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Magnetohydrodynamic equilibrium and stability of rotating field-reversed
configurations with excluded multipole fields

R. L. Spencer® and M. Tuszewski
Univeristy of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 9 August 1984; accepted 5 April 1985)

The rotational instability in field-reversed configurations {(FRC’s) is observed experimentally to
be suppressed by the application of multipole fields. In this paper the equilibrium and stability of a
FRC with multipole fields that do not penetrate into the plasma are studied. It is shown that two
rotating magnetohydrodynamic (MHD) equilibria are possible for a long FRC in a multipole
field. One is nearly circular while the other is cusp shaped. Experiments and hybrid simulations
indicate that cusp-like equilibria are usually obtained. The effect of helical multipole fields on the
equilibrium is also discussed. The stability of such a configuration has been previously studied by
using the MHD model on a circular plasma and by using a hybrid simulation code. In the
important quadrupole case, the two calculations disagree: the simulation shows that the mode is
stabilized while the circular MHD calculation predicts that it remains unstable. A close look at
the MHD calculation shows that stability is strongly influenced by the shape of the equilibrium.
Simple estimates indicate that the cusp-like equilibrium should be more stable than the circular

one.

I. INTRODUCTION

A recurring problem in the study of field-reversed con-
figurations (FRC’s) has been the onset of an n = 2 rotational
instability that eventually grows to such large amplitude that
the plasma strikes the wall and rapidly dissipates. Recently,
it was found experimentally that the application of multipole
fields can suppress this instability.' This effect was first
studied theoretically in the magnetohydrodynamic (MHD)
model in a simple circular geometry” where it was found that
quadrupole fields essentially do not stabilize the n = 2 rota-
tional mode because of mode coupling. This is in conflict
with hybrid simulations of FRC’s with applied quadrupole
fields in which stabilization was observed.® In this paper the
disagreement between these two calculations is shown to be
caused by the assumption of a circular plasma shape in the
MHD calculation. In Sec. II it is shown that there are two
classes of FRC equilibria with excluded multipole fields:
quasicircular equilibria, similar to those considered in Ref.
5, and cusp equilibria. Simple dynamical considerations as
well as results from experiments® and simulations®’ show
that cusp-like equilibria are usually obtained. In Sec. III the
stability calculation of Ref. 5 is reexamined to see what the
effect of a noncircular plasma might be. It is found that the
mode-coupling problem in the case of quadrupole fields is
very delicate and depends crucially on equilibrium details.
Modifying the circular result to take into account some of
the features of a cusp-shaped equilibrium can stabilize the
rotational mode, in rough agreement with experiments and
hybrid simulations. In Sec. IV the paper is briefly summar-
ized and the agreement between theory and experiment is
discussed. In the Appendix the effect of helical multipole
fields is briefly discussed.

® New address: Department of Physics and Astronomy, Brigham Young
University, Provo, Utah 84602.
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Il. EQUILIBRIUM

A sketch of a circular FRC with an excluded quadru-
pole field is shown in Fig. 1. (Note that a rotating FRC will
tend to exclude the multipole fields because the flow will
shear the field lines off in a skin depth. Also, note that in this
and in the following sections it will be assumed that the FRC
is infinitely long.) The multipole fields will, of course, distort
the shape of the surface, but basically it has been previously
assumed that the FRC has a more or less circular shape with
multipole field nulls occurring along the plasma surface.
Making this assumption, a qualitative description of the
shape of the perturbed plasma surface can be obtained by
using Bernoulli’s law. When the flow is in a plane perpendic-
ular to a set of straight field lines, Bernoulli’s law states that

2 _ 2
u_+7/(7 1)p+ B
Hop

=const on streamlines, (1)

2 P

FIG. 1. A flux plot of a multipole field that is excluded by a cylindrical
conductor and whose sources are at infinity is displayed. Note the bad cur-
vature near the conductor surface.
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FIG. 2. For an equilibrium of the kind discussed in Ref. 5 the deviation from
the original circular shape is displayed by the solid line. The straight lines
are the separatrices of the multipole field.

where u is the fluid speed, 7 is the adiabatic exponent, p is the
fluid pressure, p is the fluid density, and B is the axial mag-
netic field strength. There are two other quantities that are
invariant along streamlines, namely p/p” and B /p. (In what
follows it will be assumed that ¥ = 2, as is appropriate for a
system with two degrees of freedom. Relaxing this assump-
tion does not qualitatively change the results derived here.)
By combining these three laws, an expression for the total
pressure along a streamline as a function of the fluid speed
can be derived:

P+ B?/2u, < (const — u?)?. (2)

This equation must be satisfied at the fluid—vacuum inter-
face since it is a streamline. Also, the total pressure must be
balanced by the magnetic pressure on the other side of the
interface. Hence where the external magnetic pressure is
low, the fluid speed must be high, and vice versa. But the
fluid velocity will be low where the surface bulges out and

FIG. 3. An end-on hologram of the plasma in FRX-C is displayed.> The
external multipole field is oriented as in Fig. 1.
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FIG. 4. Density contours from a two-fluid simulation’ of a FRC with the
external multipole field oriented as in Fig. 1 are displayed. The fluid is rotat-
ing in the clockwise direction.

high where it bulges in (think about two-dimensional flow
around outward- and inward-pointing corners), so the fol-
lowing general statement can be made: A rotating FRC equi-
librium that excludes a multipole field such that multipole
field nulls occur on the fluid—vacuum interface must bulge
out where the external magnetic pressure is high and bulge in
at the field null, as shown in Fig. 2. There is one other proper-
ty of equilibria of this type that follows from these argu-
ments. Since the pressure variation must be produced by a
variation in the flow speed, if the flow speed is too low, there
will be no equilibria. That is, equilibria of this type are nearly
circular at very high values of the rotation velocity, but as
this velocity is reduced the boundary becomes more and
more distorted until finally different parts of the boundary
touch one another and equilibrium is lost.

An example of an equilibrium of this type with exactly
these properties is presented in Sec. IV of Ref. 5. There the
distortion is called a forced oscillation, but that is only be-
cause the calculations in Ref. 5 are performed in a rotating
frame. If all quantities are transformed back into the lab
frame, the time dependence disappears and an equilibrium
distortion like that shown in Fig. 2 appears. In Ref. 5 an
estimate is made, using a linear calculation, of the condition
on the rotation frequency for an equilibrium to exist:
0Or, > B, /(u,p)''? where B,, is the peak multipole field on
the fluid surface, {2 is the rotation frequency, and r; is the
plasma radius. This requires that the rotational energy den-
sity exceed the multipole magnetic energy density.

However, experiments and simulations do not show
equilibrium distortions of the kind described above. Instead,
the distortions are rotated by 7/4 from those shown in Fig. 2.
Figure 3 shows an end-on hologram of a quadrupole stabi-
lized FRC in the FRX-C device at Los Alamos® and Fig. 4
shows density contours from a two-fluid simulation’ (the
slight rotation from vertical orientation is probably the re-
sult of not running the program long enough for transient
effects to have died away). To understand how such configu-
rations come to be, imagine a circular FRC to which multi-
pole fields have just been applied. A configuration like that
shown in Fig. 1 will be produced, but it will not be in equilib-
rium. The excess magnetic pressure on the surface between
the field nulls will push the surface in and begin to make a
distortion like that shown in Figs. 3 and 4. But by the pre-
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FIG. 5. Two cusp shapes are displayed. The inner one is the usual hypbcy-
cloid cusp with |B| = const on the surface [¢ = } in Eqs. (34)]. The outer

one has |B| at the cusp tip 40% higher than |B| halfway between the tips
(c=042).

vious arguments, there cannot be an equilibrium of this kind
as long as there are multipole field nulls on the surface. The
surface will continue to be pushed in until the field nulls can
somehow be replaced by points of maximum magnetic pres-
sure instead of minimum magnetic pressure. Fortunately,
such a state can be achieved; the field null region becomes
more and more pointed until the field null simply disappears
and the fluid surface takes the shape of a cusp, as shown in
Fig. 5. The usual definition of a free-boundary cusp is that it
is a configuration in which the surface magnetic field is con-
stant. This is not required, however, and cusps, for which the
surface magnetic field is stronger at the cusp tips than it is
between them, are easily obtained by modifying the confor-
mal mappings that give the constant |B| cusp.? The inner
cusp in Fig. § is the standard hypocycloid cusp shape given
by x**> + y*/> = const,” while the outer one has a surface
magnetic field at the tip that is 40% higher than the field
midway between the tips.

The nonconstant [B| cusp can be represented parame-
trically as follows:

F(w)=¢ + iy = By ro cos(20)
z(w) = x + iy = r, explio) i a,, exp( — idmw), (3)
B(w)=B, —iB, = aF )

dz

where @ = w, + iw; is a complex variable in the range
0<w, <27 and — o <w; 0. The quantity ¢ is the magnetic
potential, ¢ is the magnetic stream function, B, is a charac-
teristic magnetic field value on the cusp surface, and r, is a
characteristic radius. The sum for z(w) has the form given
because we require that the magnetic field at infinity be a
quadrupole field and because we require quadrupole symme-
try. If ; = 0, then @, parametrizes the cusp surface. Note
that @ =0, 77/2, 7, and 37/2 correspond to the cusp tips
while © = 7/4, 37/4, 57/4, and T7/4 correspond to the
midpoints between cusp tips. For the above expressions to
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correspond to a cusp, it is necessary thatdz/do = Oatw =0,
i.e,that 2% _, a,,(1 — 4m) = 0. This condition is only nec-
essary; some choices for the a,, that satisfy it may yield
shapes other than cusps, ¢.g., shapes with loops where a cusp
tip should be. The simplest example of a nonconstant |B|
cusp is obtained by choosing g,=1, a,=o, and
a, = (1 — 30)/7, where o is an adjustable parameter. Note
that o = § gives the hypocycloid cusp. The complex magnet-
ic field on the surface for this case is given by

B=2B, —iB,
= By/[2 exp( — i3w)cos 2w — 30 exp( — i5w)] . (4)

As o is increased from the value 4, the magnetic field at the
cusp tips becomes greater than the field midway between the
tips. The tip field is 40% greater than the midpoint field
when 0 =042. (If o is increased further, the cusp tip
changes into a loop.) This is enough variation to account for
most situations of experimental interest. This cusp shape is
not the result of a self-consistent equilibrium calculation,
however. To actually find an equilibrium of this kind it
would be necessary to include many terms in the sum for z{w)
and then to determine the coefficients by solving for the flow
inside the cusp. This will, of course, be hard. Note from Fig.
5 that there is very little distortion of the cusp even for sub-
stantial amounts of field variation, and hence for fairly large
flow speeds. Note also that there is no loss of equilibrium at
low flow speeds; the state with no flow must have constant
|B] and is hence simply the hypocycloid cusp.

Therefore, there are at least two kinds of rotating FRC
equilibria with flow: (1) quasicircular equilibria with the sur-
face bulging outward in regions of maximum multipole field
and having multipole field nulls on the surface, and (2) cusp
equilibria with more or less constant multipole magnetic
field at the fluid surface. Both of these equilibria are idealiza-
tions; fine details like cusp tips will not be observed in experi-
ments. Experiments and simulations suggest, however, that
cusp-like equilibria are usually observed.

1ll. STABILITY

The rotational instability in FRC’s has been studied®
using the state shown in Fig. 1. This work probably gives
approximate information about an equilibrium like that in-
dicated in Fig. 2. The best-known result from this paper is
that the mode is stable when

B,, >Dr,2(uyp)'"?, (3)

where D is a constant of order one {D?=2(n— 1)/
n[max(n, m) — 1]}, n is the mode number, and m = 2 for
quadrupole fields, m = 3 for hexapole fields, etc. This result
seems quite robust. It states, roughly, that stability is
achieved when the average rotational energy density of the
fluid is equal to the average energy density of the multipole
field at the plasma surface. It assumes that the muiltipole
coils are at infinity and that in the equilibrium yp + B?/u,is
constant. Relaxing these restrictions to include the effect of
coils at a finite radius, a conducting wall, and a realistic equi-
librium profile only slightly reduces the right-hand side of
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Eq. (5) (by 25% for the parameters® of FRX-C). But the care-
ful analysis of Ref. 5 shows that this simple result is not
always valid. In particular, in the case of the # = 2 mode and
quadrupole fields, mode coupling induced by the # = 4 rip-
ple of the quadrupole pressure makes the n =2 and n =6
modes strongly interact to give essentially no stabilization. A
closer look at the reasons for this curious result reveals that it
depends crucially on the kind of equilibrium used.

“The state shown in Fig. 1 has an important special fea-
ture; in spite of the generally stabilizing influence of the mul-
tipole field, the curvature is bad at the surface. This means
that when the perturbed magnetic field pressure caused by a
displacement of the surface is computed, one of the terms
that results is destabilizing. This destabilizing term plays a
critical role in the mode coupling that occurs in the n =2
quadrupole field case. To make this clear, a few of the equa-
tions from Ref. 5 will be given here. The equations that deter-
mine the eigenfrequencies are

AG,_, C_, —(Ey —AF,)C, +4H,  , C,,, =0,

(6)

where4 = B2, /4u, p r 2 2% and the C, ’s are the coefficients

in the mode expansion of the radial displacement, £, :
]

A%G_| H,
A*G_, H_,
(E_; —AF_;)—"-.

(E_, —AF_,)—

Note that this is the same procedure used to obtain the con-
tinued fraction equation whose roots give the characteristic
values of Mathieu’s equation.

The bad curvature in the circular state causes the term
— 1toappear in the expression for F; . Note that the positive
term in the expression for F, is smallest when n =2 and
m = 2 (quadrupole fields). Hence the bad curvature has the
greatest effect in this case. To examine this effect, F,, is re-
written in the form

=2 [max(|n + 2km|,m)—-d]. (10)

By varying d, the effect of replacing bad curvature by good
curvature, like that obtained in a cusp equilibrium, can ap-
proximately be examined. Figure 6(a) shows the path of & in
the complex plane for d =1 as A is varied from O to }, the
threshold value given by Eq. (5). To obtain good accuracy for
0<A4<0.2 the continued fractions can be terminated at
k = + 5, asstated in Ref. 5; but for 0.2 < 4<0.25 the contin-
ued fractions must be taken out to kK = + 30 to obtain 1%
accuracy. The problem is that A plays two roles: increasing 4
tends not only to add stability through minimum-B, but also
to increase the mode coupling. The complicated structure in
Fig. 6(a) for 4 >0.2 indicates that many modes are being

coupled together.
As an estimate of the value of d to use in approximating

the shape of the hypocycloid cusp, we propose the average
curvature defined by

( )z—fl T (24)717/2’ ()
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p]l/2

§ = Z C. exp{i[(n + 2km)0

— (a) —2km)2¢ 1}, (7)
where & = w/42. In the limit that s, = Q2r, /[(yp + B */u)/
<1, the coeflicients in Eq. (6) are given by simple formu-
las. (This condition requires that the rotation speed be much
less than the speed of magnetosonic waves, a condition satis-
fied in experiments.)

F, =2 [max(|n + 2km|, m) — 1],

= |n + (2k + 1)m| — 1 — m sign(n + 2km),

| 8
= |n+ (2k — 1)m| — 1 + m sign(n + 2km), "
_ @ —2km)*  2&—2km) 41
* [n + 2km)| n+2km '
where sign(x) = x/|x|. The simplest way to solve this system

of equations is to assume that C, = Ofor |k | > K. For k posi-
tive, solve successively for C, in terms of C, _, starting with
k = K and ending with k = 1. For k negative, solve succes-
sively for C, in terms of C, , , starting with k = — K and
ending with k= — 1. Then let K go to infinity to obtain
continued fraction forms for C, and C_,. Substitution in
the k = 0 equation gives the dispersion relation

— (Ep — AF,) +
(E, —AF)) —

=0. 9

(B, —AF3) — ™.

where the line integral is taken along the cusp surface from
one tip to the next, ds is the differential arclength, L is the
length along the surface from tip to tip, and R, is the local
radius of curvature. Hence we set d= —7/
(24)!/2 = — 0.64 to approximate the good curvature of the
cusp. Figure 7(b) shows the path of @ in the complex plane as
a function of 4. Note that a region of stability now appears
between 4 = 0.082 and 0.112, indicating that the stability
properties of this system are quite sensitive to the choice of
equilibrium shape. This sensitivity is hinted at in Ref. 5§
where it was found that small windows of stability could be
found by varying the radial equilibrium profile. Note also
that the stability threshold is considerably lower than that
predicted by Eq. (5), but that at larger values of 4 the increas-
ing mode-coupling overwhelms the stabilizing effect and in-
stability is again encountered. This is a general feature of the
solutions of Eq. (6} as 4 is increased, even for m = 3 (hexa-
poles) and m = 4 (octopoles). In Ref. § it is stated that mode-
coupling is unimportant for these two cases, but this is only
partly true. It is true that stability is achieved at about the
level predicted by Egq. (5), but if 4 increased further, instabil-
ity reappears (at about 4 = 0.18 for m = 3 and m = 4). Thus
the mode coupling is weaker for these two cases, but it is still
important. This behavior is a consequence of the two roles of
A mentioned before. For small values of A stability is in-
creased as A is increased, but as 4 approaches a value near
0.18, mode coupling acts to produce instability. It is interest-
ing to note that experiments have been performed with
A>0.25 without any evidence of instability.'® This is another
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indication that the circular analysis is inappropriate for this
problem.

This state of affairs is both comforting and unsettling.
On the one hand, it is probably unnecessary to worry about
the lack of n =2 stability with quadrupoles for the state
shown in Fig. 1. The trouble is sensitive to the details of the
equilibrium and can be made to go away by changing equilib-
rium parameters. However, the correct equilibrium could
also be unstable; whether or not something like mode cou-
pling plays a role can only be determined by finding the spec-
trum for an equilibrium of interest, like the unsavory geome-
try of Fig. 5. Note, however, that in Fig. 5 the curvature is
good everywhere along the surface and that the restoring
force at the cusp tips is very large because the radius of cur-
vature goes to zero there. Hence the cusp equilibrium is ex-
pected to be more stable than the circular state.

It must be noted that the answer to this stability ques-
tion has already been given with a different plasma model. In
a series of hybrid simulations® in which quadrupole fields

10 T T
008 (a)
08 |- 4
0.10
08 _
— 0.15
) 020
04 L_ 025 _
02 | .
0.477
o 1 |
-15 -1.0 -0.5 0 05
w,
10 T T
(b)
08 | -
4 005
08 -
0.15
~ y
3 020
04 |- -
026
02 -
0.082 04779 | 0.112 0.1797
o 1
-1.5 -1.0 -0.5 o 05
wl’

FIG. 6. The path of ® = w/2 in the complex plane as 4 is varied is shown
for two different equilibria. (a) This is a recalculation of Fig. 2 of Ref. §
(circular equilibrium). It shows the path of @ = w/2 in the complex plane as
A is varied from 0.0 to 0.25 for the case of quadrupole fields and the n = 2
mode. The number of sideband frequencies included is 30 above and 30
below. Values of 4 are indicated at points along the path. (b) The path of & in
the complex plane is displayed when the bad curvature has been artificially
removed by setting 4 to the value appropriate to a cusp equilibrium, namely
d>~ —0.64.
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FIG. 7. Contours of helical flux are
displayed for the conditions of the
experiment of Ref. 4. (a) Helical flux
for @ =0.001 rad/cm and I, =25
kA. (b) Helical flux for & = 0.02 rad/
cm and I, = 10 kA. (c) Helical flux
for a = 0.04 rad/cmand I, = 5kA.

were imposed on an already spinning FRC, D. S. Harned
observed that stabilization was achieved if B,, was large
enough. It is difficult to compare the hybrid simulation with
the MHD calculation because of differences in the models,
but the simulation threshold is about 0.5-1.0 times the value
given by Eq. (5) when both theories are applied to specific
experiments. Strong deformation of the equilibrium shape,
as in Fig. 4, was also observed. Presumably, an MHD calcu-
lation in the correct geometry would give a similar result. It
should be noted, however, that the experimental thresholds
are a factor of 2-5 below that given by Eq. (5).

IV. CONCLUSION

Results from experiments and simulations, as well as
simple arguments based on the laws of hydrodynamics,
show the rotating FRC’s with excluded multipole fields are
not approximately circular. Hence stability calculations
based on a circular shape may be in error, especially when
the results of these calculations depend critically on equilib-
rium details. Hybrid simulations® show that quadrupole
fields do indeed stabilize the rotational instability if the qua-
drupole fields are strong enough. Based on the simulations,
Eq. (5) probably gives the right order of magnitude for the
threshold.

There remains the problem of disagreement between the
theories and the experiments. All of the quadrupole stabili-
zation experiments have observed stabilization thresholds a
factor of 2-5 below the threshold given in Eq. (5. A possible
explanation for this discrepancy is that the multipole fields
might slow the rotation so that a less stabilizing field is re-
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quired. Since most experiments estimate the rotation fre-
quency by observing the rotational instability, it is difficult
to determine it when the instability is no longer present. Ina
series of experiments on FRX-C, however, the rotation was
estimated® by using the Doppler shift of light from Carbon
V. It was observed that application of quadrupole fields did
slow the rotation, presumably because of the viscosity of the
deformed large-ion-orbit plasma. It is interesting to note that
an octopole cusp is much more nearly circular than a qua-
drupole cusp. We might expect in this case to have little, if
any, slowing down so that Eq. (5) might more closely predict
the stabilization threshold. Both the lack of slowing down
and a stability threshold more in agreement with Eq. (5) were
observed in the octupole stabilization experiments on TRX-
1.11

Finally, there is the matter of the FRC experiments of Y.
Nogi.* In these experiments the straight quadrupole wind-
ings were changed to helical quadrupole windings with the
result that the threshold current to achieve stabilization was
a factor of 5-10 below Ishimura’s threshold, given in Eq. (5).
The equilibrium shape can be quite different in such a helical
system because the open multipole field lines can become
closed stellarator field lines. In particular, the cross-section-
al shape could be very nearly circular with a small helical
distortion, as indicated by the calculations presented in the
Appendix. It may be that the resistance to rotation is even
greater with a helical distortion than with a z-independent
distortion because of coupling to the parallel viscosity.'?
This would reduce the apparent stabilization threshold.
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APPENDIX: THE EFFECT OF HELICAL FIELDS

In this Appendix, we present a simple model that ap-
proximates an elongated FRC equilibrium with helical qua-
drupole fields, and we apply it to the experiment of Ref. 4.
We assume an infinitely long system in the z direction; by so
doing we ignore potentially important end effects that occur
in experiments. The FRC and the theta-pinch coil are taken
as conducting cylinders of radius a and ¢, respectively. Here
we are assuming that the FRC rotates sufficiently fast to
exclude the multipole fields from the region inside the separ-
atrix. There is a uniform magnetic field Bjz fora <r <c. The
quadrupole field is produced by wires wound on a cylinder of
radius b (@ < b <¢) with pitch a = 27/(period length), and
each conductor carries a current /,. We assume vacuum
fields in the region a < r < ¢ and solve for the scalar potential
¢ (from V¢ = 0) with helical coordinates rand u = 6 — az.
Then, we find the vector potential A from the relation
VXA = V¢ and define the flux function ¥ = ard,, follow-
ing Ref. 13. We find
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¢=B°ar2+8qu(ab)Zi cos Nu
2 p=0 II’VcKI’Va—II'VaK},Vc

e Kip = Lo K ) Uy Ky — I3, K ) s
a<r<b,
e Ko — Lo KN) Uy Kive — Iy K'iy) s
ber<c,

(A1)

where B, = u,l,/2mb and N =2(2p 4 1). In Eq. (Al) I},
means [ j (Nar) and 1 j;, means I (Nax); similarly for X
and X .. We present in Fig. 7 helical flux contours comput-
ed from Eq. (A1) for values of @ and I, used in the experi-
ment of Ref. 4. In Fig. 7we tooka =3cm, b = 6.5cm,c = 8
cm, and B, = 9 kG, the experimental values in Ref. 4. We
observe from Fig. 7(c) that closed flux surfaces surround the
FRC for sufficient pitch angle «. This is in contrast to the
straight quadrupole case of Fig. 7(a) where all of the field
lines outside the FRC are open. A transition between open
and closed field lines is made near the case of Fig. 7(b). For a
value of I, corresponding to the stability threshold of Eq. (5),
and for the experimental conditions of Ref. 4, this transition
occurs for ab~0.75. If a lower value of I, is sufficient to
stabilize the rotational instability, as suggested by the experi-
mental data,* then this transition occurs at smaller values of
ab, e.g.,ab = 0.13 for Fig. 7(b). The presence of nearly circu-
lar flux surfaces, such as those in Fig. 7(c), ensures that the
equilibrium shape of the FRC in the presence of helical fields
is essentially unchanged from the shape before application of
the helical fields. In particular, there will be no cusp points
like those that occur in the straight quadrupole case. Fur-
thermore, the presence of closed field lines outside the FRC
should be beneficial for FRC confinement since there is no
gradual opening of the field lines inside the separatrix. This
isin contrast to the straight quadrupole case were the FRC is
eaten away as the quadrupole field diffuses into the separa-
trix, an effect that may become significant if the rotation
slows down in time.? The improved confinement of plasma
on open field lines suggested by the flux surfaces of Fig. 7(c)
should also be beneficial, e.g., density gradients near the se-
paratrix should be reduced and impurity and neutral in-
fluxes should also be reduced as wall contact is suppressed.

Finally, even though the distortion from circularity is
small it could have important consequences because it forces
the coupling of rotational and axial motion. This could allow
the rotation to be damped by the parallel ion viscosity, re-
ducing the threshold for stabilization. In this regard, it is
interesting to note that in Nogi’s experiment, as the pitch of
the winding was increased, the time of application of the
helical fields was made earlier and earlier. Hence some of the
reduction in the current needed to stabilize the mode could
be caused by applying the fields at earlier times when the
plasma has presumably not had a chance to spin up very
much.
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