in the middle are associated 
with continuum modes, and each would have appeared as a zero-crossing if a finer 
scan had been used. 

If the grid resolution is doubled, the number  of closely-spaced m o d e s  dou- 
bles, suggesting perhaps  tha t  the model  has encountered a cont inuous spec- 
t r u m  which the grid is a t t empt ing  to resolve by associating a m o d e  wi th  each 
grid point .  This  is, in fact, the case. 

The  continuous spec t rum is connected with radii at which the  m o d e  fre- 
quency w has a value for which the equat ion 

2b 20 
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214 Numerical  Modeling of Non-Neutral  P lasmas  

is satisfied for a non-trivial V2r The terms in this equation are the terms from 
Eq. (4) containing the highest radial derivatives of the perturbed potential, 
and when this equation has a non-trivial solution at some radius, the mode 
equation is singular, similar to what happens in one-dimensional continuous 
spectrum problems when the coefficient of the highest derivative vanishes. The 
physical meaning of the singularity can be seen by taking the low-temperature 
limit, for which Fo is constant inside the plasma, transforming Eq. (12) into 

k T  0 2 2 
~-~-~z2V r + V2r = 0 , (13) 

the equation for one-dimensionM sound waves. The continuum resonances 
occur roughly whenever 

k T  ~rez (14) 
w = L ( r )  ' 

where L ( r )  is the plasma length at radius r. For rectangular plasmas L(r )  is 
nearly constant and doesn't interfere much with the electrostatic modes. But 
for spheroids, L approaches zero at the outer radius of the plasma, sweeping 
the acoustic resonances up through the modes of interest, as shown in Fig. 
4, and ruining the mode calculation. This is an unphysical effect from the 
fluid model used in the calculation, for purely acoustic standing waves do not 
occur in one-component plasmas. This is a particularly striking case where 
the fluid theory simply gets it wrong, and to fix the calculation a better model 
(like kinetic theory or a non-local fluid theory) must be used. Future work 
will focus on using the solution techniques developed for the fluid problem to 
handle more complicated models. 
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