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Adiabatic compression of elongated field-reversed configurations

R. L. Spencer, M. Tuszewski, and R. K. Linford

Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545
(Received 6 December 1982; accepted 24 February 1983)

The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by
using a one-dimensional approximation. The one-dimensional results are checked against a two-
dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater
than about ten, the one-dimensional results are accurate within 109%. To this accuracy, the
adiabatic compression of FRC’s can be described by simple analytical formulas.

. INTRODUCTION

One of the interesting aspects of field-reversed-configu-
ration (FRC) research is the possibility of translating these
objects after formation into a different area where they
would be compressed.' Indeed, the results of such an experi-
ment were recently reported by Es’kov and his coworkers.’
The computational modeling of this process on dynamic
time scales is very expensive; it would help if there were a
simpler way to at least approximately predict what would
happen in such experiments. The simplest model of plasma
dynamics is the adiabatic model. In this model the plasma is
assumed to be in magnetohydrodynamic (MHD) equilibri-
um at each instant of time. The equilibria are connected by
the requirement that they all have the same entropy per unit
flux, i.e., the equilibria form a sequence generated by adiaba-
tic changes. A way of computing such a sequence of equili-
bria was developed by Grad® and applied to FRC’s by Byrne,
Grossmann, and Hameiri.** Even these much simpler com-
putations require complicated computer codes. It would be
helpful if approximately the same results could be achieved
either with a much simpler code or by analytical techniques.
Methods for accomplishing this simplification for elongated
FRC’s are presented in this paper. In Sec. II a one-dimen-
sional equilibrium code is described and its results are
checked against a two-dimensional equilibrium code; in Sec.
I1I an even simpler analytic calculation is presented.

Il. ONE-DIMENSIONAL ADIABATIC MODEL

Elongated FRC equilibria can very nearly be described
as two regions with straight field lines connected by a short
transition region with curved field lines.® This property
makes it possible to extract two-dimensional information
from one-dimensional calculations. The average-beta condi-
tion is obtained by this procedure.” This property of elongat-
ed FRC’s will be exploited here to obtain an approximate
model for adiabatically changing FRC equilibria.

Consider an elongated FRC in a conducting cylinder of
radius 7, as shown in Fig. 1. It has magnetic flux 273, out-
side of the separatrix and magnetic flux 27, inside the se-
paratrix. It has pressure profile p(#), where ¢ is the poloidal
flux function, and separatrix length /. We restrict our discus-
sion to the case where the pressure vanishes on and outside
the separatrix; the pressure is also assumed to rise monotoni-
cally from the separatrix to its maximum value p,, at the
equilibrium vortex point. Imagine now that an initial equi-
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librium is adiabatically changed by slowly varying either r,,
or #,. Note that reversibility of adiabatic changes makes it
possible to consider these two different kinds of changes se-
parately. Under adiabatic changes ¢, is conserved and the
magnetofluid is tied to the field lines. Hence, the condition
that entropy per unit flux be conserved reduces to the condi-
tion

pA) = . (¥), (1)

where the subscripts ““/”’ and “f™ refer to equilibria before
and after the adiabatic change, respectively, and where

ut = pii(2r § 4. 2)

The line integral is taken along the closed field lines; 1, like p,
is zero outside the separatrix. We now make the one-dimen-
sional approximation by writing

pa2_ 2 3)
B B {2[p. —p)]}"”

where radial pressure balance for the straight field line re-
gion inside the separatrix has been used to obtain the final
form. This approximation eliminates the transition region
where the field lines are curved and represents the magneto-
fluid by a cylinder of straight field lines of length /. This
approximate form for the line integral is clearly wrong at the
vortex point: in the two-dimensional equilibrium the ellipti-
cal shape of the flux surfaces gives a finite value for the line
integral at the vortex point, while Eq. (3) has a singularity
there. The approximation is also wrong at the separatrix
where it gives a finite value; the spindle point where B =0
makes the line integral be infinite there. For elongated equili-
bria, however, the approximation is not as bad as might be
expected. For such equilibria the surfaces are so elongated at
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FIG. 1. A field-reversed configuration inside a cylindrical flux conserver.
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the vortex point that a finite but very large value for the line
integral is obtained; furthermore, the singularity at the se-
paratrix is only logarithmic, and hence is very weak. Figure 2
compares the correct line integral with the approximation
for an elongated equilibrium.

If the pressure profile is written in the form
plY)=p,.B(d), where ¢ = ¢/y,, then Eq. (1} becomes a con-
dition relating initial and final /8 profiles:

BAg) Bi¢)

72 72’ (4)
[1—=BA4)])" [1-=8i(s)]"
where
A=/ i/ Prg) ~ (5)

Note that for all values of 4, if 0<B,<1, then 0<B,<1. Be-
cause of the average-beta condition, a 3 profile uniquely de-
termines a FRC equilibrium given 7, and ¥, (Ref. 6). A
method for computing FRC profiles at the equilibrium mid-
plane where the field lines are nearly straight is described in
the Appendix of Ref. 6. It is now possible to outline a proce-
dure for computing the final equilibrium from the initial one.

(1) Choose an initial equilibrium by specifying 8;, 7.,
and ¥, . Given these quantities, p,,; and ¥,; are determined.

(2) Choose ., or ¢, and vary 4 until Eq. (4) gives the 8
profile that makes an equilibrium with ¢, = ¢,,. The results
of this one-dimensional equilibrium calculation are mid-
plane profiles of pressure and magnetic field in the final
state.

(3) Solve Eq. (5) for /.

This procedure is relatively easy to carry out, especially
if the one-dimensional equilibrium solver is like the one de-
scribed in Ref. 6. It uses numerical integration and zero find-
ing to determine important parameters, so the determination
of A can easily be added to the algorithm. The only extra
difficulty is that Eq. (4) must be solved. Because of its compli-
cated form for arbitrary 7, it is best solved numerically. A
simple and rapidly converging iteration scheme for solving
Eq. (4) is given by

FIG. 2. The function $(d! /B ) (a) and its one-dimensional approximation (b)
in arbitrary units. These functions are obtained from an equilibrium with
x, =09and//r, =15.6.
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n+ 1 __ 1
1+C(1—gy
where C = (1 — B,)"*/(4B,).

In the case of flux compression, i.e., changing ¥,, the
full procedure is required. However, the procedure is quite
simple in the case of wall compression for which ¥, and ¢,
are held fixed, for then their ratio is fixed and is given by

(6)

2 1
b2 [ u-pria, )
o 2(1—x;) Jo
where x; is the ratio of r,, the midplane separatrix radius, to
the wall radius and where u = 2/7/r* — 1. The S8 profile is a
function of u through its dependence on ¢ (r) after the equilib-
rium has been determined. Suppose now that 3, is gotten
from 3, according to Eq. (4). It is easy to see thatif 4 > 1, then
B;>pB; and that if 4 < 1, then B, < B;. The average-beta con-
dition can be written in the form
1 2
B) =f Bdu=1-2
o 2
From Eq. (8) we see that if 4> 1, then x,; <x,; and that if
A <1,then x> x,;. Now consider Eq. (7);if 4 > 1, then both
x, and (1 — 8)"/2 decrease, causing the flux ratio to decrease;
conversely if A < 1, the flux ratio increases. Hence, for wall
compression in the one-dimensional approximation, 4 = 1:
the pressure profile does not change shape. Using Eq. (5) and
the relation p,, « ¢ /7%, the dependence of / on the wall radi-
us can be found to be

L/l = (ryp/ry,) 277 9)

(8)

This expression agrees with previous work on wall compres-
sion in this approximation.® For the case of ¥ = § the scaling
of lwith r is /o r?/>,

To test the accuracy of the one-dimensional approxima-
tion, we use Hewett’s two-dimensional FRC equilibrium
code® as follows. We choose an initial p(y) profile and com-
pute a final p(¢f) profile from the one-dimensional approxi-
mation. These profiles are then used in the two-dimensional
code and the lengths of the initial and final equilibria are
adjusted so that the ratio /,//; predicted by the one-dimen-
sional approximation is obtained. The functions u, (i) and
#(¥) are then computed by properly calculating the line in-
tegrals on the two-dimensional mesh. If the one-dimensional
approximation were exact, the two functions  so computed
would coincide. They do not agree precisely, but they are
close for highly elongated equilibria, as shown in Figs. 3 and
4. The initial profile used in these calculations is
B(¢)=(¢ + ¢ ?)/(1 + o). The parameter o can be adjusted
to obtain any desired value of x, . In the examples that follow,
the initial equilibrium had x, = 0.9. Figure 3 shows three 4
profiles obtained from the two-dimensional code using three
pressure profiles that are adiabatically connected through
wall compression according to the one-dimensional approxi-
mation.

For elongations (/ /r,) greater than about 12, the one-
dimensional approximation is accurate within about 10%.
The approximation is quite poor when the elongation is less
than about eight. Figure 4 shows u profiles similarly ob-
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FIG. 3. The u(¢ ) profiles (arbitrary units) for three equilibria adiabatically
connected according to the one-dimensional approximation to wall com-
pression. The initial equilibrium (a) has x, = 0.9 and / /r, = 14.6. The wall-
compressed equilibrium (b) has x, =0.9 and / /r, = 22.5. The wall-decom-
pressed equilibrium (c) has x, = 0.9 and / /r, = 6.9. Equilibrium (c) is not
elongated enough for the one-dimensional approximation to be accurate.

tained for the case of flux compression. In this case 10%
accuracy is obtained for elongations greater than about
eight. These requirements on the elongation are satisfied by
most experiments.
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FIG. 4. The u(¢ ) profiles (arbitrary units) for two equilibria adiabatically
connected according to the one-dimensional approximation to flux com-
pression. The initial equilibrium {a) has x, = 0.9 and / /r, = 15.6. The flux-
compressed equilibrium (b) has x, =0.6 and / /r, = 8.1.

1566 Phys. Fluids, Vol. 26, No. 6, June 1983

ll. ANALYTICAL MODEL

We consider an elongated FRC equilibrium inside a
straight cylindrical flux conserver as shown in Fig. 1. As in
Sec. I1, the separatrix is modeled as a cylinder of length / and
radius r, and we consider the adiabatic compression of the
FRC by changes in ,, and ¢, {e.g., wall and flux compres-
sions, respectively). The energy balance within the separatrix
can be written as

dE = dW, (10)
where E = f [p/(y — 1)+ B*/2u,]dV is the total energy
within the separatrix volume V" and where dW is the work
done on the separatrix by the external magnetic field pres-
sure. With the above assumptions and using Eq. (8), we ob-
tain £ =p, V[1 — (2 — y}x}/2]/(y — 1) and, therefore,

2d d q
dE:E( Tu %% dl_ dp,
T x I p,
dx,(2 —
X dx2—y) ) (1)
1—(2—yx2/2

The dW term is evaluated in the Appendix as

dr, dx,

+2

w xs

dw = —p,,,V(Z —Hl—xf)%). (12)
The trapped magnetic flux inside the separatrix can be writ-
ten as

2wy, = wri, B, x}/2f, (13)
withf=x,/f}(1 — B)"°du. We assume that fis only a func-
tion of x_, or equivalently, that the change in pressure profile
[ (u) only comes from varying x,. Then, using Eq. (13), the
relations ¢, = const and p,, < B? can be used to obtain

dp,, dx, dr,

= 23— —=-—4 , (14)
r

m s w

where € = (x,/f){df /dx,). Equations (8), (10)-(12), and (14)
can be combined to obtain
dl_(4—2) dr,  23-y—qdx
! Y T 14 X,
(l+e—vye) dB) (15)
14 B)

For wall compression, x, is constant and integrating
Eq. (15) gives Eq. (9). Assuming that the plasma is isothermal
within the separatrix, using the constancy of the particle in-
ventory N = (B )n,,#ril withp, =n, T, , and using radial
pressure balance and magnetic flux conservation, we obtain

4 — 2y — 4y — 0y
ZKX}’(w H Tmmrw 4

(16)

—4/y
2

nmccrw merujz‘

The scaling laws of Eq. (16) for y = § are given in Table I
These scaling laws are independent of the pressure profile, as
was also obtained in Sec. II.

For flux compression, r,,is constant but Eq. (15) cannot
be readily integrated unless € is a constant as x, varies. It has
been shown® that two limiting cases of elongated FRC equili-
bria are given by sharp-boundary pressure profiles that con-
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TABLE 1. Adiabatic wall compression scaling laws for y = 3.

1 T, n,, B,

2/5 I — 8.5 r- 12,5 r -2

w w w w

tain the largest and smallest amount of #,. These are the
high-flux sharp-boundary and low-flux sharp-boundary
models. For these, the values of € are 0 and — 1, respective-
ly, and Eq. (15) can be integrated to recover known results®
for ¥ = 3. For arbitrary diffuse pressure profiles, it can be

shown that y2<f<2/x,, where the upper and lower limits
correspond to the low-flux and high-flux sharp-boundary
models, respectively. From this inequality, we obtain
— 1<e<0, which indicates that the scaling laws of flux com-
pression for diffuse profiles are bounded by the two sharp-
boundary models. The numerical results of Sec, II show that
€ is approximately a constant as x, varies for a given initial
B(¢$ ). Even with different initial 3 profiles, we find that €
nearly always lies between — 0.2 and — 0.3. Therefore,
most diffuse profiles scale in flux compression in a way simi-
lar to the high-flux sharp-boundary profile for which € = 0.
We approximate € by the constant value — 0.25 for diffuse
profiles and neglect the small variations of less than 10% in
the coefficients of Eq. (15) due to departures of € from this
value. This approximarion is well justified within the one-
dimensional model of this work. Then integrating Eq. (15)
with the relations N = const, ¥, = const, p,, <B?Z, and
V o x2l, we obtain

[ocxfr.‘s—sfrl/r <B>~{l+e7rf)/7’

Tm chs—213fs)(7—l)/r (ﬁ)(l+e)w—lb/7’ (17)

nm Cix_: 2{3 — ey (ﬁ) — (1 + &y — 1]/}'y

—3+€
B, «x, .

The scaling laws of Eq. (17) are listed in Table II for the
particular case of ¥ = § and for three pressure profiles: the
high-flux sharp-boundary profile (¢ = 0), the low-flux sharp-
boundary profile (¢ = — 1), and a typical diffuse profile for
which we take € = — 0.25. In general, an adiabatic com-
pression will involve simultaneous changes of r,, and x,. The
final state can easily be obtained from the initial state by first
doing wall compression at constant x_, using Eq. (16) or Ta-
ble I, and they by doing flux compression at constant r,,
using Eq. (17) or Table II.

Finally, we compare in Fig. 5 the analytical results of
flux compression in this section with the numerical results of
Sec. II. We consider the scaling of / as function of x,. The

TABLE II. Adiabatic flux compression scaling laws for y = 3.

High-flux Typical Low-flux

sharp boundary diffuse profile sharp boundary
I xs/s<ﬁ)~3/5 xl@/lO(ﬂ)—Wlo xl4/5<ﬁ)—l
Tm x —12/5<ﬂ>2/5 x —lJ/S(ﬁ)*}/lO x‘—- 16/5
R x IS/S(B>72/5 x7—39/10<ﬁ>—3/m xs—24/5
Bw x .—rJ x’~l)/4 xs—nt
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FIG. 5. FRC length as a function of x, for flux compression. (a) High-flux
sharp boundary. (b) Low-flux sharp boundary. (c) One-dimensional com-
pression code. (d} Typical diffuse profile formula from Table I1.

numerical scaling law obtained with the initial profile
B(d)= (¢ + o¢?)/(1 + o}isshown in Fig. 5(c). The analyti-
cal scaling law obtained from Eq. {17) with e = — 0.25 is
shown as a dashed line in Fig. 5(d). Within the accuracy of
the one-dimensional approximation, the agreement between
numerical and analytical results is excellent. We also show in
Figs. S{a} and 5(b) the limiting scaling laws corresponding to
the high-flux and low-flux sharp-boundary models. The nu-
merical scaling of / with x_ obtained by Grossmann and Ha-
meiri’ and given in the Appendix of Ref. 7 suggests larger
lengths than those given by Fig. 5(a) for x, <0.5. The discrep-
ancy between those results and the ones of Figs. 5(c} and 5(d)
may be due to insufficient elongations for small values of x,
in the numerical work of Grossmann and Hameiri to justify
the one-dimensional approximation of this work.

IV. CONCLUSION

Two calculations of the adiabatic compression of elon-
gated FRC’s have been presented here. The first one uses a
long-thin approximation to the MHD entropy function to
effect the computation of sequences of adiabatic equilibria
with a one-dimensional equilibrium code. The results of this
approximate calculation have been checked against a two-
dimensional equilibrium code; for ratios of separatrix length
to separatrix radius greater than about ten, 10% accuracy is
obtained. The second calculation is analytical; it equates the
work done on the separatrix with the energy change inside
the separatrix. Simple formulas can be obtained by using an
approximation. These formulas have the same form as pre-
viously published formulas for the high-flux and low-flux
sharp-boundary models.® The analytic formulas and the
one-dimensional compression code were compared. Excel-
lent agreement was obtained for formulas whose exponents
were one-fourth of the way from the high-flux exponents to
the low-flux exponents as shown in Table II. It is, of course,
possible to choose diffuse profiles that violate this rule, but it
seems to hold for reasonably smooth ones.
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APPENDIX: MAGNETIC WORK DONE ON THE
SEPARATRIX

In this section, we evaluate the work dW done by the
external magnetic field on the separatrix. We have
dW = F.dr, + F.dI, (A1)
where F. and F, are radial and axial forces exerted on the
separatrix. We consider an elongated FRC equilibrium such
as the one of Fig. 1. Neglecting the transition region in the
vicinity of z=17/2, F. can be calculated readily as
— 27rlp,, since the magnetic pressure on the elongated cy-
lindrical portion of the separatrix is uniform and equal to p,,,
=Bl /2u,
The axial force F, can be obtained from considering a
control surface $ = X' }_ | S;. as indicated in Fig. 1. In equi-
librium, we must have

5

> F,=0, (A2)

i=1
where F,, = ({,(T-z)dS; and where T = (n;B):B/u, — n,
*(B 2/2u,) is the projection along the surface unit vector n, of
the Maxwell stress tensor T. Along S, B, = B,, while flux
conservation yields B, = B, (1 — x2) along S,. Those values
are used to obtain F, =p,mrl —r}) and F,
= —p,.(1 —x%)?mr’. We also have F,; = F,; =0 so that
Eq. (A2) yields

Fz=F24: —le——Fzzz _pmﬂ-r_?(l“_xf) (AS)

Then, Eq. (A1) can be rewritten as
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d
b in—x) d—’), (A4)
r. /

O

dw = —p,, V(2

where V =72l and dr,/r, = dr,/r, + dx,/x, . This result
can also be obtained by considering the magnetic field ener-
gy outside the separatrix. If the separatrix radius and length
are changed, holding ¥, and r,, fixed, the magnetic energy
outside the separatrix will change. The quantity dW is just
the negative of this change.
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