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Two-dimensional equilibria of field-reversed configurations in a perfectly

conducting cylindrical shell
D. W. Hewett and R. L. Spencer

Los Alamos National Laboratory, Los Alamos, New Mexico 87545
{Received 1 September 1982; accepted 13 December 1982)

Two-dimensional field-reversed equilibria bounded by a conducting cylinder are computed. The
computation is made possible by using a global constraint and by using a computational algorithm
that is protective of the initial guess. A pressure profile is used that has sufficient generality to
match experimentally produced configurations. It is found that for some choices of separatrix
radius and separatrix beta, no equilibria exist. The reasons for loss of equilibrium are discussed
and an example of a configuration near loss of equilibrium conditions is given.

I. INTRODUCTION

Elongated equilibria are commonly observed in field-
reversed theta-pinch experiments.’~* These plasmas are rela-
tively hot (500~1000 eV) and dense (10'° cm ) and last for
many Alfvén transit times before they terminate. This evi-
dence of macroscopic stability together with the possibility
of good confinement because of closed magnetic field lines
makes these configurations quite interesting to the magnetic
fusion community. The purpose of this work is to under-
stand what sort of time-independent states are possible and
to identify the parameters that characterize these states. An
appropriate computational model must first be chosen. Be-
cause much of the plasma in such a configuration is in a
region of very low magnetic field, many of the ion orbits are
much larger than gradient scale lengths. Were the ions to
carry current, the ion pressure would have to be represented
by a tensor with off-diagonal elements and the equilibrium
problem would be quite difficult. In particular, the magneto-
hydrodynamic (MHD) model would be inappropriate. If,
however, the ions carry no current and are confined electro-
statically by an electric potential that is constant on flux
surfaces, then the ion pressure can be represented by a scalar
and MHD is a valid model. It is assumed in what follows that
these conditions are met.

The computation of elongated field-reversed configura-
tion (FRC) equilibria has tuned out to be surprisingly diffi-
cult even with the MHD model. The simplest realistic equi-
librium is the prolate Hill’s vortex with a vacuum field
outside the separatrix.® Unfortunately this solution has an
elliptical separatrix that is quite unlike the racetrack-shaped
separatrix configuration observed in experiments. Another
objection is that these states have rather odd-shaped flux
surfaces outside the separatrix implying external coils signif-
icantly more complicated than the cylindrical conducting
shell of experiments. A more general analytic solution is that
of Berk, Hammer, and Weitzner,” which has been numeri-
cally implemented and extended by Anderson, Hammer,
and Barnes.® These equilibria have a separatrix shape more
like those observed in experiments but the vacuum field out-
side the separatrix does not have straight field lines at the
conducting wall. A more successful calculation is that of
Semenov and Sosnin; they use power law pressure profiles
and their equilibria do have straight field lines at the con-
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ducting wall.” Recently, a simplified model by Spencer and
Hewett'® revealed some of the pathologies of elongated FRC
equilibria that have contributed to the difficulty of commut-
ing such states.

The ideas presented here are based on this recent work
and overcome several stumbling blocks encountered by ear-
lier research. In Sec. I the numerical difficulties encoun-
tered by Spencer and Hewett are reviewed with an eye
towards the requirements of a successful Grad—Shafranov
solution technique—discussed in Sec II1. The resulting algo-
rithm allows the computation of elongated field-reversed
equilibria—examples of which are presented in Sec. IV, Loss
of equilibrium is also discussed. The paper is concluded with
a short discussion and summary in Sec. V.

Il. THE PRESSURE PROFILE p(y) = CyH(¢)

The work to be presented in later sections of this paper
owes its success to the understanding of the 2- and 1-D states
for p’'(¥) = CH (¢}, where p(¢) is the plasma pressure as a
function of the magnetic flux function ¢, C is a constant,
H (¢} is a Heaviside function (H =1 for ¢ <0, H=0 for
¥ > 0), and the prime denotes differentiation with respect to
. As is discussed later, this rather specialized p(¢) provides
generic guidance for most physically realistic choices for

'Equilibriuirn requires that the flux function ¥ satisfy
the Grad-Shafranov equation

d 181/;) P .
Avy=r Z(122) L TV ), 1
s rar(r or * az* P m
where
B—_ Ll g 1
r oz r or

It is assumed that B, 4, =0. A further assumption is that
¥ =1y, atr =r,, where the subscript w denotes evaluation
at the wall position. This is a perfectly conducting wall
boundary condition.

An understanding of some difficulties that must be
avoided in 2-D can be gained by considering the z-indepen-
dent states. Following Spencer and Hewett,'® there is one
purely vacuum state (no plasma; 1 everywhere positive) and
there are two 1-D plasma states—states having reversed
magnetic field on axis but with sufficient positive field on the
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FIG. 1. The radial separatrix position x, = r,/r, for 1-D equilibria as a
function of the parameter C in the Heaviside pressure profile.

outside so that the total flux is positive. For values of C
> 324, /r%, these two z-independent plasma states have dis-
tinct separatrix (¢ = 0) radii (see Fig. 1). The axial pressure
balance condition"'! now provides further guidance on this
point. The conditions that a very long 2-D equilibrium be in
axial force balance can be satisfied at only one point on the
curve of x; = r,/r,, vs C—namely on the upper branch at
C=C,=36y,/r!. Highly elongated 2-D states must have
C = C, to satisfy axial pressure balance.

The 2-D Heaviside results now provide crucial insight
into the selection of a parameter for labeling equilibria. The
separatrix approaches a spherical shape for large C. As Cis
decreased the separatrix becomes elongated in the axial di-
rection with the elongation becoming an extremely sensitive
function of C as it nears C,. The elongation varies from 2— oo
as C varies from 1.003C,-C,, respectively. Choosing C is
thus a poor way to specify long equilibria. A much better
way would be to choose a parameter that depends strongly
on the length of the equilibrium. The total toroidal current in
the computational region I, is such a parameter. Using it to
specify equilibria gives the added advantage that two of the
three 1-D states allowed when C is used are eliminated. For
example, consider the plot of toroidal current per unit length
Jy displayed as Fig. 2 for the Heaviside profile. For a given
value of C there are equilibria with two values of J, plus the
vacuum state with J, = 0. But if J, is specified, the one equi-
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FIG. 2. The toroidal current j; per unit length in 1-D states as a function of
the parameter C in the Heaviside pressure profile.
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librium with J, = I,/L, L the length of the computation
region, is selected. Using [, instead of C thus better deter-
mines the equilibrium length and reduces the number of al-
lowed equilibria.

Ill. NUMERICAL SOLUTION

The numerical solution of this equilibrium problem has
proven to be unexpectedly difficult. One successful ap-
proach is presented here. A brief discussion of unsuccessful
approaches is also useful as an aid to understanding the re-
quirements of a successful procedure. Other methods that
promise to reduce the computational effort required are cur-
rently being investigated.

The first approach was to try to obtain a finite differ-
ence solution of Eq. (1) with simple successive over-relaxa-
tion (SOR). The finite difference representation of Eq. (1) is

i(¢i+l‘j_¢’i‘/ wij—¢i—lJ)
ar Tivin2 Vi 12
LT ! @

Az
where ¢, is the value of ¢ at the position 7; and z;. Arand 4z
are uniform grid sizes in » and z. SOR can the represented
schematically by

x":,'+ '= wlz’i,,' + {1 - a))lﬁ,'-:,-, {3)
where the superscript is the iteration number, o is the relaxa-
tion parameter, and # is the algebraic solution of Eq. (2) for
¥,; using the most recently updated values for the required
neighbors. Solutions obtained were always 1-D states—pos-
sibly due to poor initial guesses for the desired 2-D solu-
tions—and were extremely expensive in CPU time. Since 2-
D equilibria having proper conducting wall boundary
conditions were the goal of this work, time requirements
were of secondary importance initially—allowing other even
more conservative (slower) convergence schemes to be tried.
A promising idea was to substitute iteration schemes involv-
ing more than one previous iteration level for the simple-
SOR-Picard scheme, Eq. (3). The scheme of Marder and
Weitzner,'?

;'J+ = — w{pi,j + Zw‘ﬁ:, + (1= C‘)W:j_ ! (4)

is one of several variables that have the property of turning
some unstable iteration schemes into stable ones. Our imple-
mentation of these schemes was unsuccessful in finding 2-D
equilibria for this highly nonlinear free-boundary problem.
It is believed that the essential weakness of these schemes lies
in the difficulty of selecting acceleration parameters (analo-
gous to ficticious time steps towards an asymptotic state)
that allow reasonable convergence without iteration slipping
off to any of the 1-D states that are more stable to iteration.

A solution to these difficulties is to use an algorithm
that adaptively selects the acceleration parameter. Such a
procedure is “protective” of the initial guess in that if a step
were to deviate too much from the last iterate, the proposed
iterate is discarded and the step is reduced for the next at-
tempt. The method used for the successful generation of 2-D
states is based on the original ideas of Doss and Miller'? and
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is now briefly described.

The procedure of Doss and Miller allows the dynamic
selection of an acceleration parameter w for a relatively stan-
dard alternating direction implicit (ADI) procedure. The ba-
sic alternating direction implicit (ADI) iteration is defined
by expressing the operator in Eq. (2) in two parts. Separating
in 7 and z derivatives, Eq. (2) becomes

w,‘/}n + 172 __ D'(!bn + I/Z) — wtpn + Dz(!bn), (5&)
oYt =D, )= oyt 2 DA, (SH)

where D, (D,) represents the r-(z-)differential operator. As
represented by Eqgs. (5a) and (5b), an iteration is accom-
plished in two half steps—each being semi-implicit. The ex-
tension that provides for dynamic determination of  is to
compare the norms

N=S3 " =),
and ’
N* — ZZ(w:-#— r_ 1/’"+ 1)2’

where ¢, * ' represents the result of a double application of
Eqs. 5 with twice the . Small N, reflects adequate conver-
gence in iteration ‘‘time step”’; finite V quantifies the move-
ment toward the asymptotic state. The ratio N, /N deter-
mines a multiplicative factor, 0.1< /<2, used to modify the
for the next iteration."* The concept is that idealized iter-
ation should exhibit change from the initial state (finite V)
that is always larger than the variation (N, ) arising from
adjustments in the iteration “time step.” A mapping is se-
lected for N, /N to fwhich continually adjusts the accelera-
tion parameter @ so that N, /N usually falls betweeen 0.02
and 0.4. Experience suggests that optimal security and con-
vergence are obtained in the high end of this range. Details of
this elliptic solution technique applied to other problems can
be found in the original reference.®
A most important “protective” feature that is perhaps
essential for this highly nonlinear application is that the al-
gorithm provides for the complete rejection of the newly
proposed iterate ¢, * ' should the ratio of the two norms get
too large (N, /N > 0.4). Conversely, should the ratio become
toosmall (N, /N <0.02), the indication is that the iteration is
taking an excessive number of steps; @ is reduced by a factor
S=10.0 in these cases. The principal advantage this pro-
vides is that given a crude but strongly 2-D initial guess, the
algorithm must be sufficiently conservative so that “large”
steps do not allow the solution to “radically” shift to the 1-D
plasma state. At other instances in the process, a much
smaller @ provides desirable convergence enhancements.
The above procedure provides rapid convergence for a wide
variety of linear and nonlinear problems.
An added complication in the present problem is that a
global constraint must be satisfied. The global constraint /,
is implemented by defining the constant Cin the p’ function,
2’ = CS(¢), after each iteration so that the 7, is preserved. In
this notation the function .S () contains the functional depen-
dence on #. Since J, = rp’, I, is given by

I, = cf “ar| " dz S [9ir2)],
0 0
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where z,,,, is the length of the computation region, resulting
in the redefinition after each application of Eqgs. (5)

cret= IB(C "Lrwer:ma’r rS [+ \(r2) ]) e

The result is that, on each iteration, the right-hand side p’
changes not only because ¥ has changed but also because the
constant C has been changed; 7, is, thus, preserved as a glo-
bal constraint.

As discussed in the preceding section, the global con-
straint reduces the number of states that must be considered
by restricting the possible configurations to those that have
the desired current. The solution is further restricted by the
boundary conditions. The flux function is required to vanish
at r = 0 and to be equal to ¥, at r = r,,. It is required to
satisfy dy/dz = Oin the midplane and atz = z,,, . These are
the simplest boundary conditions consistent with experi-
ments. Other conditions, like the presence of external mag-
netic mirrors, have been added by altering these boundary
conditions.

IV. RESULTS

Several cases were run with the Heaviside p(¢} profile.
A typical example is shown in Fig. 3. This particular exam-
ple has an elongation € = z, /r, of approximately five where
z, (r,) is the coordinate of the intersection of the separatrix,
¥ =0, with the » =0 (z = 0) boundary. The shape of the
separatrix for €2 is, to good approximation, z independent
near z = 0. Straight field line regions at the midplane and
beyond z =2z, are joined by a transition region around
z =z,. As I, is decreased, z, decreases with r, approximate-
ly fixed until e~1; as I, is decreased further, the separatrix
maintains a spherical shape with the radius shrinking to
zero. These results, obtained with the numerical technique
described in Sec. III, agree with the semianalytic results of
Spencer and Hewett.'®

Several more general expressions for p(#) have also been
considered that have more freedom to match experimental
data. Any p(¢) that has finite pressure for negative ¥ regions,
relatively small pressure for positive ¥, and a smooth transi-
tion with large p’ near ¥ = 0 is potentially of interest. Pro-
files p() with these properties will produce equilibria with
the same general properties as the Heaviside profile dis-
cussed in Sec. II. Consequently, the total toroidal current /,
remains a useful free parameter for these generic profiles.

A quite general choice for the pressure profile is

S (¢) = d, sech®(a, ¥ — b,). (N
Note that d,, like C, is not fixed; its determination is part of

the solution to the equilibrium problem. This profile will be
referred to as the SECH profile. The extra parameters in Eq.

(o} 1.5 3.0 4.5 6.0

FIG. 3. A 2-D equilibrium with the Heaviside pressure profile
PlY) = CH(y).
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FIG. 4. A series of 2-D states for the SECH pressure profile for decreasing
I,. The values of I, are (a) 24.0, (b) 22.0, (¢c) 15.0, (d) 10.0, and (¢} 7.0.

{7) provide more freedom to find equilibria with characteris-
tics similar to those observed in experiments.

A 1-D calculation exploiting the straight field lines at
the midplane and at large values of z is used to choose these
parameters (see Appendix).

It is convenient to classify these long equilibria by 5;,
the pressure at the separatrix divided by the maximum pres-
sure, and by x;. Figure 4 displays the region in which long,
€> 1, equilibria can be found with p() given by Eq. (7); the
correspondinga,, b,,d,, and C for the desired B, and x, can
be obtained by computing 1-D equilibria satisfying the aver-
age beta condition, as described in the Appendix. These pres-
sure profile parameters are given in Table I for selected com-
binations of B, and x,. Taking B, = 0.1 and x, = 0.6 as a

TABLE 1. SECH equilibrium parameters.

representative case, Figs. 4(a}—4(e) display a sequence of 2-D
states for decreasing I,; the elongation ranges from € = 6.7
down to 1.67.

A typical case with a 40X 80 mesh requires 150 itera-
tions (30 CRAY CPU seconds) for x, = 0.59, 8 = 0.5, and
€ = 5.0. Convergence is more rapid for larger x; and smaller
I,. An initial guess is made up of the 1-D plasma state for
small z and the 1-D ‘“‘vacuum-like” state for large z. A
smooth transition between states is not attempted with the
initial guess; the 1-D plasma state is used for 0<z</,/J,
where J,; is the current length of the 1-D plasma state and the
1-D vacuum-like state is abruptly used from z = I,,/J, out
toz=2z_,.-

Long 2-D states do not exist for combinations of x, and
B, lying above or to the right of the dashed boundary in Fig.
5 because axial force balance cannot be achieved for such
combinations. As this boundary is approached, the plasma
near the axis at z»z, begins to exclude the magnetic field.
When the boundary is reached B,,;; (the magnetic field at
r = 0and zy»z, ) goes to zero. Figure 6 shows what happens to
the shape of an equilibrium as the boundary is approached.
Equilibria (a) and (c) are well away from the boundary, while
{b) is very near it. The needle-nosed shape of equilibrium (b)
can be explained as follows. Consider the dashed line in equi-
librium (c) of Fig. 6. It is constructed to be normal to the flux
surfaces and to begin at the separatrix crossing on the z axis.
Force balance normal to the flux surfaces is given by
V.(p + B?*/2) = Bk, where V, is the gradient operator nor-
mal to a flux surface and where « is the field line curvature
vector. Integrating this equation along the dashed line, and
using radial pressure balance for z3»z,, gives

2 2 2 wall

EREIES F "

2 0
where B, is the field on the dashed line at the wall and where
B, is the field at the wall for z>z,. Note that B, >B,,. This
relation shows that as the equilibrium boundary is ap-
proached and B,,; decreases, the average curvature force on
the dashed line decreases. The field lines then become

B X a, b, d, C

0.01 0.40 383.77 22986 5.3897 101.12
0.01 0.50 138.32 23004 4.8964 50.504
0.01 0.60 58.833 2.304 1 4.4708 30.892
0.01 0.70 23.412 23119 4.0850 22.675
0.01 0.80 9.3670 2.3278 3.7200 20.640
0.01 0.90 2.9492 2.360 4 3.358 7 27.674
0.01 0.96 0.865 03 23117 30104 58.915
0.20 0.40 170.64 0.699 19 3.0156 81.032
0.20 0.50 58.230 0.710 39 2.4970 42.709
0.20 0.60 21.744 0.737 39 2.0392 28.114
0.20 0.70 8.1793 0.802 47 1.618 6 23.567
0.20 0.79 3.204 7 0.936 85 1.278 7 27.670
0.40 0.40 108.85 0.220 62 21323 74.138
0.40 0.50 33.943 0.258 67 0.920 04 41.244
0.40 0.60 11.051 0.365 14 1.099 4 30.997
0.40 0.66 5.642 3 0.499 88 0.859 55 32.191
0.60 0.40 60.756 —0.136 19 1.296 7 70.914
0.60 0.52 11.386 0.104 97 0.644 14 46.704
1302 Phys. Fluids, Vol. 26, No. 5, May 1983 D. W. Hewett and R. L. Spencer 1302



10~
\\
>N
N
AN
081 \
N\
\
\
\

08 \

\

\

B (a)e (b)®
) AR
04 \
\
\
AN
AN
02| N
\
(c)e \\
0 L 1 Y LN
0 0.2 04 0.8 08 1.0
xS

FIG. 5. Accessible parameter space for SECH pressure profile. Elongated
equilibria cannot exist above and to the right of the dashed curve due to loss
of axial pressure balance. Points indicate equilibria shown in Fig. 6.

straighter, causing B, to approach B, so that the curvature
force along the dashed line goes to zero at the equilibrium
boundary. When zero curvature is reached, z; goes to infin-
ity and the field-reversed equilibrium is lost.

V. CONCLUSION

Elongated field-reversed equilibria similar to those ob-
served in experiment have been difficult to compute. Recent
work on the simplified Heaviside profile p(¢) = CyYH (¥)
pointed to the extreme sensitivity of the elongation to subtle
changes in the pressure function. Further consideration of
the properties of this profile suggested the adoption of the
total toroidal current / as a less delicate means of specifying
equilibria. Using this concept together with an adaptive el-
liptic solution technique for the Grad-Shafranov equation
now allows routine solution to be achieved for states with
arbitrary elongation.

Solutions with more general pressure profiles proved to
have properties that are quite similar to solutions with the
Heaviside profile. Exploiting this similarity, elongated equi-
libria were computed from pressure profiles that have suffi-
cient generality to match experimentally measured quanti-

1.0, = e

Q 1.5 3.0 4.5 6.0

FIG. 6. Typical 2-D equilibria for the SECH pressure profile showing the
change in shape that occurs as the axial force balance boundary is ap-
proached. (a) B, = 0.5, x, =0.4, (b) B, =0.5, x, =0.6, and (c) 5, =0.1,
x, = 0.6. The dashed line is perpendicular to flux surfaces; see Sec. IV. Case
(a) is typical of FRC’s produced by the FRX-C experiment at Los Alamos
National Laboratory.

1303 Phys. Fluids, Vol. 26, No. 5, May 1983

ties. As with the Heaviside profile, the z position of the
separatrix is controlled by the amount of 7, the configura-
tion is required to have.

Examples were presented that exhibit the dependence
of the elongation on /,. In addition, the more general p(¢)
profiles exhibited a new property. For these profiles with
given plasma beta on the separatrix, elongated two-dimen-
sional equilibria can only be found for states having x, less
than a maximum permissible x, . As 5, is increased the upper
limit on permissible x, is reduced.
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APPENDIX: ONE-DIMENSIONAL EQUILIBRIUM

A one-dimensional equilibrium calculation is described
that makes it easy to choose pressure profiles that will pro-
duce two-dimensional equilibria with desired properties. It
is based on the so-called “long-thin approximation”!!! and
depends on having straight field lines in the midplane and at
large values of z; 1-D equilibrium problems are solved in
these two regions. The simplest way to compute equilibria
depending only on the radial coordinate 7 is to choose p()
and to use p + B2/2 = const to find B, (r). Note that there is
no toroidal field. This method is inappropriate here, how-
ever, because p(¢) is needed in the two-dimensional calcula-
tion. For this reason # is used as the independent variable; it
is also convenient to normalize ¢ to the trapped flux, i.e., to
the value of  at the equilbrium O point. The pressure profile
is chosen to be of the form

p) = (CY, Yo/r.)| 8l¢) — &( — K)], (A1)

where #,, is the value of the flux function at the wall, where
1, is the value of ¢ at the O point, where x = ¢, /¥, and
where ¢ = /4. The function g gives the shape of the pres-
sure profile; C gives its magnitude. If the radial coordinate
& =(r/r,) is used, then the magnetic field is given by

B€)= 24 (A2
ro 4§

Two different one-dimensional equilibria are of interest: (1) a
field-reversed equilibrium to represent the midplane of a
long field-reversed configuration and (2) a nonreversed equi-
librium to represent the same configuration far away from
the region of reversed field. Because these two regions are
connected by a two-dimensional transition region, p(y) must
be the same for both, if the flow along the open field lines
does not substantially alter the pressure. Available experi-
mental evidence suggests that it does not.! Radial pressure
balance for equilibrium (1) is given by

(1) =[8(1) —gld,)/a? (A3)
where a™ ' = (C,, /2¢,)'/* and where ' means d /dé. Inte-

grating Eq. (A3) from the axis to the wall gives a relation
between a and «,

al2d + ')l =1, (A4)

D. W. Hewett and R. L. Spencer 1303



where
1 dy
A= —2Y A5
Jo [g(1) —g(¥)]'7? (A3)
[ dy . A6
" L[mn-m—wwz (49

Radial pressure balance for equilibrium {2) is given by

(#3) =al g —zgl¢.)l, (A7)
where g is a constant. Integrating Eq. (A7) from the axis to
the wall gives a relation between a, «, and g,

a2 (k@) =1, (A8)
where
A&
2 Jo [g—sgl—y1"* (A9

In order for these two equilibria to represent the midplane
and the end of a two-dimensional field-reversed configura-
tion, the axial equilibrium condition (average-beta condi-
tion)"!" must be satisfied. This condition can be written in
the form

8 Tw
8 —prdr=1,
ﬁ(a—Bmﬁ(“ P

w

(A10)

where B, and B, are the magnetic fields at the wall for the
two equilibria. Equation (A 10) can be rewritten for the pre-
sent case as

A, — A, 1

2 = —, (A11)
glly—g 20
where
' gly) —gl—x)
A = ——————*—*——d
e el sy
o Le() —gl—p1"2 " AR
and where
A, = K_gi_—_y)_:_g(_:ﬂd‘ Al3
? L[§~a—ww2 AL

Equations {A4), (A8), and (A 11) provide three relations to
determine the three unknown quantities C, ¢, and g, or
equivalently, a, x, and g. Once these have been determined,
Eqgs. (A3) and (A7) can be integrated to find ¢,(r) and &,(r)
and hence any other desired functions of radius. This solves
the problem of finding the equilibrium produced by a given
shape function g.

A useful addition to this calculation is to choose a shape
function with free parameters in it and to simultaneously
adjust these parameters to make the equilibrium have cer-
tain desired properties. For instance, it is useful to be able to
produce equilibria having specified values of x, and S,.
These two are given by

x, = (2a4)V?, (Al4)
_ 80 —g(—x)
ST A1)
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Choosing the shape function

g(¢) = tanh[4 (§ — 4 *)], (A16)
the parameters A and ¢ * are to be determined along with the
three equilibrium constants. Note that Eqs. (A4), (A8), and
{A11)arelinear in a; eliminating a leaves only four nonlinear
equilibrium equations to solve for the four quantities x, g, 4,
and ¢ *. Their solution is accomplished by numerically eval-
uating the required definite integrals and by using the IMSL
n-variable zero-finder ZSCNT. Once these constants have
been found, they can be used to obtain a pressure profile for
use in the two-dimensional equilibrium code. For instance,
Egs. (1), {A16], and {7) can be used to obtain the following
relations between A, ¢ *, ¥, a;, by, and d;

a, = A /Y, (A17a)
b, =Ad*, (A17b)
d, =y, A /. (A17¢)

Since the two-dimensional equilibrium code uses toroi-
dal current as a constraint, it is useful to have expressions for
the toroidal current per unit length in these one-dimensional
equilibria. They are given by

Jy=(C,./r )l [ g(1) — g0} + [ g(1) — g{ — #)]""?},
(A18)

Jy=(CY,/r,)af[ g —gl—«)]"* — [ —g0)]'?}. (A19)

Since this computation only involves performing defi-
nite integrals and finding zeroes of nonlinear equations, it
provides a very rapid method of investigating many pressure

profiles to determine their suitability for use in the two-di-
mensional equilibrium code.
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