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Experimental and computational equilibria of field-reversed configurations
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Experimental measurements on the field-reversed configurations produced in the FRX-C device
[Plasma Phys. 26, 991 (1984)]are compared to corresponding measurements on numerically
computed magnetohydrodynamic equilibria. Good agreement between experiment and theory is
obtained for magnetohydrodynamic (MHD) equilibria with separatrix betas of about 0.6. The
experimental measurements indicate that the separatrix is more elliptical and that the flux
surfaces are distributed more gently in the axial direction than in the equilibria computed
previously. A sharp spike in dp/dy at the separatrix is found to produce computed equilibria
similar to those observed experimentally. The effect of end mirrors and toroidal field on

equilibrium properties is also discussed.

I. INTRODUCTION

A field-reversed configuration (FRC) is an elongated
compact toroid that is formed without toroidal field.' After
formation, these plasmas are observed to be in grossly stable
equilibrium for many Alfvén transit times. Detailed infor-
mation about these elongated equilibria is required for stabil-
ity and transport studies. Early experimental data' suggest-
ed that the flux surfaces in these objects are not elliptical but
are rather more racetracklike in shape. This is consistent
with two-dimensional computations®® of FRC equilibria
bounded by an infinitely long conducting cylinder. Recent
experimental work on the FRX-C device* showed that the
FRC separatrix is almost elliptical, but no conclusion was
drawn about the shape of the internal flux surfaces. To ex-
tract further information from these data, numerically com-
puted FRC equilibria were produced in the coil geometry of
the FRX-C device. A diagnostic code was used to compare
this numerical work with the available experimental data.
This comparison confirms some previously inferred equilib-
rium features,* shows the influence of the passive end mir-
rors and toroidal field on the equilibria, and yields some
qualitative information about the distribution of flux sur-
faces inside the separatrix. In particular, it is found that the
experimentally observed equilibria have a more gentle axial
distribution of inner flux surfaces than those computed pre-
viously.?* Magnetohydrodynamic (MHD) equilibria having
this property can be computed by making the pressure pro-
file quite steep as a function of flux near the separatrix. In
Sec. I1, we describe the experiment and the equilibrium cal-
culation. In Sec. III, a comparison between experimental
data and numerical results is presented, and in Sec. IV con-
clusions are given. In Appendix A, the change in the average
beta condition produced by end mirrors is discussed. In Ap-
pendix B, the effect of toroidal field on the average beta con-
dition and on the axial distribution of flux surfaces is dis-
cussed.

Il. DESCRIPTION OF THE EXPERIMENT AND OF
THE EQUILIBRIUM CALCULATION

The FRX-C device is a field-reversed theta pinch with a
coil of length 2 m and of radius r,, = 25 cm. A description of
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this experiment, of its diagnostics, and of the FRC formation
method can be found elsewhere.> At each end of the coil is a
passive mirror of about 20 cm axial extent and of radius
r,, = 22 cm to provide for symmetrical FRC formation and
for axial positioning. Figure 1 is to scale and shows the coil
geometry for a half-system (the coil is symmetric about the
z = O plane). The most complete experimental data were ob-
tained at a fill pressure of 20 mTorr* and with / (the FRC
half-length) comparable to z,, (the axial location of the end
mirror step). In this paper, we restrict ourselves to data taken
at this fill pressure where n=~5x10" cm™*® and
T,~T,~100eV. The equilibrium features of these plasmas
were diagnosed experimentally with an excluded-flux array
and with two side-on interferometers. The first diagnostic
yields the excluded flux profile, 7,4 (z); it approximates the
shape of the separatrix, 7, (z)."® The quantity 7, (2} is defined
by ra4(2) =r,(1 — ¥,B,/,B,)"*, where ¢, and B, are the
flux and the magnetic field, respectively, at the coil with an
FRC present, and where ¥, and B, are the flux and the
magnetic field, respectively, at the coil with no FRC present.
One side-on interferometer measures fn dr along a chord
that is radially and axially variable, while the other measures
Sn dr(0) along a diameter at z = 0 to allow discharge to dis-
charge variations to be taken into account. The excluded flux
array does not yield any information about the flux surfaces
inside the separatrix, but the various interferometric scans
do (assuming that the temperature is constant inside the se-
paratrix), and this information was extracted by comparing
the experimental results with data obtained by analyzing nu-
merically computed two-dimensional equilibria.
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FIG. 1. A typical FRC equilibrium in the FRX-C coil geometry is dis-
played. The outer rectangular frame is the computational area. The actual
end mirror geometry is indicated with dotted lines. This equilibrium has
B, =0.6 and equilibrium parameters a = 73.18, b= 98.16, ¢ = 167.6,
e=0.0,g=0.0, and 7, = 13.9. In the computation there were 102 radial
mesh points and 153 axial mesh points.
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Equilibria were computed by using a code written by
Hewett; details are found in Ref. 3. The boundary conditions
in the code were altered to model the FRX-C experiment by
changing the value of the poloidal flux function, ¥, along the
outside of the region shown in Fig. 1. To model the passive
end mirror, || was increased in the vicinity of the mirror
step in such a way that the correct mirror ratio was obtained
at 7 = 0 below the mirror and so that the mirror length was
approximately correct. The discrepancy between the ap-
proximation and the actual passive mirror is indicated in
Fig. 1. To model the end of the coil, the values of ¢ at » = 25
cm, z> 100 cm, and at z = 150 cm were fixed at the values
they would have for a finite length coil without an FRC
present. Reflection boundary conditions were used at z = 0,
¥ =0atr=0,and Y = — latr=r,.The Grad-Shafranov
equation was solved with these boundary conditions in the
region indicated in Fig. 1 with a profile of dp/dy given by

d_p_ e
d¢‘c[1+g¢2

1+ ay, ¢>0”, 1)

explby), ¥<0

where a, b, ¢, e, and g are constants. Note that in Eq. (1), we
have ¢ > 0 inside the separatrix and ¥<0 outside the separa-
trix, so that the pressure cuts off on open field lines for posi-
tive b and large g. To obtain equilibria in the geometry of Fig.
1, it was found necessary to cut off dp/dy as a function of z
for z > 1. Otherwise, after a few iterations the FRC would set
up in the low field region beyond the mirror on the far right
in Fig. 1. The characteristic length for the cutoff was the wall
radius, so at z =90 cm, the largest value of z for which
theory and experiment are compared, the pressure was not
affected very much (15%). The one-dimensional code de-
scribed in Ref. 3 was used to find values of the constants that
gave fixed values of x, = »_/r,, and S, the ratio of the separ-
atrix pressure to the peak pressure; it was also used to adjust
the amount of pressure profile gradient at the separatrix
{controlled by the constants e and g}. Once the constants
were determined, the resulting pressure profile was em-
ployed in the two-dimensional equilibrium code to produce
an equilibrium for comparison with the experiments. As de-
scribed in Ref. 3, the total current 7, was adjusted to obtain
an equilibrium of the desired length. Once the equilibrium
was successfully computed, the same diagnostics used in the
experiments were applied to it, albeit in FORTRAN form.
Equilibrium data and corresponding data from a calculation
with no plasma present were used to obtain the excluded flux
r44(2); interferometry scans were performed by assuming that
the temperature is constant so that density and pressure are
directly proportional everywhere. Experimental measure-
ments"’ and calculations® indicate that the isothermal as-
sumption is approximately valid inside the separatrix. Out-
side the separatrix the temperature falls off quite rapidly,
which causes the density to be underestimated there by the
diagnostic code.

One important feature of FRC equilibria that is not in-
cluded in these calculations is rotation. An m = 2 rotational
instability® develops at the end of the FRC equilibrium
phase when the plasma rotational frequency reaches an ap-
preciable fraction of the diagmagnetic drift frequency £2 *.
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For the 20 mTorr data* analyzed here, £2 *~2 X 10° Hz. The
magnitude of the equilibrium change caused by rotation can
be estimated by comparing'® the centrifugal pressure
P, = m;§w*r dr with the plasma pressure Py = n(T,T;).
For the data analyzed here, assuming @ = 0.542 *, theratio of
these pressures is P, /Py = 0.03, so that the contribution of
rotation to the equilibrium is quite small. Therefore, plasma
rotation is not included in the computation of FRC equili-
bria in this paper. However, it should be recognized that the
contribution of rotation to FRC equilibrium may be sub-
stantial at low fill pressures and for smaller sized devices.’

ill. COMPARISON OF EXPERIMENTAL AND COM-
PUTATIONAL RESULTS

At 20 mTorr fill pressure, and at z = 0, the FRC’s have
values for r,,~r; of about 10 cm, corresponding to
x; = 0.4. The open circles in Fig. 2 show the values of 7,/
r4(0) obtained from the excluded flux array at several loca-
tions in z {the data points in this paper are averages over 5 to
20 discharges, and the error bars are standard deviations).
To fit these data, several equilibria were computed. All were
required to give the correct value of 7, in the midplane and
to fit the variation of 7, (z) as well as possible. The variation
of r,4 with length for computed equilibria with B, = 0.5,
0.6, and 0.7 is shown by the solid lines in Fig. 2. For all three
of these equilibria e = g = 0. We observe from this figure
that good agreement between computed and experimental
data is obtained for B, in the range 0.6 to 0.7. The best least-
square fit to the experimental data is obtained for B, = 0.6.
For B, = 0.5, the computed profiles are too racetracklike
around z = 50 cm, and this effect is even more pronounced
at values of B, less than 0.5.

The computed equilibria used in making Fig. 2 all have
I~z,, ~80 cm; the one with 8 = 0.6 is shown in Fig. 1. All
three of the cases used in Fig. 2 have a value of (8 )~0.95,
where (B8 ) is the average over the area inside the separatrix at
z = 0 of the ratio of the pressure to the peak pressure (at the
field null). This value of {8 ) is greater than the commonly
used value of (8 ) = 1 — x2/2 = 0.92 predicted for a FRC in
a cylindrical flux conserver. Since kinetic effects are not in-
cluded in the equilibrium calculation, this change must be
due either to plasma on open field lines or to the mirror. The
effect of plasma on open field lines can be computed from Eq.
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FIG. 2. Normalized excluded flux radius profiles as functions of z are dis-
played. The experimental data are given with open circles and the results of
computations are given with solid and dotted lines.

R. L. Spencer and M. Tuszewski 1811



(A10) of Ref. 3; it is found to decrease {(#8 ), but by less than
1%. Hence, the increase in the average beta must be due to
the mirrors. In Appendix A the effect of the mirrors is esti-
mated and a formula is found that agrees well with the com-
puted results. The increase in the average beta caused by the
mirrors is significant because a FRC with (8 ) = 1 would be
completely’ unmagnetized and have 8, = 1, implying in-
creased kinetic effects and transport. As an example, a parti-
cle transport model'’ is used to calculate the particle con-
finement time 7, and the parameter § = §§r dr/r.p,;, which
measures FRC magnetization and stability,'? for values of
(B) of 0.92 and 0.95. The results of this calculation are
shown in Table I. Also included in this table are the values of
B, (the calculation assumes an isothermal plasma) and of the
characteristic width w of the open-field-line plasma layer (in
units of ion gyroradii in the external field). We observe from
Table I that the increase in {8 ) from 0.92 to 0.95 results in
higher values of # and w, in closer agreement with the ex-
perimentally inferred values® of about 0.6 and 4, respective-
ly. Furthermore, the value of 7y = 177 usec is in better
agreement with the experimental estimate' of 154 usec for
the 20 mTorr data. We also note from Table I that 5 is sub-
stantially decreased for (8 ) = 0.95, which may provide in-
creased stability due to kinetic effects.'® It is interesting to
note that the influence of the end mirrors on {8 ) decreases as
x, increases, as discussed in Appendix A.

The three computed equilibria with values of B, of 0.5,
0.6, and 0.7 that were used in Fig. 2 have been analyzed with
the diagnostic code for comparison with the experimental
interferometry data. The computed and experimental values
of fn dr/fn dr0), obtained as a function of the impact pa-
rameter d of the radially variable chord at {a) z = 0 and (b)
z =90 cm, are given in Fig. 3 with solid curves and circles,
respectively. We observe from Fig. 3(a) that at z = 0 and at
small values of d, there is good agreement between the com-
puted equilibrium with 8, = 0.6 and the experimental data.
However, for values of d>5 cm, the computed curves lie
below the experimental data, reflecting a smaller amount of
plasma on open field lines in the computation (w~2) than in
the experiment (w~4). Since lower plasma temperatures are
expected outside the separatrix,”® the assumption in the
computed curves of constant temperature everywhere un-
derestimates the density outside the separatrix; this could
account for part of the discrepancy. This observation also
applies to the comparison between computed and experi-
mental data at z = 90 cm in Fig. 3(b), and suggests a closer
agreement between the computed curve for 5, = 0.6 and the
experimental data.

The computed and experimental vlaues of fndr/
fn dr(0) taken on diameters (d = 0} as a function of z are
given in Fig. 4; the three solid curves are for the previously

TABLE L. Calculated dependence of the FRC confinement and stability on
B).

8> B, w x| psec) 5
0.92 0.47 1.8 21 23
0.95 0.56 1.6 177 1.6
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FIG. 3. Normalized interferometry profiles as functions of z are displayed.
The experimental data are given with solid circles and the results of compu-
tations are given with solid and dotted lines.

mentioned computed equilibria. We observe from Fig. 4 that
all of the computed curves lie above the experimental data
points for values of z in the range 30 to 60 cm. This suggests
that the computed equilibria are more racetracklike in shape
than the experimental equilibria. This observation is not in-
fluenced by the amount of plasma on open field lines since
§n dr has been shown* to be insensitive to this effect for
d = 0, for then the path length through the interior plasma
greatly exceeds the width of the open-field-line layer. The
computed curves of {n dr/fn dr0) are nearly identical to
those of 744 /744 (0) for z<60 cm, reflecting the nearly one-
dimensional nature of the computed equilibria over their
central portion. This can easily be seen in the inner flux sur-
face distribution shown in Fig. 1.

To compute equilibria that have the more gentle axial
distribution of flux surfaces indicated by the experimental
data, the function p(¥) must be appropriately chosen. (Note:
since it appears that equilibria with a rather uniform axial
distribution of flux surfaces also have elliptical separatrices,
such equilibria will be referred to as “elliptical equilibria in

T ™ T T | SR A A B S R

0.6

0.7

Indr/fndr(0)

d (cm)

FIG. 4. Normalized interferometry profiles as functions of the impact pa-
rameter d dre displayed for (a) z = 0 cm and for (b) z = 90 cm. The experi-
mental data are given with solid circles and the computations are given with
solid and dotted lines. ’
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the following discussion.) An obvious thing to try is to make
p(¥) be more peaked at the magnetic axis, but the axial distri-
bution of flux surfaces is hardly affected by this change. The
way to make the equilibria more elliptical can be discovered
in the equilibrium calculations of Shumaker'® and of Gross-
mann and Saltzmann.!® In these calculations the entropy
function Q, (¥) = p(y)[$dl /B]" is specified rather than the
pressure. In Ref. 16, @, = Oat the separatrix, sop and dp/dy
are both zero there; higher derivatives are, however, singu-
lar. In Ref. 17, Q,, has a finite value at the separatrix so that p
and dp/dy are both singular there. This singularity seems to
affect the shape of the equilibrium. In Shumaker’s calcula-
tion the singularity is handled by setting dp/d to a large but
finite value at the separatrix. This is only a very approximate
way to handle the actual singularity since the even singular-
ity in p should produce an odd singularity in dp/dy. Shu-
maker’s procedure treats the singularity in dp/dy as if it
were even so that p is nonsingular, but has a very steep gradi-
ent at the separatrix. The result of this large spike in dp/dy at
the separatrix is a very elliptical FRC equilibrium, too ellip-
tical, in fact, to match the experimental measurements re-
ported here. In the calculations of Grossmann and Saltz-
mann, the singularity occurs in higher-order derivatives and
the resulting equilibria are not elliptical, but neither are they
as flat in the midplane as the equilibrium displayed in Fig. 1.
To include this effect in our calculation, we added a Lorent-
zian centered on the separatrix to dp/dy, as shown in Eq. (1).
The result of adding this spike is shown in Fig. 5. Note that
the separatrix is more elliptical and that the flux surfaces are
distributed more evenly in the axial direction. Because the
spike in dp/dy is so sharp, Fig. 5 probably does not represent
the precise solution of the Grad-Shafranov equation for the
equilibrium parameters chosen, but the qualitative effect of
making axial gradients more gentle is probably correct. This
discussion only applies, of course, to MHD equilibrium. It is
possible that a fully kinetic equilibrium might more natural-
ly produce an equilibrium with the desired shape. This dis-
cussion has also neglected the effect of toroidal field. This is
treated in Appendix B where it is shown that toroidal field
does not produce elliptical equilibria.

The equilibrium of Fig. S was analyzed with the diagnos-
tic code and the results of this analysis are indicated by the
dotted lines in Figs. 2-4. The main change between this new
computation and the former ones is the good agreement ob-
tainedin Fig. 3 between experimental and computational pro-
files of fn dr/fn dr{0) as functions of z. The better agreement
comes from a more gradual distribution of inner flux sur-
faces (seen by comparing the equilibria of Figs. 1 and 5) as
well as from a somewhat more elliptical 7, (z) profile (seen in

e} e

100 150

z (cm)

FIG. 5. A more elliptical equilibrium in the FRX-C coil geometry is dis-
played. The equilibrium parameters are ¢ =10.1, 6 =23.1, ¢ =21.6,
e = 13.4, g = 328000.0, and I, = 13.1. In the computation there were 102
radial mesh points and 153 axial mesh points.
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IV. CONCLUSIONS

Experimentally produced FRC’s have been compared
with MHD equilibrium calculations for the same geometry.
By judicious choice of parameters in a pressure profile that
makes racetrack equilibria [Eq. (1) with e = g = 0], the com-
puted equilibria can be made to match radial experimental
data quite closely. It is found that the best match between
theory and experiment occurs when 8, ~0.6, suggesting that
this is the value obtained in the experiments (this quantity is
difficult to measure). These equilibria are, however, too race-
tracklike in shape to match the axial experimental data. To
make equilibria that have elliptical separatrices and a gentle
distribution of flux surfaces in the axial direction, it was
found necessary to make p(#) very steep as a function of ¢ at
the separatrix. There may be other ways to make the equili-
bria less racetracklike in shape, but we were unable to find
any of them. Of course, the computations were made with
the MHD model; it is possible that kinetic equilibria would
match the experimental data more naturally.
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APPENDIX A: AVERAGE BETA CONDITION WITH
END MIRRORS

Here we evaluate the contribution of the end mirrors to
the average-beta condition. We consider an elongated FRC
of half-length /in equilibrium inside the coil geometry of Fig.
1. (The effect of mirrors on (3 ) in a different geometry has
been discussed by Suzuki and Hamada.'®) We assume that
the pressure on open field lines is negligible. Following the
derivation of Ref. 1, we consider a control surface that in-
cludes r = 0, the coil, z = 0, and a value of z under the end
mirror (about 96 cm) at which the field lines are approxi-
mately straight. From the axial and radial MHD equilibri-
um relations' we obtain

x? ()w/)m 1)(1 x:)2 + IZer( m)2
=] ——=— — —_ A
B) > 2 2), \B, rdr
(A1)

where B,, is the magnetic field on the coil where B, #0, and
where B, is the value of the magnetic field at r =r,, and
z = 0. For a straight cylindrical coil (r,, =r,,}, Eq. (A1) re-
duces to the usual condition, (8) = 1 — x?/2. For cases
where / is substantially smaller that z,,, a control surface
inside the straight portion of the coil can be used to recover
this condition. In such cases, the mirror region is unaffected
by the FRC, and we may denote B,, by B,,, and use a new
control surface bounded by the straight field line region
between the FRC and the mirror and the straight field line
region under the mirror. Applying the previous arguments
to this region we obtain

rmev2 rfu/’%n_ll_ 32
ij (__) rr= =) (A2)
r? T'im BO 2x:
Equations (A1) and (A2) can be combined to give
R. L. Spencer and M. Tuszewski 1813



x 1

Br=1 >+ <3 My
For cases with /<z,,, the FRC somewhat compresses the
magnetic field around the end mirror so that B,, > B,,,,, giv-
ing values of (8 ) greater than 1 — x2/2 in Eq. (A3).

To obtain quantitative information from Eq. (A3), we
used a vacuum magnetic field solver® and the geometry of
Fig. 1. The separatrix was modeled as a conductor of mid-
plane radius 7, = 10 cm (x; = 0.4) with an elliptical shape in
the axial direction, i.e., 7,(z) = (O)(1 — 2°/1?)'/?, where [ is
the separatrix length. The values of (8 ) so obtained from Eq.
(A3) are shown in Fig. 6. For /<50 cm, the contribution of
the end mirror is negligible and {8 ) = 0.92. For />50 cm,
{3 ) increases with /. In particular, for /~z,, , Eq. (A3) gives
{8 )=0.95, in excellent agreement with the values obtained
from the two-dimensional calculation for the case shown in
Fig. 1. Another equilibrium with /~70 cm gave (8 ) = 0.93,
also in agreement with Eq. (A3). These computed values are
given in Fig. 6 with solid circles. Furthermore, the values of
(B ) given in Fig. 6 are found to be insensitive to whether the
mirror is formed by a smooth shape change of the coil, as in
the computation, or by a sharp step at z = z,,,, as in the ex-
periment.

Finally, one should note that the increase in (3 ) due to
the end mirrors decreases as the plasma radius increases. For
example, for / = 80 cm, this increase is 3% for x, = 0.4,
2.5% for x;, = 0.5, and 2% for x, = 0.6, as found with the
above described numerical procedure. Because (8) de-
creases as x, increases, the pressure profile becomes more
diffuse and the influence of the end mirrors rapidly becomes
negligible. For example, substantial reductions in particle
confinement time 7, and magnetization 5 are shown in Ta-
ble I for x;, =0.4. For similar plasma parameters but
x, = 0.6, those reductions are less than 5%. This is favor-
able for future FRC experiments where larger values of x;
are desired.

rwB’Z" '_Bsnv

rdr. (A3)

1.0 T T T T T T T T T
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~ 4
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! Zn
0.5 ! L A | N 4 1
0 50 100

£Z(cm)

FIG. 6. The average Bis displayed as a function of the plasma length / for the
FRX-C coil geometry. The solid line is obtained from Eq. (A3); the solid
circles are values from numerically computed equilibria.
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APPENDIX B: THE EFFECT OF TOROIDAL FIELD

A question that is often asked about FRC’s is whether
they have some toroidal field in addition to the dominant po-
loidal field and, if so, how much. Some answers have been
obtained recently in the translation experiments on FRX-
CT where toroidal fields as large as § of the field at the wall
have been measured.’ The effect of toroidal field will be
discussed here within the limits of equilibrium theory.

The first thing to examine is the effect of toroidal field
on the average beta for very long FRC’s. In the midplane of
such a FRC the radial equilibrium condition is

B 2
4o+ p2+83) + =2 =0, (B1)
dr yIT r
whereas the axial equilibrium condition is
7y B 2 r2
f (p + B2 Bg))r ar=200 e my
0 20 4uo

(For simplicity it is assumed that there is no pressure outside
of the separatrix.) Integrating Eq. (B1), substituting it into
Eq. (B2), and integrating by parts yields the following condi-

tion for the average beta:
PR SC NS N ﬂ’_)z

B)=1 2x5 2 (Bo rdr.

Hence, adding toroidal field always reduces the average
beta, but not by very much. For instance, if the peak toroidal
field were less than } of the main field at the wall, as observed
in recent experiments, then the correction to the average
beta would typically be less than 5%. An effect this small
would be quite difficult to detect experimentally in present
experiments.

A natural question is whether toroidal field could be the
cause of the gentle axial distribution of flux surfaces ob-
served in the experiment. A rather simple argument can be
made that it should not be by noting that all that happens
when toroidal field is introduced is that the right-hand side
of the Grad-Shafranov equation is modified somewhat. The
equation is still elliptic, and the boundary conditions are still
the same; it would seem that solutions of the same kind
should be obtained if the right-hand side with toroidal field is

(B3)

r (cm)

ricm)

z (cm)

FIG. 7. Two equilibria are displayed here. Both have x; = 0.43 and
B = 0.6. Case (a} has no toroidal field while case (b) has a ratio of the peak
toroidal field to the peak poloidal field of 0.47. The equilibrium parameters
for(a)areal = — 38.9,b1 = 53.6,c = 97.6, ¢l = 0.0, 7 = 0.0. The equilib-
rium parameters for (b) are a= —38.9, b=53.6, c=88.1, e=0.,
7 = 0.97. In the computation there were 53 radial mesh points and 96 axial
mesh points.
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not radically different from the right-hand side without it. In
particular, note that the toridal field term in the equilibrium
equation must vanish at the separatrix, so the kind of peaking
of the right-hand side that was found to produce less race-
tracklike equilibria cannot be supplied by the addition of
toroidal field. To verify this rather loose argument, we com-
puted FRC equilibria in the geometry of Fig. 1 including
toroidal field. The equilibrium equation that was solved is

2
(L) Py _adp_ gl B
ar\r or oz dy dy

where B = V¢9 /r+1 (¢)9 /r. For simplicity, we chose
1(¥) = c¢""*yy so that I dI /dy = cip*yp. The constant c is the
same one that appears in Eq. 1; it is adjusted by the equilibri-
um code as it iterates. In Fig. 7 two equilibria are displayed:
(a) has no toroidal field, while the other (b} has a ratio of the
peak toroidal field to the peak poloidal field of 0.47. For (a),
{B ) = 0.92 while for (b), {8 ) = 0.85. Both values are a little
higher than predicted by Eq. (B3) because of the end mirror,
but the difference between them is precisely given by the
toroidal field correction term. Note that there is almost no
change in the axial distribution of the flux surfaces.
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