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Magnetohydrodynamic equilibrium and stability of field-reversed

configurations

J.L. Schwarzmeier, D.C. Barnes,® D.W. Hewett,” C.E. Seyler,? A.l. Shestakov,? and

R. L. Spencer

Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545

(Received 10 September 1982; accepted 13 January 1983)

Magnetohydrodynamic equilibrium and stability studies of field-reversed configurations are
presented. Experimentally realistic equilibria are calculated numerically for a plasma inside a
conducting cylinder. Stability studies indicate that equilibria ranging from elliptical to highly
racetrack-shaped are all unstable to the internal tilting mode.

I. INTRODUCTION

Field-reversed configurations (FRC’s) experimentally
have exhibited remarkable stability on the magnetohydro-
dynamic (MHD) timescale,'~ despite numerous MHD cal-
culations showing FRC’s to be unstable.*!' Analytical cal-
culations using linearized MHD theory show that the
equilibria should be very unstable to perturbations of the
localized co-interchange type (also called ballooning modes)
in which the toroidal mode number 7 approaches infinity.*>
However, a quantitatively accurate description of local
modes should involve an ion kinetic description of the plas-
ma dynamics and would almost certainly show that finite-
Larmor-radius effects greatly suppress the growth rates.'?
More puzzling are linear calculations using equilibria with
elliptical flux surfaces showing that such equilibria also are
quite unstable to the global # = 1 tilting mode,*!! where ion
kinetic effects should be much less stabilizing. The possibil-
ity that the unstable tilting mode might saturate at a low
level due to nonlinear effects was investigated in an ideal
nonlinear MHD simulation.® The simulation code was ini-
tialized with an elliptical equilibrium and showed that the
tilting mode did not saturate at low amplitude.

Three remaining possibilities for explaining the ob-
served stability of the tilting mode are: (1) ion kinetic effects
are important even though it is a global mode; (2) there are
nonelliptical equilibria that are stable to the tilting mode
within MHD; and (3) nonelliptical equilibria, though unsta-
ble, saturate at low amplitude. In this paper we discuss the
second of these possibilities. In previous calculations of the
tilting instability, elliptical flux surfaces were used although
analytical work on FRC stability has indicated that equilib-
rium profile effects could be a strong factor in determining
tilt stability. Furthermore, the experiments strongly suggest
that the flux surfaces are not elliptical but are rather more
racetrack-like in shape.! This suggests that we simply need
to generate experimentally realistic (i.e., racetrack flux sur-
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faces inside a conducting cylinder) equilibria and analyze
them for tilt stability. The equilibrium portion of this pro-
gram has turned out to be very troublesome, but recently the
difficulty was understood and overcome in a special case.'?
That work has now been generalized to allow the computa-
tion of elongated racetrack-like equilibria with arbitrary
pressure profiles."* The purpose of the present work is to
determine whether or not there exist experimentally realistic
FRC equilibria that are stable to the global MHD tilting
mode.

ll. EQUILIBRIUM

Recently it became possible to solve for FRC equilibria
with a wide variety of flux surface shapes and with flux sur-
faces outside the separatrix that satisfy experimental condi-
tions.'>!* In these calculations the Grad-Shafranov equa-
tion for the case of no toroidal field,
—P 4apP , (1)

dy
is solved with the boundary conditions that 4 is a constant on
a cylindrical conducting wall of radius r,,, and that dy/
dz = 0 at the ends of the cylindrical conducting region. It is
convenient to represent the pressure profile in the form
P (1)) = ¢f (1), where fis a bounded shape function; ¢ thus
determines the magnitude of the right-hand side of Eq. (1).
The equilibrium is specified by choosing the total current in
the computational region; c is determined as part of the solu-
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FIG. 1. B, vs x,, showing the equilibrium boundary for the numerical equili-
bria with realistic cylindrical boundary conditions. The three equilibria (a),
(b), and (c) are shown in Fig. 2.
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tion. Solutions are ultimately obtained by combining the tor-
oidal current constraint with an adaptive iteration proce-
dure.*

Guided by the results of experiments, we specialize to
shape functions, f(¢), that are monotonic in i between the
separatrix and the vortex point and that rapidly fall to zero
outside the separatrix, representing loss of plasma along
open field lines. The effect of different choices for the pres-
sure profile is studied with a one-dimensional radial equilib-
rium code that takes a shape function fwith two free param-
eters in it and varies them, together with ¢, until it produces a
one-dimensional equilibrium satisfying the average-beta
condition"® and having specified values of x, = 7., /7,
and B, = P,.,/P,...'* This facilitates comparison with the
experiment since these are inferred quantities. This profile,
with the value of ¢ as an initial guess, is then used in the two-
dimensional equilibrium code. A shape function which suc-
cessfully produces a wide variety of combinations of x, and
B, is the function f(y) = tanh(ay + b). Figure 1 shows the
region of the x, -3, space containing equilibria with this f(1).
Beyond the boundary in this figure the average-beta condi-
tion can no longer be satisfied and no elongated equilibria
exist. We have tried other shape functions that are consistent
with the experimental constraints and the position of the
equilibrium boundary is hardly changed; the boundary in
Fig. 1 thus seems to be generic to FRC’s. Point (b) in Fig. 1
corresponds to typical shots from the Los Alamos experi-
ments FRX-B and FRX-C. Figure 2 shows three flux plots
from the two-dimensional equilibrium code. All three have
an elongation of about five. Note that the equilibrium near
the equilibrium boundary has rather elliptical flux surfaces
while the one with a small value of B, has quite racetrack-
shaped flux surfaces.
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1ll. STABILITY CODES

To address the question of stability we use two different
methods: a trial function approach'? for the magnetohydro-
dynamic potential energy 6 W, and a time-dependent, linear-
ized MHD code.”' In the first method the form of the trial
function is of course a crucial aspect of the problem, since in
general this approach gives only a necessary condition for
stability. Let § = (£,,£4,6)) denote the normal, azimuthal,
and parallel displacements of the fluid with respect to the
equilibrium magnetic field. The form of the perturbation we
choose is that of a rigid incompressible axial displacement of
the magnetic field lines in the (7,z) plane; the § displacement
is determined from incompressibility. We assume the azi-
muthal variation is exp(in6 ). In the (r,z) plane we take

§.(bx) = — B,($hx)5.(¥) (2)

€ Wy) = B, (5. (¥) (3)
where B, = B,/B and f?z = B,/B. Flux surfaces are de-
noted by #, and y is the coordinate along B. This form of the
perturbation has been shown to lead to the tilting instability
for highly elongated equilibria in which the flux surfaces,
¥(r,z) = constant, are primarily elliptical in shape.®® In addi-
tion, this form for § was shown to be the minimizing MHD
displacement for localized co-interchange modes near the
vortex point (magnetic axis).* Consequently we believe that
this form of the perturbation is close to the general minimiz-
ing £ for highly elongated elliptical equilibria.

The fact that the axial shift is rigid means that £, (¢,y) is
replaced by &,(). Thus we are using a trial function ap-
proach only in the variable y; the 1 dependence of £, is deter-
mined by solving the normal mode equation. When we sub-
stitute the trial function form into the usual MHD 6 W we are
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FIG. 2. Realistic numerical equilibria: (a) 8, = 0.5 and x, = 0.59, (b} B, = 0.44 and x, = 0.47 (this corresponds to FRX-B parameters ), and (c) 8, = 0.01
and x, = 0.6. For each equilibrium (a)—{(c}, in (d}—{(f} are shown the corresponding projections of the displacement vector § in the (r.z) plane from the initial

value code.
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led to a second-order ordinary differential equation to solve
for &, (¥;w) where ¢ is the independent variable and  is the
unknown eigenfrequency. The domain in ¢ is [#,,.,0],
where ., is the value of ¢ at the vortex point and ¢ = 0 at
the separatrix. We choose as one boundary condition that
&, (¥ = 0) = 0. This states that the tilting instability is an in-
ternal mode, since the mode is confined to the closed field
line region. One justification for this boundary condition
comes from the MHD initial value code, where it is observed
that the amplitude of the tilting mode always becomes very
small at the separatrix [see Figs. 2(d)-2(f)]. The second
boundary condition on &,{¢) is a regularity condition that
excludes the solution &, that becomes singular at ¢, . In the
numerical implementation, £, ({;) is expanded as

N
Lol = 3 a0, ). )
The basis functions {7, } are chosen to be cubic b splines,
and the coefficients @, () are found by solving the homogen-
ous dispersion matrix problem that results. The eignfre-
quency o is determined by requiring that the determinant of
the dispersion matrix vanish as a function of w.

In the second stability approach, the time-dependent
resistive MHD equations are linearized about an equilibri-
um. The numerical methods used are very similar to those
discussed in Ref. 15 (see especially Sec. 6.2). Equilibria sym-
metric about z =0 give symmetric systems of equations,
hence symmetric perturbations. Consequently, the domain
of computation is: 0<r<r,,, and 0<z<z,,,. The only
boundary conditions on the modes are set at the radial walls;
symmetry conditions are imposed on the other three sides.
The fastest growing mode is one in which the axial displace-
ment is even about z = 0, while the radial one is odd, i.e., the
tilting mode.

IV. RESULTS

We examine four equilibria: E1, a Hill’s vortex solution
that does not satisfy conducting-wall boundary conditions,
and E2-E4, which do satisfy conducting-wall boundary con-

TABLE I. Parameters of the equilibria E1-E4. The pressure profile is given
by p() = (cd /a)[tanh(a + b + ¢) — tanh{ay + ey’ + b)]. B, .y is the field
strength at r = r,,; and z = 0 used to calculate the normalizing field (B ).
(n) is the peak number density used to calculate the characteristic { o) of
the deuterium plasma. 7, is the Alfven time [ = a(4m( p))'/?/(B ), where a
is the necessary characteristic distance in order that r,,, = 12.5 cm].

El E2 E3 E4
a 7.976 4 36.563 30.546
b 0.299 97 0.1356 1.120 5
¢ 37.368 47.37 28.45
d 0.744 55 1.302 4 27255
e 0.0 19211.0 0.0
Foen/ Zsep 0.227 0.133 0.214 0.148
X 0.47 0.59 0.47 0.6
B, 0.0 0.5 0.44 0.01
B, ,.(kG) 5.0* 6.5 5.0 6.5
(n)10%cm™?)  1.16 3.36 1.14 3.36
74 pusec) 0.064 8 2.27 1.4 2.26

*ForEl, 5kGis thefield B, atz=0and r=r,,.
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TABLE I1. Stability results from the initial value code for equilibria E1-E4.
Mesh size gives the number of points {NV, x NV, ) used to generate the equilibri-
um. Sis the magnetic Reynolds number, ¥ is the dimensionless growth rate,
and 7, =74 /7 is the growth time.

Equilibrium Mesh S ¥ Ty

El 61x 81 10* 0.060 1.08
El 61x 8l 10° 0.06 11

E2 41x 81 10? 0.7 3.0
E2 41x 81 10° 0.7 3.0
E2 41x 81 10* 0.75 3.0
E3 61x 81 10* 1.63 0.86
E3 61x 81 10* 1.63 0.86
E3 101101 10 1.69 0.82
E4 81x 81 10? 2.7 0.84
E4 81x 81 10° 2.0 1.1
E4 i01x101 10° 1.8 1.3

ditions. The equilibria E2, E3, and E4 are those labeled as (a),
(b), and (c), respectively, in Fig. 2. For E1 the pressure profile
is p(y) = cH (¢), where H is the Heaviside function, and for
E2-E4 p(y) = (cd /a)[tanh(a + b + ) — tanh{ay) + ey’ + b))
(note that ¥ = 1 at the conducting wall). The equilibrium
parameters are summarized in Table 1.

In Table II we present stability results of the initial val-
ue code for the equilibria E1-E4. Dimensionless growth
rates ¥ (in terms of inverse Alfvén times) and growth times in
microseconds 7, (for typical FRX-B parameters) are pre-
sented for each equilibrium E1-E4 for various magnetic
Reynolds numbers .S and equilibrium mesh sizes ¥, xN,. The
stability results are independent of S for large S, indicating
that the tilting instability is an ideal mode. The table also
shows that growth times independent of mesh size are ob-
tained for sufficiently fine meshes. Not included in the table
are runs showing that the shape of the resistivity profile also
does not affect the growth rate.

The growth times from the trial function code for the
equilibria E1-E4 are 1.1, 3.6, 4.2, and 22 usec, respectively,
to be compared to 1.1, 3, 0.86, and 1.3 usec, respectively,
from the initial value code. For elliptical equilibria (E1 and
E2) the trial function code and the initial value code have
growth rates that differ by about 10%, thus confirming the
rigid axial shift assumption for the displacement. However,
as the equilibria become more racetrack-like (E3 and E4) the
initial-value code shows that the displacement is no longer
rigid along a flux surface but becomes localized to the tip of
the flux surface [see Figs. 2(d)-2(f)]. This is the same conclu-
sion reached by Grossmann et a/.!' in the limit 7~ o0 . Con-
tinuing to use the rigid axial displacement trial function for
racetrack equilibria yields optimistic stability predictions
with respect to growth rates, and can lead erroneously to
regions of MHD stable equilibria. Depending on the shape of
the eigenfunction &,(¥;w), anywhere from N =10 to
N = 100 basis functions are required for convergence in Eq.

(4)-
V. DISCUSSION

The stability analyses show that all equilibria investi-
gated are very unstable to tilting. For typical FRX-B oper-
ation using a deuterium plasma with B, = 5kG, T = 540

Schwarzmeier et a/. 1297



eV, n,,, = 1.14x10"” cm™3, r,,, = 12.5 cm, x, = 0.47,
and r,.,/z,, = 0.21, we calculate the n = 1 mode growth
time to be about ¥ ~' ~0.9 usec. Such a rapidly growing glo-
bal mode certainly should be observed in the experiments’
where the lifetime is in the range 20 usec<7, <50 usec. In
addition we find that the modes n>2 always are significantly
more unstable than the n = 1 mode.

For elliptical equilibria the axial shift of each flux sur-
face is rigid to minimize field-line bending. In addition, an
axial displacement has a nonzero component normal to the
flux surface (i.e., down the pressure gradient) everywhere
along its length (except at the midplane). However, for race-
track equilibria it is energetically more favorable to stretch
the field lines by concentrating the displacement at the tips
of the flux surfaces, since rigid axial displacements contri-
bute nothing to §W along the long, straight sections of the
flux surfaces. Since the displacements for racetrack equili-
bria are becoming localized (poloidally), the nonlinear be-
havior of these modes is an open question that needs to be
resolved.

We have provided strong evidence that the stability of
existing FRC’s cannot be explained by the ideal MHD mod-
el. While we have not excluded the possibility that there exist
realistic, stable MHD equilibria, we are reasonably confi-
dent that they do not exist. We currently are investigating
the stability of FRC’s to the tilting mode with a kinetic mod-
el'2 and will report on these results in a future publication.
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