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Free boundary field-reversed configuration (FRC) equilibria in a conducting
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Highly elongated field-reversed configuration (FRC) equilibria are computed in a straight
conducting cylinder for the pressure profile p'(¢) = cH (¢), where H (x) is the Heaviside function.
The equilibria are found by inverting the Grad—Shafranov equation by means of a Green’s
function and by solving the resulting nonlinear integral equation. Long equilibria are obtained
only for values of the constant ¢ very near a critical value: the equilibria change from 2:1 elongated
to infinitely long as ¢ varies by only 0.3%. This criticial value of c is predicted by the average beta

condition.

I. INTRODUCTION

Field-reversed theta-pinch experiments routinely pro-
duce very prolate plasma equilibria; magnetohydrodynamic
equilibrium calculations do not. Since the experimental plas-
mas seem to be stable to the tilting instability that is predict-
ed for moderately elongated equilibria, it has been suggested
that the observed stability is due to exaggerated elongation.
It has not been easy to test this hypothesis because very long
equilibria have been difficult to compute. Previous calcula-
tions have indicated that such equilibria might exist, but
none of these computed equilibria has been completely satis-
factory. The equilibria of Berk, Hammer, and Weitzner' are
the simplest to use in practical work, but these equilibria do
not satisfy realistic boundary conditions outside the separa-
trix. In their model the region outside the separatrix is filled
either with field lines containing high pressure plasma or
with vacuum field lines that are distorted by the presence of
external coils.> Byrne and Grossman proposed equilibria
with an elliptical o point replaced by a slit on which the
magnetic field vanishes.® It seems unlikely that slit equilibria
exist because of the pathological conditions implied by hav-
ing the stream function and both of its derivatives vanish
along a line segment.* Christian has been able to produce
elongated equilibria for a limited number of pressure pro-
files, but has difficulty computing the transition from short
equilibria to long ones.’ His work on very long equilibria for
the pressure profile we consider here was very helpful to us,
however.

The accurate solution of this difficult mathematical
problem is the subject of this paper. We present a new ap-
proach to the computation of FRC equilibria that avoids the
previously encountered difficulties. This method is most
useful for the pressure profile used by Berk et al.'; in fact, we
have determined what Berk—-Hammer—Weitzner equilibria
would look like if the vacuum field lines outside the separa-
trix were required to be parallel to a conducting cylinder.

We solve the Grad—Shafranov equation,

(LW P _guy— _ 2y
r&r(r 3r) +522 4% e M

where ¢ is the poloidal flux function, p’(¢) = d p()/dy, and
where p(1) is the pressure on the magnetic surface labeled by
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1. We solve Eq. (1) in an infinitely long, flux-conserving cyl-

inder of radius a; the boundary conditions are
Yla,z)= — ¢, and dY/Jz =0 as |z| approaches infinity.
The pressure profile is

P'¥) = cH(¢), (2)
where c is a constant and where H (x) is the Heaviside func-
tion. Note that cH () = — j,/r, where j, is the toroidal

current density. We have found four solutions to this prob-
lem: a vacuum solution, two z-independent plasma solu-
tions, and an r-z-dependent plasma solution. These last three
solutions are obtained only if the constant c is greater than a
certain minimum value, ¢,; for ¢ smaller than ¢, the three
plasma solutions cease to exist. At ¢, the two z-independent
plasma solutions coalesce; at a slightly higher critical value
of ¢, ¢,, the two-dimensional solution and one of the z-inde-
pendent plasma solutions coalesce. Two-dimensional equili-
bria are obtained for ¢ above ¢,. For large values of ¢ these
equilibria consist of small spheres of fluid; as ¢ approaches ¢,
from above, the equilibria rapidly become very long and ra-
cetrack-like in shape. At ¢, they become infinitely long. This
sharply singular transition from two-dimensional equilibria
to one-dimensional equilibria and the notorious difficulty of
computing near a bifurcation point probably explain why
elongated solutions have been so difficult to find.

Il. ONE-DIMENSIONAL SOLUTIONS

Except for the trivial vacuum solution, ¢ = — ¢, /a?,
the z-independent plasma solutions are the simplest to find.
An elementary calculation yields

{%rz(b —Ler),  r<rop,
—1br* + d,

(3)

Teep <7<,

where
b =(a’c/8)[1 + (1 — 32¢,,/ca*)'?], 4)

and where d =2b°/c and ¢ =0 at r,,, = 2(b /c)"/%. Note
that there are two possible solutions; these two solutions are
realized only if b is real, i.e., only if ¢>¢, = 324, /a*. Figure
1 displays the 3 = O radius as a function of ¢. The upper
solution in this figure is a high-trapped-flux solution that
compresses the vacuum flux against the wall as ¢ becomes
large. The lower solution in this figure is a low-trapped-flux
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FIG. 1. The ¢ = O radius is displayed as a function of ¢ for the one-dimen-
sional solution of the model problem. The dot on the upper branch at
¢ = ¢, = 36y, /a* locates the point where the two-dimensional solutions
connect with the one-dimensional solutions.

solution that is squeezed to the axis by the vacuum flux as ¢
becomes large.

The presence of a value of ¢ below which no equilibria
exist is explained by noting that the toroidal current density
is given by j, = — crH (¢). If ¢ is too small, there is not
enough current density to produce field reversal, and no so-
lutions of the model problem are possible. This argument
also applies to two-dimensional solutions, so we expect in
any family of equilibria parameterized by c¢ to encounter a
lower limit below which equilibria no longer exist.

All of the one-dimensional solutions have the property
that ( ) = } where

_2 (=(2
<B>—r2jo (B-g,)”’” (5)

sep
and where B, is the magnetic field at » = 2. Hence, the only
one-dimensional equilibrium that satisfies the average beta
condition of Barnes,*’ ( 8) = 1 — }(r,.,/a)?, is the one with
Foep = (2/3)! /2a. This equilibrium is on the high-trapped-flux
branch at ¢ = ¢, = 36y, /a* as indicated in Fig. 1. Any long
two-dimensional equilibrium must resemble this special
one-dimensional equilibrium, i.e., must have about the same
values of ¢, r,.,,, and trapped flux.

Ill. TWO-DIMENSIONAL SOLUTIONS

From our studies of Hill’s vortex equilibria we know
there is at least one two-dimensional family of solutions par-
ameterized by ¢. With ¢ given by the Hill’s vortex formula
inside the separatrix, a matching vacuum field outside the
separatrix may be constructed by means of spheroidal co-
ordinates. This calculation is discussed in more detail in the
Appendix. For both prolate and oblate Hill’s vortices, the
matching vacuum field has mirror coils at infinity, but for
the spherical Hill’s vortex, the field lines at infinity are
straight. This spherical solution is given by

_{%Borz[l—(rz+zz)/pé], P +22< b,
T =B (1 - [0/ + )P+ 25

(6)
where p, = (15B,/2c)!’?, and where B, is the uniform mag-
netic field at infinity. This solution will be obtained in our

model problem when the plasma radius becomes very small
so that the cylindrical wall is effectively very far away, i.e.,
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when c is very large. This means there exists a two-dimen-
sional family of solutions whose large ¢ limit is given by Eq.
(6} (B, is replaced by 2y, /a”.} As ¢ is decreased, the equilibria
should become larger and finally approach a final state at
¢ = ¢, as required by the average beta condition.

To accurately describe this transition from small
spherical equilibria to elongated equilibria we solve the prob-
lem by using a Green’s function technique. By means of the
Green’s theorem for 4 *,

N | S _ . da
j(fA g—g4+f) L —f(ng v )

the Grad-Shafranov equation may be inverted to obtain the
equation

Y= — fG(r,r',z,z') p'r dr dz
1 dG da'
—_ e 8
+27J¢8r’ r? ®)

where G satisfies A *G = r§(r — r'}6(z — z')and G =0 if r or
¥ = a. The Green’s function is given by the expression

G(rrzz)= 2 f cos[k (z — 2)]

T Jo

X I(kr)I,(kr')[K (ka)/I,(ka))dk
(rr)'2 P4+ritiz—2)
o Q2 ( 2rr ) ’

)

where I,(x) and K,(x) are modified Bessel functions and
where Q) ,(x) is the Legendre function of the second kind
with degree one-half.

Formulating the problem this way has the advantage
that it is not necessary to compute finite differences across
the separatrix where the current density may be discontin-
uous; the integration is taken only over the region where
there is current. Doing the integrations accurately requires
many integration points; if a general pressure profile were
used, iteration would be necessary to find ¢ inside the separ-
atrix, and this method would be very expensive. But for our
model problem, there is no ¥ dependence on the right-hand
side of Eq. (8) except for the shape of the separatrix. Since the
separatrix is given by ¢ = 0, Eq. (8) can be used to obtain the
following nonlinear equation for the shape of the separatrix.

cf Grdrdz + ¥, ﬁz =0, (10)
£ a

where {2 is the region in the #' — z' plane bounded by the
separatrix.

We do the integrations in spherical coordinates and re-
present the separatrix as an expansion in even-order Le-
gendre polynomials as follows:

px)= S a, P,y x) (1)

n=1

where p(x) is the spherical radius of the separatrix at the
polar angle 8 = cos™'(x). The problem is solved when the
a,’s are determined. To solve Eq. (10) we rearrange it so that
the explicit 7~ is isolated, substitute » = p sin 6 using p from
Eq. (11), and integrate over x with a Legendre polynomial to
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FIG. 2. The separatrix shapes for a sequence of values of ¥ /a* are shown: (a)
0.5,(b) 1,(c) 5, (d) 9, (¢} 13.

obtain the following set of N nonlinear equations for thea,,’s.

2 1 ) c 12 J‘l PZn(x)
n —( n 2 a(%) (1 =x)M?
172
X (I Gr' dr’ dz’) dx, n=12,.,N. (12)
£2

Note that the right-hand side of Eq. (12) depends on the a,,’s
both through the shape of the integration region,

1 pix)
f Y drdz = J dx’ j p2dp, (13)
£ -1 0

and through the dependence of G on r= psiné and
z = p cos 8. With ¢ fixed, this is just a system of nonlinear
equations to solve; the problem can be solved this way but,
because of the singular behavior of the solution as ¢ is varied,
it is helpful to let ¢ also be one of the variables to be deter-
mined and to add one more equation to the system. We do
this by requiring that the separatrix enclose volume V. The
extra equation is

ZT” J: 1p3(x)dx =V. (14)

We use the multivariable nonlinear equation solver
“COSNAF” in the NAG library® to solve for the ,’s and ¢
given V and the boundary conditions.

When Egs. (12) and (14) are solved for small values of ¥,
the small radius spherical solution is recovered. As Vis in-
creased the solutions remain practically spherical until the
radius of the solution at z = 0 becomes greater than about
0.6q; as Vis increased further, the solutions become prolate
and racetrack-like in shape. As the volume becomes large
enough that the elongation of the equilibria (defined as the
ratio of the half-length to the maximum radius) is greater
than about 2, ¢ rapidly approaches c,; the two-dimensional

4+ L
3 -+ -+
Zsop
Rsep
2 + L +
1 —~4 4+
0 t t
0 36 72 108
catry,

FIG. 3. The elongation, z,.,/7..,, is displayed as a function of c.

solution branch connects with the one-dimensional high-
trapped-flux solution branch at the place where the average
beta condition is satisfied. Figure 2 shows the separatrix
shapes for an increasing sequence of values of ¥, Fig. 3 shows
the elongation of the solutions as a function of ¢, and Fig. 4
shows the flux plot of a long equilibrium. Note that the elon-
gation is sharply singular at the critical value of ¢; only in a
narrow region in ¢ are long equilibria obtained. Since these
elongated equilibria lie near a bifurcation point, it is a very
delicate matter to compute them by standard numerical
methods.

IV. CONCLUSION

We have found FRC equilibria under the conditions
that d p/dy be a constant inside the separatrix and that there
be a vacuum field outside the separatrix with field lines par-
allel to a cylindrical wall. Equilibria of any desired elonga-
tion may be found, but as the elongation becomes greater
than about 2, these equilibria can roughly be described as
having a long one-dimensional section in the middle and a
transition region from one-dimensional plasma to one-di-
mensional vacuum at each end. The shape of the field lines in
the transition region is the same for all equilibria with elon-
gations above 2. Thus, the freedom in the Berk—Hammer-
Weitzner equilibrium model' to choose both the elongation
and the shape of the separatrix near the field nulls is restrict-
ed by the requirement that the field lines outside the separa-
trix satisfy conducting wall boundary conditions. To change
the shape of the transition region it would be necessary either
to change the boundary conditions or to change the pressure
profile.

Finally, we propose the following prescription for find-

FIG. 4. A flux plot for the case V' = 134”
is shown.
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ing highly elongated FRC equilibria. Choose a pressure pro-
file and choose boundary conditions outside the separatrix.
Let one of the parameters in the chosen pressure profile be a
variable and impose a global constraint such as specifying
the volume or the total toroidal current enclosed by the se-
paratrix. Solve for the flux surfaces and the free parameter in
the pressure profile. In a future publication we shall present
examples of this procedure. We propose this recipe because
we believe that the sharp singularity in the elongation as a
function of the parameter c in our pressure profile will occur
with parameters in other pressure profiles. Such a sharp sin-
gularity makes looking for long equilibria by varying para-
meters in pressure profiles a very delicate matter.
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APPENDIX

The simplest two-dimensional model for an FRC is the
Hill’s vortex,

r z2) (A1)

_ Y%

4 ab rz(l a’ b2/
Unfortunately, in this model all space is filled with conduct-
ing fluid. A more realistic model may be obtained from the
Hill’s vortex by letting the field inside the separatrix be given
by Eq. (A1) and by computing a matching vacuum field out-
side the separatrix. (The calculation of this vacuum field has
also been done independently by Kaneko et al.® and by John
Boyd.'%) The calculation of the vacuum field is made relati-
vely simple by the ellipsoidal shape of the separatrix, which
makes it natural to compute the field by means of spheroidal
coordinates.!! There are three cases to consider: (1) a prolate
separatrix, b>a, {(2) an oblate separatrix, b <a, and (3) a
spherical separatrix, b = a.

1. Prolate separatrix

The prolate spheroidal coordinates ( 1,8 ) are connected
to the cylindrical coordinates (#,z) by the following relations:

r =d sinh u sin 6,
(A2)

z=d cosh u cos 6,
whered = (b2 — a?)"/2. In these coordinates the separatrix is
described by

1= o= tanh~'(a/b). (A3)
In the vacuum, ¥ satisfies the equation 4 *¥ = 0, which re-
duces to the equation

9 ( 1 a¢) 9 ( 1 a¢)
hu-—->— — sin — [————|=0.
s b einnge au) 75" 36 \sino a0

(Ad)

This equation is separable and solutions can be constructed
by superposition as usual. Requiring that ¢ and its normal
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FIG. 5. The vacuum field lines are displayed for a prolate Hill's vortex with
Zop/Top = 2.

derivative be continuous at the separatrix yields the follow-
ing formula for ¥ in the vacuum.

Y=q,Si(10)+¢S3(10) (AS5)
where
S (u,0)=sinhusin @ P (cos 9)
% ( Paix) Q. )’ (A6)
PLixo)  Q.lxo)

and where x = cosh ¢ and x, = cosh p,. The coefficients g,
and g, are given by

g = — Yol§ + a*/5b%) P (x0)Q | (xo), (A7)
s = (Yo/45)(1 — a®/b?) P 3(x0)Q 5 (%o)- (A8)
The functions Pl(x) and Q}(x) are associated Legendre

functions.'? Figure 5 displays contours of constant ¥ outside
the separatrix for a prolate Hill’s vortex with b /a = 2.

2. Oblate separatrix

The prolate spheroidal coordinates (v,¢ } are connected
to the cylindrical coordinates (7,z) by the following relations:

r =g cosh v sin ¢, (A9)

z =g sinh v cos ¢,

FIG. 6. The vacuum field lines are displayed for an oblate Hill’s vortex with
Zop/Tep = 0.5.
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FIG. 7. The vacuum field lines are displayed for a spherical Hill’s vortex.

where g = (@2 — b %)!/2. The separatrix is described by

v =v,=tanh~ (b /a). (A10)
The flux function satisfies the equation
a ( 1 8¢) . a ( 1 a¢>
h v — — —|—==}=0,
coshy o ooy av) "% 35 \sng 36
(Al11)
and the vacuum solution is
p=rTivg)+rTive) (A12)
where
T, (v,¢)=coshvsing P.(cos ¢)
Pl ; 142
x( l,.(_zy) _ an(fy) ) (A13)
Pn(lyO) Qn(U’o)

and where y = sinh v, y, = sinh v,, and i = ( — 1)/, The
coefficients r, and r, are given by

ry=ol$ + a’/5b%) P (i yo)@ (i o)
ry = (Yo/45)@*/b* — 1) P (i yo)@ 3 (i yo)-

(A14)
(A15)
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Figure 6 displays contours of constant ¥ outside the separa-
trix for a prolate Hill’s vortex with b /a = 0.5.

3. Spherical separatrix

The vacuum field in this case may be gotten either by
using spherical coordinates or by allowing g and b to ap-
proach each other in the formulas of Secs. 1 or 2. In any case
the result is that in the vacuum

-~ 2adf- ()

Figure 7 shows the vacuum field lines for this case. Note that
only for this spherical case are straight field lines obtained
infinitely far from the separatrix.
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